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Weighted Inequalities 
for the Fractional Integral Operators 

on Monotone Functions 
Y. Rakotondratsimba 

Abstract. We give a characterization of weight functions u and v on R" for which the fractional 
integral operator 1 of order s on IR" defined by (13f)(x) = fiR" Ix - y 1 3 "f(y ) dy sends all 
monotone functions which belong to the weighted Lebesgue space L(R") into the weighted 
Lebesgue space L(R"). This characterization is done for all p and q with 1 < p < 00 and 
0 < q < oo. The analogous Lorentz and Orlicz problems are also considered. 
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0. Introduction 
The fractional integral operator I of orders (0<s < n) on R' (n E N = N\{0}) is 
defined by

(If)(x) 
= j 

Ix - If() dy. 

Let u and v be weight functions on R Th (i.e. non-negative locally integrable functions) 
and let 1 <p 5 q < oo. Weighted inequalities of the form 

	

(IR (Isf)(x)u(x)dx) <c(f fP (x)v(x)dx)	for all f >0	(0.0) 

were studied by many authors (see the references in [8]). A characterization of weight 
functions u and v for which (0.0) holds was done by Sawyer and Wheeden [8]. In 
particular necessary (and sufficient for 1 <p < q) conditions are 
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for all cubes Q, where p' = -j, XQ is the center of Q and IQI its Lebesgue measure. 
In these conditions, the cubes Q can be replaced by balls B, and particularly taking 
balls B = B(0, R) centered at the origin and with radius R, it appears that necessary 
conditions for the above weighted inequality (0.0) are 

	

I	 I 

	

(L<1 
IyI(3)u(y)dy) (j v (Y) dY)	c	(0.1) 

yI<R 
l/p' 

(f,,I <
Ru(y)dy

	(JR <1Y1
IyI'v

 j 	
c	(o.1) 

	

I	 1 

	

q	 P7 

R3	
(flyl<R 

u(y)dy)
	'I (1vI<R v(

Y )dY)<c	(0.2) 

for all R> 0, with a constant c not depending on R. 

For the convenience, in the second formula, we write the star since the considered 
condition is known as the dual of the first one. Such a distinction will always be used 
throughout this paper when we deal with the dual of an inequality or a condition. 

We emphasize that in these conditions we do not make use of integrations on ar-
bitrary cubes, which are a brake for people who do computations. Thus (0.1) and its 
dual condition (0.1) can be easily checked mainly for radial weight functions (which 
are often used in applications). 

A function f satisfies the 

Condition 1.M 

and we write f c 1M when 1(x) = x l) for some monotone function defined on 
[0, ). We also write f E RV and f E 1U if is a decreasing or increasing function, 
respectively. 

In this paper we deal with the question of characterizing those weight functions u 
and v for which it is enough to test (0.0) for non-negative functions in R.M. Although 
(0.1), (0.1) and (0.2) are no longer sufficient for (0.0) with general functions, we will 
prove in Corollary 1.2 that both (0.1) and (0.1) are sufficient to ensure (0.0) for all 
non-negative functions in R.M. Moreover we are also able to get a similar result for the 
range of p and q with q <p. Since the technique we used is based on Hardy inequalities 
we can also deal with the analogous Lorentz and Orlicz problems. 

Statements of results on I mapping LP into Lq are given in Section 1. The next 
Section 2 is devoted to the Lorentz problem, and Section 3 yields the statements for the 
Orlicz setting. Proofs of all statements are given in Section 4.
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1. Lebesgue spaces results 

Instead of (0.0) we write I : LP - L, and when we only deal with non-negative 
functions in 7?M, we denote the corresponding embedding by I : L(7?M) -p L. 

Our first result is 

Theorem 1.1. Let 0 < s < n, 0 < p < oo and 0 < q < oo. Suppose that 
I, : LP - L. Then there is a constant c > 0 such that 

	

(L [L<1 1(y ) d] u(x)IxI(5_n)dx) 
I	

(j fP (x)v(x)dx)	(1.1) 

	

(fRn[11 ^ < I yl'f( y ) d] 

q 

u(x) dx) 

I	(JR fP(())	(1.1) 
for all non-negative functions 1 . Conversely, both inequalities (1.1) and (1.1) imply 
that I., : L(7?M) -L. 

