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On Multipower Equations: 
Some Iterative Solutions and Applications 

David K. Ruch and Patrick J. Van Fleet 

Abstract. A generalization of McFarland's iterative scheme [12] for solving quadratic equa-
tions in Banach spaces is reported. The notion of a uniformly contractive system is introduced 
and subsequently employed to investigate the convergence of a new iterative method for ap-
proximating solutions to this wider class of multipower equations. Existence and uniqueness of 
solutions are addressed within the framework of a uniformly contractive system. To illustrate 
the use of the new iterative scheme, we employ it when approximating solutions to a Ham-
merstein equation and a Chandrashekar equation. Due to the nature of the examples, we have 
found that wavelet/scaling function bases are a natural choice for the implementation of our 
iterative method. 
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1. Introduction 
We seek the solution x E X, where X is a Banach space to the multipower equation 

y=x+AL(x,...,x)	 (1)

k times 

Here, y E X and L : X k	X is a k-linear operator. The norm of L is given in the
usual way:

11L11= sup II L( x i,. . . 
IIzII<1 

We shall consider for /c > 2 the linear map 

:= L( x, . . . ,x 

k - 1 times 
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and observe that
IlLll	IILII IxII k_1 .	 (2) 

The following lemma gives a bound that is useful when measuring the effectiveness of 
our iterative scheme. The proof of the lemma is similar to that of Theorem 7.3 in [15), 
and is thus omitted. 

Lemma 1.1. Let L : X IC	Xbe a k-linear operator with k > 2. For w,z e X 
with 11w1j, lI z ll	M we have 

II L	L ll	(I1 L llIw2 ( k - 1)) 11 w - z IP .	 (3) 
McFarland [12] considered k = 2 in (1) and derived an iterative scheme for ap-

proximating solutions to quadratic equations in Banach spaces. He obtains convergence 
results for his method by using a continued fraction approach. In order to generalize 
his method to arbitrary k, we have employed the contractive mapping theorem. We 
give conditions on the operators involved and the initial guesses that will guarantee 
convergence of the iterative scheme. The use of the contractive mapping theorem yields 
a uniqueness of solution result as well. 

We then show that these results can be generalized to a wider class of equations 
where the operator L need not be linear in the first k - 1 variables, and an application 
to boundary. value problems is given. We conclude Section 2 with a uniqueness result 
for "small" solutions of equation (1). 

In order to approximate solutions to equation (1), we consider the fixed point prob-
lem

Q(x)=x,	 (4) 
where, for appropriate A E R and x E X, the map Q : X X is given as follows: 

Q(x) = (AL. + I) - '(y).	 (5) 

The difficulty lies with inverting an infinite dimensional linear operator, so the 
standard approach is to use successive subspaces V, and approximate the solution to the 
problem in finite-dimensional settings. Uniformly contractive systems will be developed 
to show that these finite-dimensional approximations do indeed converge to the true 
solution of equation (4). 

To formulate the finite-dimensional approximating scheme, we first assume that X 
has a Schauder basis {e k } 1 C X. Then each x E X has a unique representation 

X = 

where e E X' satisfy (e, e,) = Stj. 
Next, let {k} C N be an increasing sequence. We then define the projection 

operators S. as follows:

S. (x) =	(e,x)e.	 (6)
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Since X is complete, SUPnEN	< oo. For convenience, we assume that IISII = 1.
We then take as our finite-dimensional subspaces V = S(X), and define the linear 
map L X '-4 V, as

	

= Sn(Lz())	 (7) 

We recall that a k-linear operator L X is compact if for any bounded set 
B C X, the set L(Bc) is relatively compact. For more details on compact multilinear 
maps, please see [14, 18, 20]. 

The next result illustrates that compactness is sufficient to ensure that L n - L. 

Lemma 1.2. Suppose that X has a Schauder basis. 

(i) If L is compact in its kth variable, then for each x E X, 

n
lim 	 (8) 

(ii) If L is compact, then

	

liIILn LII=0.	 (9) 

Here, L n = SnL. 