The proof of the theorem will be given in Section 4. 

The inequalities (1.1) and (1.1) are in fact forms of usual Hardy inequalities [5: 
p. 13]. With easy modifications of the classical proofs (by change of variables or by 
a direct method as Sawyer's proof) it is clear that if 1 < p q < oo, then inequality 
(1.1) or (1.1) holds if and only if condition (0.1) or (0.1)* is satisfied, respectively. If 
1 <p < 00 and 0 <q <p, then (1.1) and (1.1) is equivalent to 

JR- [(11.1<lyl 
YI(3cu Y dY)

(1.2) 

I 

_l 

	

x (iv T(z)dz)
	

,- T(x)dx <oo 

and

JR' [(L< IYI(3v(Y)dY)	

(1.2)* 

Ixu(z)dz	 u(x)dx <00, 

 z<z  /  

i_I respectively, where B 
i _ - q	and p' = _E_.• 

p-I 

Thus as a consequence of Theorem 1.1 we get 

Corollary 1.2. Let 0 < s < nand 1 <p < oo. Then, for p 5 q, conditions (0.1) 
and (0.1) together imply I : L P (7?.M) - L. This embedding is also true for the range 
0 < q < p whenever both (1.2) and (1.2) are satisfied.
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Although for 1 < p q the conditions (0.1) and (0.1)' imply I : L9 (R.M) - L, 
they are no longer necessary. To get the right necessary and sufficient conditions wecan 
observe that (1.1) and its dual inequality (1.1)' with non-negative functions in 1.M are 
equivalent to

q I	 I 

	

oo [jr ] 

r(3ü(r)dr) <c(f(r)(r)dr)	(1.3) 

and	
1 

(100 [1 00 (p)p3_Idp]ü(r)dr) 
i <c(f(r)(r)dr)  

for all non-negative monotone functions V, respectively. Here 

ü(r) =r	 fs u(r)d(w)	and	(r) =	
j	

v(rw)da(w), 

S_ 1 is the unit sphere of R n and da is the area measure on S_ 1 . A key to get (1.3) 
and (1.3)' are Hardy inequalities for monotone functions like 

(j(A(r)P(r)dr) <c(j(r)v(r)dr)	 (1.4) 

and	 I f oo
. ) . d ) <c(jP(r)v*(r)dr)  

where A and its dual operator A' are given by 

(A)(r)	 and	(A')(r) = f p-1 V,(p) dp. 

Indeed a characterization of weight functions p and v for which (1.3) (and conse-
quently for (1.3)') holds for decreasing functions & was done by Sawyer [7] and Stepanov 
1 91 . The analogous problem for increasing-functions was solved by Heinig and Stepanov 
[3].

For 1 <p < q < oo it is well known that inequality (1.4) for decreasing functions is 
equivalent together to

( 10RIL(r)dr	<cl(jRu(r)dr)	 (1.5) 

and P	
P7 

IR 
r(r)dr) (1, [jv(i)dt]	rP'u(r)dr)	C2	 (1.6)
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for all R> 0. 

For 1 < q <p < 00 it is required that inequality (1.4) for decreasing functions holds 
if and only if together

I	 _1 9 j00 
[(jr(t)dt) 

P Ir) } 
1i(r)dr <00	 (1.7) 

and

J'(:
0 0 K100

Pi2(P)dP)

(1.8) e	r /	I	1 

([
r 
PIP' 
P' / p u(t) di I	v(P)dP) ] r' 	v(t) dtl	u(r) dr < 00 

	

[Jo	] \Jo	[Jo	j 

where = - . Results for the dual inequality (1.4) can be found and deduced by 
results in [7, 91. Analogous results for increasing functions can be seen in [3]. Con-
sequently a characterization of the embedding I L(1M) - can be reduced to 
express inequalities (1.3) and (1.3)* in terms of operators A and A like (1.4) and (1.4). 
Thus our next result is the following 

Theorem 1.3. Let 1 < p < 00 and 0 < q < 00. Then the embedding f 
LP (1?M) - L q is equivalent to the Hardy inequalities (with monotone functions) (1.4) 
and (1.4)* together, with weight functions z, ii on (0, +00) and jf, V on (1, +oo) given 
by

=
and
	= (In t)'ü((lnt)+)t'' 

v(t) =	 V(t) = (In t)€3((ln t) )t' 

where ü and €3 are defined as above. 