Proof. It is clear that Sn converges uniformly to the identity map I on relatively 
compact sets. Since L is a compact map, for any bounded set B C X, the set L(B) 
is relatively compact. Now L. is linear, so 

JILn
 -	= II( S - I)L1 11 = SUP I(Sn - I)Lz (w)II —i 0 X

IIwII^1 

which proves assertion (i). 
If L is compact, then L(Bc) is relatively compact for any bounded set B C X, so 

,,	,,	 ,. linIlLn - L II =	11(S - I)L II = 0 

which is assertion (ii)U 

The preceeding result will be used in Section 4 when we derive conditions that guar-
antee convergence of the sequence of solutions obtained in finite-dimensional subspaces 
to the true fixed point solution of equation (4). Sufficient conditions on the operator L 
for this convergence compare favorably with those given in [1]. 

In order to obtain the results of Section 4, we have found it convenient to develop 
the notion of a uniformly contractive system. Such a system is defined in Section 3 and 
is a useful framework with which to show that z,, - z, where z solves equation (4) and 
the Zn are the fixed points of the map Qn : X - V,,. Uniformly contractive systems 
have also been used in [19] with another iterative scheme for solving certain nonlinear 
operator equations. 

We conclude the paper with a section of examples illustrating the application of 
our iterative scheme to approximating solutions of certain multipower equations. We 
consider approximating solutions to the
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(i) Hammerstein equation 

Y(s) = x(s) +
	

K(s, t)(x(t)) 2 dt	 (10) 

where X = L2 [a,b] and the 

(ii) Chandrashekar equation 

1 = H(s) + 1 AsH(s)J H(t) di 
s + I 

	

- 	 (11) 
0 

where X = L2 [0, 11. 

In both cases, we use a sequence of closed nested subspaces Vo C ... C V C X. Such 
sequences of subspaces have been found to be particularly useful in many applications 
when the V, form a so-called multiresolution analysis (see [7, 13] and references therein). 
We may then employ a sequence of wavelet bases {'nk} C V. for providing approximate 
solutions to the multipower equations. These bases are orthonormal and compactly 
supported. Such properties are desirable in view of the number of integrals that must 
be computed when we devise a scheme for obtaining approximate solutions to equations 
(i) and (ii) above. A discussion of the algorithm used for obtaining approximate solutions 
is also included into this section. 

2. Multipower operator equations 

We begin with a lemma that will be of use later in this section. 

	

Lemma 2.1. For k > 2 and 0 < a <	kk	 there exists some D > 0 such that 

	

a(1 + D)'	 1 
1_a(1+D)k_I <D<

	 (12) 

Proof. Observe that the left inequality in (12) is equivalent to 

a(1iD)k —(1+D)+1 <0. 

Now let f(v) = av !c - v + 1. Clearly f(1) > 0 and since a < we find that 
f(--1-) < 0. Thus there exists some v = 1 + D satisfying 1 < v < -- so that the 
desired inequality (12) holds I 

The following theorem gives conditions on .\, L, and y to ensure that the iteration 
scheme

xn+i = Q(x)	 (13) 

converges to the true fixed point of (4). Such conditions also lead to the definition of a 
sphere S wherein any initial guess xo will lead to the unique fixed point in some sphere 
U C S.
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Theorem 2.2. If

0< JAI II L II llil	= a	
(k -

kk	'	 (14 

then there exists a solution x to equation (1), unique in the open sphere 

s={zexilz_ Y Il< ii '1 }.	 (15) 

lithe initial guess x0 e S, then
1imx = x 3	 (16) 

where xi	Q(x). The solution x is contained in the closed sphere 

= {E X li z - I'll	Dilyll < 
HYlI} 

where D is given in Lemma 2.1. 

Proof. Let x0 E S and set a = Al IILII 111k_1. By Lemma 2.1, we can choose D 
so that

hr0 - Y11	 a(1 + D)'1 and	 <D. 
hIU	k - 1	 1 - a(1 + D) 

Note that x 0 is in the closed sphere U. We claim that Q(U) C U. To verify the claim, 
let x E U. Then

Q(x) - y = (AL. + I)' (I - (AL. + I))(y) 

so that
IIAL1II 

hhQ( x )	Y11- 
ihAL111 

<	lP L hh ((1 + D)hhyhh) k-I
	

i ii 
- 1— II AL II(( 1 + D)hhyhh)' 
- a(1 + D)k_1 
- 1_a(1+D)k 

:5DIhyhh. 