As a consequence we can state the following two corollaries. 

Corollary 1.4 (Decreasing functions with 1 < p < q). Let 0 < s < n, 1 < p < 
q < 00 and f,. v(x)dx = oo. Then the embedding I,, : LP (1ZV) -p L (for decreasing 
functions) is equivalent to the four following conditions together: 

I	 1 

JW<Rxsx)dx 	(1	v(x)dx)	 (1.9) 

1. 

(Ix _nuxdx L) 
—p, 

(1 	ii	f13,1<1_1
 v(y)dyl	v(x)dx)	<C2	 (1.10)
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f(R' - lxI 3 )u(x)dx)
 

<C3(1
1^1<R 

v(x)dx) 1. 
	
(1.11) 

( jI . ,<R
U(x)dx)

x 
\ JR< 

(l x i' - R')	 JIVKZI v(Y)dY] 

P	

PT 

 v(x) dx)	<c4	(1.12) 

X.1 

for all R > 0, where c 1 .... ,c4 are non-negative constants not depending on R. 

Corollary 1.5 (Decreasing functions with 1 < q < p). Let 0 < s < Ti, 1 < q < 
p < 00 and j,. v(x)dx 00. Then the embedding I, L(7V) - L (for decreasing 
functions) is equivalent to the four following conditions together: 

- 18 

JR.[(L<1 lYl3u(y)dy) (j	v(z)dz) I xsu(x)dx <no (1.13) 
zI<IzI 

IRn [(L< l yl'" u ( y ) d) (L< [11,1<1.l v (y) d] 

I	9 

x lzl'v(z)dz) ] [j	v(y)dyl	lx'v(x)dx <no	(1.14) 

	

y I(I z I	j 

	

1	 -	8 

f- YI')cu(Y)dY)	
j 	I v(x)dx <00 (1.15) 

IR. \ 
( j
x<z 

u(z)dz) 
(1,.,<Iyl 

(ll' - lxi')!' 

x f	v(z)dz]v(Y)dY)]u(x)dx<no	 (1.16) 

where i = I - I 
8	q	p 

The proof of Theorem 1.3 and Corollaries 1.4 and 1.5 will be given in Section 4. 
Analogous results for increasing functions are also possible by using Theorem 3 and 
other results in [3].
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2. Lorentz spaces results 
For 1poo and 1<q< oo we set

I 
=

 qj [

C0

L:Ig(y)I>A} 
u(r)dr] 

and for 1 <p < oo we set
.1. 

= supA 
[L: Ig(v)I>A} 

u(x)dx] 
P 

Let u, v and w 1 , w2 be weight functions on iR a . In this section we deal with an analogy 
of inequality (0.0) which takes the form 

	

W2(I3f)1,12 < C l 
1 W1 f 1l Lp^l P2	for all functions f > 0. 

The consideration of such an inequality with four weight functions is useful in the 
Lorentz setting, since the weights cannot be combined as in the Lebesgue case (with 
expressions like f (If(r)Iu(x))"v(x)dx). 

In this section, we always assume 

1 <p,q <oo	and	1	00.	 (2.0) 

The above embedding is denoted as 13 LP2(wi ) - LI2(w2), and when we will limit 
onelelf to the case of non-negative functions in R.M, then we write I, L!P2(wi)[R.M] 

L2(w2). Contrary to the Lebesgue case (i.e. Pi = P2 and q i = q ) and as 
mentioned in [4], a characterization of I, : L 1 P 2 (w i ) - L'(w2 ) is not known in 
the literature, and until now it is still an open problem to obtain easy necessary and 
sufficient conditions for this embedding. However for 13 : LPI  - L(w2) 
we have the following 

Theorem 2.1. Let 0 < s < n, and pI,P2 and ql , q2 as in (2.0). Suppoie I, 
L 1P2 (w i )	L12(w2). Then there is a constant c > 0 such that 

W21
	(f

f()d) 
I y I<Il	 P22 

W2 

(11-K y l
IYIS—nf(Y)dY)

 

(2.1) 

< cw f	 (2.1)* 

for all non-negative functions 1 . Conversely inequalities (2.1) and (2.1)* together imply 
I, L!;P2(wi)[1?Jt4j - L2(w2). 

The proof of Theorem 2.1 will be given in Section 4. Inequality (2.1) and its dual ver-
sion (2.1) can be seen as boundedness of generalized Hardy-type operators on'Lorentz 
spaces. Such a problem was treated by Edmunds, Gurka and Pick [2]. With their results 
we can deduce the following
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Proposition 2.2. Let 0 < s < n, and p1,p2 and q42 as in (2.0) and satisfying 
the condition

	

max{p1,p2} min{q,q}.	 (2.2) 
Then condition (2.1) is equivalent to 

IIW21 IShh1R<I.111Lp2q2	11.I<R	, < C	 (2.3) 
Wit) 

for all R> 0. Also condition (2.1)' is equivalent to 

1W21.<R11p2q2 

for all R > 0. Consequently conditions (2.3) and (2.3)' together imply the embedding 
I. : L 1P2 (w i )[R.MJ -* 

Recall that, for each measurable set E, 'E means its characteristic function. 
The proof of Proposition 2.2 also will be given in Section 4. The conditions (2.3) and 

(2.3)' together are sufficient for the embedding I, : L 1 P 2 (w i )[1Mj -* L'( 2 ) and 
they are necessary for the embedding I, : L , P 2 (w i) L2 (W2). Hardy inequalities 
results for monotone functions in the Lorentz setting are not largely studied in the 
literature, so we will limit our result to the above sufficient conditions. 

3. Orlicz spaces results 
Let u,v and w1,w2 be weight functions on R'. In this section we consider the Orlicz 
version of inequality (0.0) which is of the form 

' [f 4'2(C2w2(x)(Iif)(x))u(x)dx] < 	[Cil'  4'l(Wi(x)f(x))v(x)dx] 

for all non-negative functions f . This embedding is denoted as I : L' (w i ) L (w2), 
and when we will limit oneself to the case of nonnegative functions in RM, then 
we write I : L(wj)[R.M] -, L' 2 (w2 ). Here 4 and 42 are -functions. Note 
that 4' is a p-function if it is a non-negative increasing and continuous function on 
[0, oo) with 4'(0) = 0 and lim,_, 4'(t) = no. A p-function 4' is said to be subadditive 
if 4'(s + t)	4'(s) + 4'(t) for all s, t > 0. Further, 4' is an N-function if it is a 
convex p-function such that lim. 0 = 0 and limj..., = no. The N-function 
complementary associated to 4' is defined by 4"(t) = sup j > 0 {st-4'(s)}. Such afunction 
leads to define the Orlicz and Luxemburg norms 

Ill iis,w = sup { f 1 fg 1 W: J 4"(IgI)w < i} 

and
IIfII(),w = inf {A > 0: J 4'( — ' IfI)w 

respectively. 
Except the case of W2 = 1 and = w 1 which was solved by Lai Qisheng [6] (see also 

an other particular case in [4]), a characterization of ' : L"(wi ) -p L" 2 (W2) is still ji 
open problem. However for I,: L'(wi)[7?M] -i L02 (w2 ) we have the following
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Theorem 3.1. Let 0 < s < n, let c i be an N-function and 4D 2 a co-function. 
Suppose I : L1(w i) L2(w2). Then there are constants c 1 > 0 and c2 > 0 such 
that

't 2' Intn 't2(c2w2(x)x[f 
x 

f(Y)dY])u(x)dx] 
IvI<II 

[ci j	i (w i (x)f (x))v(x) dx]	(3.1) 

JRn (P2 (C2W2(X) [f 	II 3 f() d] ) u(x) dx] 

<-i [ci j 't, (wi(x)f(x))v(x)dx]	(3.1) 

for all non-negative functions 1. Conversely inequalities (3.1) and (3.1) together imply 
13 : L" (w i )[R.Mj --+ L(w2). 