Thus Q(x) E U, which proves the claim. 

Next we show that Q : U '-+ U is a contraction mapping, with contraction factor 

- 
a(1+D)k_2(k_1) <1

	- 
- (1_a(1+D)1)2 

(to see that ,- < 1, note that replacing D with 1-ç and a with (kr yields r = 1). 
In order to prove that Q is indeed a contraction, let x, w E U. Then 

Q(x) - Q(w) = (AL. + I)(AL - AL Z )(AL W + I)- 'y
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which along with Lemma 1.1 and repeated use of (2) yields 

II L Il (llylI 1_2 (1 + D)k_2 (k - 1 )) 11 w - rh 
IQ(x) - Q(W)II	(1 - Il AL 11)( 1 - IlALIl)	

Ill/Il 

a(1 + D)t2 (/c - 1 )11 w - x li	 (17) 
- (1_ ll L ll(( 1 + D)llyII)')2 
= r Il w - xli. 

Now since Q is a contraction mapping with Q(U) C U, we can apply the contraction 
mapping principle to the iterative scheme x,,.1 = Q(x) and conclude that the iterates 
must converge to the unique fixed point x E U of Q . Since D can be chosen arbitrarily 
close to --j-, the solution must be unique in the open sphere 

Corollary 2.3. The bound	on PI IIL II Ilyll in (14) is optimal for X = R 

Proof. Consider the equation 1 = x -	1)' 
Some remarks are in order before we conclude this section. We first note that the 

iterative method described in Theorem 2.2 can be generalized slightly to solve equations 
of the form

y = Ax +L(x,...x),	 (18) 

where A and A' are linear and bounded. Putting y" = A'y and L = A'L, we 
have

ya=x+ALa(Xx) 

which is of the form (1) and can thus be solved using Theorem 2.2. 
From Lemma 2.1, we observe that for .X near 0, we can pick D near 0 and conclude 

that the solution to equation (1) is close to y, thus improving our choice of the initial 
guess in the iterative scheme (13). 

In the special case k = 2, it is useful to compare our results with those obtained 
elsewhere. In [12], McFarland considered the equation (18) with A invertible and linear. 
McFarland showed in his Theorem 3 that the iterative scheme 

- (A + ALx)'y = (I + ALaX)-iy0 

converges to a solution of equation (18) if 

0< II A 'Il P'I IILII 
Ilya 11 5 b < 

1
1 (19) 

and if
1_(1_48)h/2

II ALroII <.	 (20) 2 
If our condition (14) with k = 2 is satisfied, then so is McFarland's condition 

(19). Note that McFarland's requirement (20) on the initial condition x O may be more 
difficult to verify than the condition (15) hr0 - II < Il y ll . McFarland does not use the 
contraction mapping principle in his proof, and obtains no uniqueness results.
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In [17), RaIl solves equation (1) subject to (14), both with k = 2. He uses a series 
approach and shows in his Theorem 19 that the solution x is unique in the sphere 

-4 1 A i li L il ii,ii 1{ EXiiz-xil <	 (21) 
2iAiilLli 

When 4 1 A i 1I L II llU is near 1, RaIl's uniqueness condition (21) does not give as much 
information as our condition (15). On the other hand, for A near 0, Rall's sphere is 
much larger than our sphere S in (15). 

In [1), Argyros uses a different iterative method and an auxiliary quadratic equation 
to obtain several existence and uniqueness results for equation (1) when k = 2. We state 
a corollary of Argyros [1] for the purpose of comparison to our results. 

Corollary 2.4 (Argyros [1]). For any y E X such that IllI <4(IA1 ilLII)-', 

(i) equation (1) has a unique solution x E U(y,a), where 

a = (1 - 2 1 A l II L II ll y ll)(2 1 A i IIL1D' 

(ii) moreover x E U(y, b), where 

= (1 - 21Ai li L ii lIll - ( i - 4 1 A i lI L lI iiyll) 1/2) (21A1 I1LD)1. 