The proof of Theorem 3.1 will be given in Section 4. Adapting the usual Lebesgue 
case, we obtain yet the following 

Proposition 3.2. Let 0 < s < n, let I be an N-function and 4 2 a tp-function 
with (D j (D 2 1 subadditive. Then condition (3.1) is equivalent to 

ii	1	I 
' Ii	 ^	1 [c, 1 ]	(3.2) 

L JR(IzI	 II CVWI	I 

for alle >0 and R > 0. Also condition(3.1)* is equivalent to 

1 1 2 (cW2(X)Il I' 1 R<I . I	u(x)dx < 1 Lc 1 1	(3.2)* 
 Ii CVW1	 II$,ev) 

for all e > 0 and R > 0. Consequently conditions (3.2) and (3.2)* together are sufficient 
for the embedding I : L' 1 (w i )[7Z.M] -* L2 (w2 ) and necessary for the embedding 
13 : L"(w i ) - L3(w2). 

The proof of Proposition 3.2 will be given in Section 4. In view of a result of Bloom 
and Kerman [1] equivalent expressions which do not involve the Orlicz norm can be 
used instead of conditions (3.2) and (3.2)'.
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4. Proofs of results 

In this section the proofs of our results are collected. We begin by that of Theorem 1.1. 

Proof of Theorem 1.1. The necessity of conditions (1.1) and (1.1) can be easily 
obtained, since for all non-negative functions f 

ixi11 3,1<1XI
 f(y)dy	

cfly—xj<2jzj	

< Ix — yIf(y)dy	c(If)(x)	(4.1) 
 

<  

and

 <41 <10 
IyI3f(y)dy	

cfly--j<2 'jyjIx 
-yI	 <f(y)dy	c(1f)(x)	(4.2) 

where c> 0 is a constant which depends only on s and n. 
For the converse, for all non-negative functions f we first have 

(13 f)(x) = A, (x) + A 2 (x) + A3(x) 

where

A, (x) 
= f I^4I'I 

I - yI3f(y)dy 
I  

A2 (X) 
= It I X - If(v) dy 

IzI^IyI 

A3(x) 
= f 	Ix - y l 9 f(y ) dy. 

For A, (x) we observe that 1 IxI Ix - I whenever I yIIx I and consequently 

A, (x) :^ cIxI J
yI^ l z I	 11S,1<1-1 

f(y)dy	c I x I
	
f(y)dy. 

I 

Also since I II :^ I x -whenever 2 IxI	l y l, we have 

A2 (X)	cJ 
x I^I y I	 l 

(y)dy	cf
zI<IvI 

IyIf(y)dy 
I  

with also c> 0 a constant depending on s and n. To estimate A3 (x), the crucial point 
is that

sup	1(y) <C(n) ±.	 1(z) dz 
IzI<IyI<2IxI	-
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for all non-negative functions f E 7M and x 34 0. By this inequality we get 

A3 (x) <	sup	1(z) 
I f	Ix - yIdy 

\ 4l z l<l : l< 2 1 x 1	lzI<liI<4Ixl 

sup	Az)	 ix 
Ix - yIdy 

\ t z l<l z l< 2 1 z l	I	lZ—yI<5lI 

sup	f(z)IxI 
\I z I<I z I< 2 I z l	J 

<coi x I (3 J	 f(z)dz 
*IzI<IzI<41z1 

< c1	
fII<II<4IrI 

f(z) dz + c2 
1.4 	IzI(f(y) dy 

II< 1=1	 frI<I.I :5 C. x'	f	f(z) dz + C2 f I zIf( z ) dz 
 

where c,.. . c 2 are non-negative constants which depend on .s and n. With the above 
estimate we have proved that 

(If)(x)	C1	11Y 1 <1-1	 l 
f(y) dy + C2 fzl<IyI 

I y I 3 f(y ) dy	(4.3) 
 

for all non-negative functions f E R.M. and consequently inequalities (1.1) and (1.1)' 
together imply 1, : L(RM) - LI 

Proof of Theorem 1.3. Note that by Theorem 1.1 the embedding I L(7?..M.) 
- L q is equivalent both to inequalities (1.3) and (1.3). To see the equivalence between 
(1.3) and (1.4) (resp. (1.3) and (1.4)*) we will do a change of variable which preserves 
the monotonicity of the functions. 