Argyros' uniqueness ball (i) is bigger than ours (15) but his existence ball (ii) is the 
same as ours. We summarize this in the following corollary. 

Corollary 2.5. In the case k = 2, the solution x 3 of equation (1) is in the closed 
sphere

U = {z E X Ili z - y ll	bllyll} 

=	E X li z - yll 
:5 1 - 2 1 A i ii L ll It'll - (1 - 4 1'i ii L it'll) 

1/2 
{ 

2iAIiiLIl 

Proof. It is easy to see that there exists a unique root vo E (1, for the function 
f(v) given in the proof of Lemma 2.1. Then for each v E (vo, k D = v - 1 satisfies 
inequality (12) and so by Theorem 2.2 

lit' - x ll	Dy = (v - i)IIt'lI. 

Hence Ily -	(vo - 1 )ll y ll . In the case k = 2, the quadratic formula yields 

(vO - ' ) Ilt'll	
1 - 2 1 A 1 il L ll Ilyll - ( i - 4 1 A l IlLll 

111)V2 

2 i A l IILII 

and the assertion is proved I 

The linearity of L in the first k - 1 variables is not critical for the results of this 
section, and we can generalize them somewhat.
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Proposition 2.6. Let L: X x X - X satisfy the following conditions: 

(i) L	L(x,.) is a bounded linear operator for-all x E X. 

(ii) There exist i > 2 and C > 0 such that 

ii L ( x , v )li	C iI x ii' Iivli 
and

ilL1 - Lull	C(j - i)( max(ll x ll, llvll)), 2hz - vu 
for all x,v E X. 

Then Theorem 2.2 and Corollary 2.5 hold for this operator L with II L II and k replaced 
by C and i, respectively, throughout the theorem and corollary. 

Proof. Note that condition (ii) is just a minor generalization of inequalities (2) and 
(3). The proofs of Theorem 2.2 and Corollary 2.5 are valid with these adjustments U 

It is clear from Lemma 1.1 that a bounded k-linear operator will satisfy the hy-
potheses of this proposition. The next example is an important example of an operator 
of this type that is not k-linear. 

Example 2.7. Define L: C[0, 11 x CIO, 11 - CIO, 1] by 

L(z, v)(s) = J h(s, t)(x(t))' v(t) di, 

where h E C([0, 1] 2 ) and ,u > 2. Then L is linear in v and 

	

hl L (z , v )II	hjxhl'	/ h(s, I) dt 00

Moreover,

hl( L 1 - L)(v)hl	
=	

h(s, t)((x(t)) 1 - (w(t))')v(t) dtV 

(j - 1)M 2	h(s, t) dt	li x - wlIIivhI, 
0	 00 

where M = max (hI x hl,, hl w Iloo), by the lemma below. 
Lemma 2.8. For x,w >0 and p > 2, 

lx	- w''l	(p - 1)(max(x,p)) 2 Ix - w I .	 ( 22) 
Proof. Without loss of generality, assume w < x. Fix w and let 

f(x) = (p - 1 )x '—' (X - w)	and	g(x) =	- w1.
Then

fl(X) = (p - 1)x 2 + (x - w)(p - l)(p - 2)x' 3 > (p - 1)x 2 = g'(x).	(23) 
Since 1(w) = 0 = g(w), inequality (23) yields (22)1
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Remark. The class of boundary value problems (se, for example, [ 10, 11]) 

I,( t) + Aa(t)x(t) = 1(t) 

with t E [0, 11, M ^! 2 and appropriate boundary conditions can be transformed into 

x(t) = A	 K(s, t)a(s)x'1(s) ds + F(t). 

Then Proposition 2.6 will apply with suitable restrictions on A and a(t). 

For the case y = 0 in equation (1), our iterative scheme 

= (AL +I)'(y) 

will yield only the trivial solution x = 0. We show below that this is the only "small" 
solution. To obtain "large" solutions, schemes such as the Newton- Kantorovich method 
[2] can be used. For many problems, the Newton-Kantorovich method will be faster than 
our iterative scheme. However, if the Fréchet derivative AL'(x,... , x) is not defined or 
is significantly more expensive to numerically compute than AL E , then our scheme is 
preferable. 

Proposition 2.9. Equation (1) has at most one solution x E X for which 

1 
lizil 

<	
(24) 

Proof. For the sake of reaching a contradiction, suppose that u and v are distinct 
solutions to equation (1) satisfying (24). Then 

u — v = 
=L(u—v,u,...,u)+L(v,u—v,u,...,u)+...+L(v,...,v,u—v) 

so by (24) we have 

u - v ii	k II u - v ii lI L ii( max(ii u ii, liviD)
k 
-I < il u

 - VII, 

which is a contradiction I
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3. Uniformly contractive systems 

We now introduce the notion of a uniformly contractive system. The role of such 
system is to provide a general framework for obtaining iterative solutions of operator 
equations that involve contraction mappings. In particular, we will use the concept of 
the uniformly contractive sytem in conjunction with the method discussed in Section 2 
to construct approximate solutions to certain multipower equations. 

Definition 3.1. Let X be a Banach space, {V} a sequence of closed subspaces of 
X such that

limdist(V,x) = 0 

for each x E X. Let U be a closed set in X, and, for each n E N, let Q, be an operator 
with Q : X i-* V,, and define the set U = VnU. We say that {U, Q,,} is a uniformly 
contractive system if conditions (Cl) and (C2) below hold. 
(C 1) There exists a c E R, 0 < c < 1, and an N E N such that if n N and x,y E U, 

then
Q(U) C U,,	and	iiQn(x) - Q( y )il	c li x - y ll .	( 25)

(C2) For any x,y E U and c > 0, there exists an N E N such that if k > j > N, then 

	

lQk(x) - Q,( y )li	c li x -. vH + E.	 (26) 
Note that the subspaces V,, need not be nested, so that the finite element method 

can be used within the context of a uniformly contractive system. 
Theorem 3.2. Let {U,,,Q,,} satisfy condition (Cl) above. Then condition (C2) 

is equivalent to the existence of a contraction map Q U U, defined by Q(x) = 
lim,,..,,, Q,,(x), such that

	

11Q( x) - Q(y ) 11	cx - iI 

for x,y EU. 

Proof. Assume condition (C2) holds. We first show that the map Q is well defined. 
Fix x E U and e > 0. Choose N as prescribed in condition (C2) and set y = x in (26). 
Then for k > i > N we have

liQk( x ) - Q(x)ii < e. 

Thus {Q3 (x)} 3 is a Cauchy sequence. Since X is complete, lim,,_, Q,,(x) exists. Noting 
that U is closed and Q,,(x) E U,, C U for all n yields 

limQ,,(x) = Q(x) EU. 

Now let x,y E  and e >0. Choose N EN so that 

11Q( X ) - QN(x)ii <e	and	11Q(Y) - QN(y )ii <.e. 

Then 

11Q( X ) - Q( y )ii 5 11Q( X ) - QN(x)ii + iiQN(x) - QN(y ) Ii + iiQN(Y) - Q(Y)11	(27) 
6 + c li x - 1111 + C.
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Since e is arbitrary, we have

iiQ( x ) - Q(y ) II 5 c lix - yil 

Next we assume theexistence of the map Q, and fix x,y E U and e > 0. By the 
definition of Q, there exists an N E N such that if k > i > N, then 

Qk(x) - Q,(y)il ilQk( x) - Q(X)II + llQ( x) - Q(Y)II + liQ() - Q()li 
(28) 

Thus condition (C2) is satisfied I 

We observe that the equations Q(x) = x all have unique fixed points z E U by the 
contraction mapping principle (see [91). Our next result shows that these fixed points 
converge to z, the unique fixed point of the map Q E U. 

Theorem 3.3. Let {U, Q} be a uniformly contractive system. Then 

limz,, = z5 , where Q(z3 ) = z3. 

Proof. Let E > 0 and 0 < c < 1 be the contractive constant for {U,Q}. By 
Theorem 3.2, we can choose N E N so that n > N implies that 

IIQ( zs) - Qn(zs)lI < (1 - c)e. 