We first consider (1.3). Let (t) = t*. Then it is clear that 

j

00

	

	r	q 

[J 
P2(P)dP] r(3tü(r)dr	

00 
(i*) di] r_'ü(r) dr = j [A o ](rn)r3ü(r) 

j [j  j IA( o ) ] (i)t	+1_fl](j)d = j [A(ço o 

with z(i) = t*(9+11ü(t*). We also have 

p00	

too 
/	 = / (po4)(r°)i(r)dr 

Jo	 Jo

° 

= 
1000(	)P(,() di
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with v(t) = t*O—)i(t*). Consequently inequality (1.3) can be written as 

(100
[A(o4))](t)(t)dt)1 <c(jo4))P(t)v(t)dt) 

We are reduced to see the equivalence of this last one with inequality (1.4). The point 
is that 4) is an increasing and continuous function on (0, oo). Indeed suppose that (4.4) 
is true for all non-negative increasing (resp. decreasing) functions. Take an increasing 
(resp. decreasing) function 0 and define o This is an increasing (resp. 
decreasing) function and consequently by (4.4) the inequality (1.4) is true. 

Conversely it is clear that (1.4) implies (4.4), since for each non-negative increasing 
(resp. decreasing) function W also 0 = v o4) is an increasing (resp. decreasing) function. 

Next we deal with inequality (1.3)*. We set 0(t) = (In t)'/-. It is clear that 0 is a 
non-negative continuous and increasing function on (1, oo). We have 

L°° [1r00 P3_l (P) d] 

00	00	 q 
/	/	((lnt))t'di ü(r)dr 

JO	Jexp(r') 

=	o 0j(exp(r3))u(r)dr 

[A	0)](t)(lnt)_Iü((lnt)+)t_1dj 

= j[A*( 

with *(t) = (lnt)i't'ü((lnt))t_'. On the other hand we also have 

j(r)(r)dr 1, 00
 = f (ç 

with v*(t) = (lnt)_1t3((lnt))t_1. Consequently inequality (1 . 3)* can be written as 

(j00	
o 0)](t)*(i)di)	

(j	oO)P(t)v*(t)dt) 

The equivalence of this last inequality with condition (1.4)* can be seen as above I 
Proof of Corollary 1.4. We have to prove that the Hardy inequality (1.4) (resp. 

(1 .4)*) with non-negative decreasing functions holds if and only if (1.9) and (1.10) 
together (resp. (1.11) and (1.12) together) are true.
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As we have recalled in Section 1, inequality (1.4) with decreasing functions is equiv-
alent to (1.5) and (1.6) together. Now with 

= tE5+1_n1(jk)	and	v(r) = 

we get the following: 

• 
f	,u(t)dt 

Jo

R 

= J R11 
j[3+1_hhIjj(t*)dt	J	r5"ü(r)dr	

j	
xsu(x) dx 

v(i)dt
 J

= J i*['I(t*)dt	J (r)dr	I

and

JR 
tp(i)dt = 

JR' 
t(3_t%+1_fhu(j)dt 

	

J' r''ü(r)dr	IRI/n<l,,l
xI" u ( x ) dx R i t.

 

R	I t 1 P	 [It'/' 
J i' f v(P)dP]zi(t)dt 

=j 	
i5()d]	t*'+1_13(t*)dt 

-p, 

11-1<R'/n[L< v(y) 
d]	I x I'" v(x ) dx. 

With these quantities, the conditions (1.5) and (1.6) are exactly (1.9) and (1.10). 

Next we will prove the equivalence of (1.3)* with both conditions (1.11) and (1.12). 
Let (Tg)(r) = f, t'g(i) di (0 < s < n). Since we assume f000 1i3(r) dr jn v(x) dx = 
no, by a result of Sawyer [7] the inequality (1.3) is equivalent to 

r 

	

(.L
c 

[Jr (T*9)(i)dt] [I ii(t)di]	i(r)dr)
(4.5) <c(100

g'(r)(ü(r))1'dr
 

	

for all non-negative functions g. First we have (T*h)(r)	=	f h(t) dt. Indeed, 

j(Tg)(t)h(i) di = 100 

[J°° p8lg(p) d] h(t)di 

=: 
g(p)[p31j h(i)dt]iP. 
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On the other hand, we have 

J(Th)(r)dr = j [r` fr h(p) dpI 

= J h(p) f
t 
r3_l dr] dp f K(t, p)h(p)dp 

with K(t, p) = t' - p'. Thus, inequality (4.5) is reduced to 

P (f- [ fr
 K()h()d ] (r)dr)	c(Jh(r)(r)dr)	(4.6) 

for all non-negative functions h, where ii(r) = [f i3(t) dt]	i5 (r ) and ( r) = ( 11 (r)) ' '. 