Then
llzs— znll= llQ(z3)—Q(z)lI 

liQ( z3) - Qn(Zs)il + liQ(z3) —QTh(z)il 

<(1—c)e+ciizj—zii. 

So
li z 3 - znIl(1 - c) < (1 - c)e	whence lI z, - z il < E. 

Thus	z = z, I 

Theorem 3.4. Let {U,Q} be a uniformly contractive system such that U is 
bounded and {Q} converges to Q uniformly on U. Let N E N be given as per condition 
(Cl). Beginning with any k > N and initial guess xg E Uk, the iterative scheme 

x fl+k+1 = Q(x +k)	 (29) 

will converge to the fixed point of Q in U:	 = z, = Q(z41 

Remark. We note at this time that to numerically implement (29), a hierarchical 
basis, such as one provided by a multiresolution analysis, is required.
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Proof of Theorem 3.4. Fix c > 0. By the uniform convergence of {Q}, there is 
some M1 > k> N such that for n > rn M 1 , we have 

II X n -X,.11 = IQ_i(xm_) - Qrn_i(xm_i)I 
IIQ.i(xi) - Qmi(x1)I + IQm-(x1) - Qrni(xrni)II (30) 
e + cx,_ 1 - Xm_1II. 

Now choose M2 > M1 such that

CM2MI	C 

2diamU 
Then for any n 2 m M2 , we can repeat the iteration (30) rn - M 1 times to obtain 

m-M, -1 
IXn - XmII <	 1 + Cm_MiIlxfl_(m_Mj) - X M 1 II 

j=0 
m-M 1 -1 

	

<C	cj+2cm_MldiamU	 (31) 
j=o 

	

(M-MI-I
c'<c	

+ j=o 

Thus {x} is a Cauchy sequence, with	= z e U. 
Now {U, Q,} is a uniformly contractive system, so for n N, 

IIQ( z) - z II	IIQ( z ) - Q(z)II + IQ(z) - Q(x)II + IIQn(Xn) - zII 
IIQ(z) - Q(z)II + c II z - x	+ II x +i - zII. 

For n sufficiently large, we have 

IIQ(z) - z II :S IIQ( z) - Qn(Z)II + c II z - x	+ II xn+i - zII 
since {Q} converges to Q pointwise and	Zn = z. As e is arbitrary, we have 
Q(z) = z. Since Q has a unique fixed point in U, we conclude that Z. = z U 

Remark. The convergence rate for the scheme (29) to the solution z of the fixed 
point problem (4) will be governed by the size of the contraction constant c of the 
uniformly contractive system, as well as the diameter of U and the uniform convergence 
of the operators Q on U. To be precise, for any given c > 0, there are M1 , M2 E N 
such that

IIQn(2) - Q-(x )II <C 

for all m,n 2 M2 2 M1 and x  U. Then

7 M2-M1 
Iz_xmII(

\ j=o 
for in 2 M2.
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4. Applications of uniformly contractive systems for X 
possessing a Schauder basis 

Let X be a Banach space with Schauder basis {ek } C X. Consider the operator 

R = (AL + I)S 

asa map from V into V. Note that R V, - VexistswhenhIALSII II) 1 z1I< 1. 
In matrix terms, with respect to the basis {ek}, R is formed by inverting the principal 
submatrix (corresponding to V) of the matrix representation of the linear operator 
(AL + I)S. 

Let J, V,-	X denote the natural injection operator. Define (AL + Sn ) - ' : X '-i
X by

(AL + S) = JR'S 

and define Q, X - V,, to be

	

Q Th (x) = (AL + S)'y.	 (32)

We now give convergence conditions for the finite-dimensional operators {Q}. 
Theorem 4.1. Suppose that X has a Schauder basis {ek}. 

(A) If L : X k	X is compact in the kth variable, then Qn converges to Q pointwise 
on	

{XExIIIALXII<1}. 

(B) If L Xk X is compact and 8< 1, then Qn converges to Q uniformly on 

U6 = {x E X1 IIALII IIxII k_1 < 8}. 