Such inequality was studied by Stepanov in [10] and is known to be equivalent both to 

1	 1 

00	

0 (i)(Ln' - R5)P'(r)dr) (fR (lq) <c 

and

	

1	 1 

(ii)(J	(r) dr) (J (R3 - r') ((r)) 1_dr)	
C 

for all R> 0. Here we have 

f
R 

( (r))'dr =fRü(r)dr f u(x)dx 
 0  

and since f00i5(r)dr j v(x) dx =oo, we have 

PT 

(%(r)dr = ( j [ jr] y	- 

J

R

 
i(t)dt	J 	v(x)dx

 

• fR (r 3 - R)'(r)dr IR<Izl 
(l x i' - R')	 flYK-1 

v(Y)dY]v(x)dx 

R fo (Ri- r3)(p(r))'dr J	(R' - xi)u(x)dx. 
 zI(R 

With these expressions, then conditions (i) and (ii) are exactly (1.12) and (1.11), re-
spectively I
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Proof of Corollary 1.5. As in the proof of Corollary 1.4, we have to get the 
equivalence of the Hardy inequality (1.4) (rcsp. (1.4)) for non-negative decreasing 
functions with conditions (1.13) and (1.14) (resp. (1.15) and (1.16)). 

As we have seen in Section 1 for the range 1 < q < p < oo, inequality (1.4) is 
equivalent both to (1.7) and (1.8) with 

p(t) = tk[5+1_nJ(*)	and	v(r) = 

R Using the above computations of f0H (r)dr and f0 v(r)dr and by making change of 
variables condition (1.7) takes the form as (1.13). Also using the above expressions, we 
see that condition (1.8) is the same as (1.14). 

Again the key to obtain (1.4)* is the Hardy inequality (4.6) which is equivalent both 
to (for the range 1 <q <p < )

1  9 1 

(iii)f [(j(r3 - t) ' (r) dr) 
(j' 

((r)) i dr) ] ((t))	dt 

and

19 

(iv) j 
[(f(r)dr) (jt	r3)(r))1dr)'] (t)dt <00 

where 1 = - and

10, 
1-q' -p(r) = (ü(r)) 	ü(r) = ((r)) 	i(r) = [ 	j	v(r). 

The condition (iii) is the same as (1.16). Since f°i(r)dr	[j0i3]O') and-O-
p' = -O, (iv) yields the condition (1.15)1 

Proof of Theorem 2.1. As in the proof of Theorem 1.1, by (4.1) and (4.2) 
the embedding 13 : L 1 P 2 (w i ) - L 1 9 2 (w2 ) implies conditions (2.1) and (2.1). For 
the converse we have only to observe that by (4.3) both (2.1) and (2.1) imply 13 
L 1 P 2 (w i )7Mj	L 1 (w 2 ) I 

Proof of Proposition 2.2. Let a and b be measurable non-negative functions. 
The Hardy type operators we consider are 

(7f)(x) = a(x) f	b(y)f(y) dy and (lg)(x) = b(x) J	a(y)g(y) dy. 
I y I^I'I	 I'IIvI 

We have the following
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Lemma. Let p, P2 and qi, q2 reals satisfying conditions (2.0) and (2.2). Then

	

11f111212 < C	 for all I 

if and only if

	

i	L j.
Sup 	b11I<R	<00.	 (4.7) 
R>O II 11

IiV

	
I 

Similarly
1I9p212	c	 for all 9 

if and only if

	

11 vSUP 
b1<R	 l alR<I.III	< 00.

R>O	,  

The first part of this lemma can be obtained by adapting Theorem 3 in [2]. The 
second part can be deduced by the first one by using a duality argument. 

In continuation of the proof of Proposition 2.2, now the equivalence of (2.1) and (2.3) 
is given by the first part of this Lemma by taking a(x) = w2( x )I xI" and b(y) = 
The next part with b(x) = w 2 (x) and a(y) =	 involves the equivalence of
(2.1)' and (2.3)' I 

Proof of Theorem 3.1. Since the proof is similar to that of Theorem 2.1, we leave 
any detail I 

Proof of Proposition 3.2. As in the proof of Proposition 3.1, we are reduced to 
get the following 

	

Lemma. Let	be an N-function and 2 a o-function with cI' subadditive.
Then

' [f 2 (C2 (flf)(x))u(x)dxJ <' [c 
JRn 

i(f(x))v(x)dx] 

for all non-negative functions f is equivalent to 

If 2(c2 a(x)- 1 .	u(x)dxl <1[cie1]	(4.8) 
jR<ni	\	I EV ll<RL•euj 

for all e > 0 and R> 0. Also 

	

' [j	
2 (c2 (fl*9)(x))u(x)dx] <' [ci 

fRn 
i(9(x))v(x)dx] 

for all non-negative functions g is equivalent to 

a 
I f	2(4b(x)M_1n<i.i L	u(x) dx]	 [cE']	(4.8)' 

	

cv	 )Li'i(R
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for allE >0 and R> 0. 

Proof. Since the proofs of both parts are similar, we only prove the first one and 
begin with the necessity of the condition (4.8). Clearly the inequality in the first part 
of the Lemma implies 

'
 f

<lzI 2(c2a(x)[f
lsI<R 

b(Y)f(Y)dY])u(x)dx] 
R	\ 

cif i(f(x))v(x)dx 

for all non-negative functions f and all R> 0. Condition (4.8) is a consequence of this 
last inequality. Indeed, let e > 0 and R > 0. Then by the definition of the Orlicz norm 

S = II—lp.I<RjI 1EV	
= 

for some non-negative function I with f<R cI (f(x))ev(x) dx	1 and consequently 
we obtain

S
 =

	

	[f
2 (C2a(x)-- 1 1 . 1 < ii	)u(x)dx 

R.(IxI	
]  CV	• CV 

i[j 2 (c2 a(x)f	b()f()d)u(x)dx}
R<IzI  

1c, f 	i(f(x))v(x)dx 

Now we deal with the sufficiency of the condition (4.8). Without loss on generality 
(and to simplify) we can only do the proof when n = 1 and on (0, oo). Let f be a 
non-negative function on (0, co). If f0' b(y)f(y) dy < oc, then for' some integer m, 

f b(y)f(y)dy e [2 m , 2m+1) and there is an increasing sequence of non-negative reals 
so that

r 
2k=irk	

+i 
b(Y)f()d=j	b(y)f(y)dy (k<m-1)

zk 

I= 	
b(y)f(y)dy. 

Thus with X m+I = 00 we can write 

(0, 00) 
= UEXk,xk+1).
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When f000 b(y)f(y) dy = oo, the first identities also holds for all integer k, and the last 
one remains still valid. The main key for our proof is again the inequality (4.9) with 
R 1k and the function 1 1 11 k _ I r k ). We will postpone below the proof of (4.9). With 
these preliminaries we can obtain the conclusion as follow: 

S = I"D2(4-lC2(-Hf)(x))u(x)dx 

f.x,	2 4'4C2 a(x) f b(y)1 (y)f(y)dy )u(xdx 
rn 	 0k<  

1.00 2 (c2 a(x) fk b(y )1[z k	y)f(y) d 	 u(x) dx 
k<m k	 0 

[c1 
f	

(f(x)1[ZklIk)(x))v(x)dx] 
k<m

Xk 

	

<i'[ci	Ix	 i(f(x))v(x)dx 
k-Ik<m  

[Cj 
1000 

(D ' (f (x)),,(x) dx]. 

Finally we show how condition (4.8) implies (4.9). Indeed let R > 0. We can assume 
that

0<f	i(f(x))v(x)dx <oo. 
 

Thus if we choose an c = e(f, R) > 0 with 

fI
i (f(x))ev(x)dx = 1, 

x < R 

then If1II<RII(,),cv < 1. Consequently, by the Holder inequality and condition (4.8), 
we get

s__f 2 [c2 a(x)(f bflI.I<R)]u(x)dx 
R<IxI 

= IR<IrI 2 
[c2 a ( x )	1I.I<R,	If1I.I<RM(.1)V] u(x)dx 

=I	2 [C2a(x ) - 1II<RM

	

<IzI	 EV 

 

1C, f 	i(f(x))v(x)dx 
 

and the assertion is proved I
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