Proof. Let x E {x E X : II AL 1II < 11 and observe that 

Q(x) - Q(x) = L 1 + I)'y - (AL + S)'S(y) 
= (AL. + I ) - '(y - Sn(y)) 

+ (AL I + I)((AL + S) - (ALZ + I))(AL + S)-'S(y). 

Since (AL + Sn'Sn(y) E V, we have 

(S - I)(AL + S)'S(y) = 0. 

Thus
Q(x) - Q(x) = (AL. + I) - (y - S(y)) 

+ (ALI + I) - ' (AL n - AL X )(AL + S)1S(y) 
which yields 

IIQ( x ) - Q(x)II 
1 

1 - IIAL1II (ii - S( y ) II + IAL - AL 1 II II( AL + s)-'s()ll) 

II y - S( y ) Il	II AL - ALzIIIIyII 
1- II AL1II +	( 1- IIAL1II)2
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To prove assertion (A), wenote that for each x E X, L is a compact linear map. 
Now Il AL - AL1 II - 0 by Lemma 1.21(i) so that IQ(x) - Q(x)ll - 0 thus proving 
(A).

Next assume that L is compact and that x E U6 . Then 

(	f	< ll - S-(y)l1	ll AL - ALII llll	6 
llQ x

\
 , - Qx1ll -	1

 

-6	
+	

(1 - 5)2	
, 

and since HAL - ALIP -+ 0 uniformly on (Jo by Lemma 1.21(u), Qn converges to Q 
uniformly on U6 . This proves assertion (B) I 

Remark. For the sake of notation, we have chosen L to be compact in the kth 
variable. The result holds as long as L is compact in at least one variable. 

We now state and prove our main result. 
Theorem 4.2. Suppose that X has a Schauder basis { ek} and that 

	

0< J AI ll L ll llll	= a	
(k	1)k1 

kk 

Then:

(a) If L is compact in at least one variable, then { U 2 , Q, } is a uniformly contractive 
system.

(b) If L is compact, then the iterative scheme (29) given in Theorem 3.4 converges. 
Proof. The first part of the proof is needed for both assertions (a) and (b). Choose 

K  N so that if	K, then
a(1 + D)'' 

ll S,() - ll + 1 - a(1 + D)'1	
D 

where the existence of D is guaranteed by Lemma 2.1. Consider the closed ball 
U= {zEXllz — yll	DllyIl}. 

Then, arguing similarly to the proof of Theorem 2.2, for x E U and j > K, we have 
IIQ,( x) - Il = ((AL + S)' - S ) y + ( Si - flyj 

= (AL + Si)' (S - (AL + S))y + (Si - I)yM 

1 —UALll Illl + I(S - ')II 

• a(1 + D)k_1 

1 - a(1 + D)'	lll + 1( 5, - 1)ll 

^DllylI. 

Hence Q,(U) c U2 . The proof that each Q3 is a contractive map with the same 
contraction factor r as Q is very similar to that given for Q in the proof of Theorem 2.2 
and is omitted. Thus condition (Cl) is satisfied. 

To complete the proof of part (a), note that U C {x E XI II AL1II < 1) so Theorem 
4.11(A) applies. Then by Theorem 3.2, condition (C2) is satisfied. If L is compact, 
then Q,, converges to Q uniformly on U by Theorem 4.1/(B). Therefore Theorem 3.4 
applies I
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We consider the case k = 2 so that Theorem 4.2 applies to the quadratic equation 

y=x+.XB(x,x)	 (33)

where B is bilinear. We state Theorem 7 of [1) for comparison purposes. 
Theorem 4.3 (see Argyros [1: Theorem 71) . Consider the quadratic equations 

z=y+Fn(z,z)	 (34)

where F,, X x X - X (n E N) are bounded symmetric bilinear operators. If 

(i) the sequence {F,,} converges to B uniformly as n - 00 

(ii) for each n there exists z,, satisfying (34) and SUPn II ZnII < (21.XI 11811)-1, 
then the sequence {zn} converges to a solution Z of equation (33). 

Observe that Argyros requires uniform convergence of the operators F,, to B, while 
our Theorem 4.27(a) assumes only that B is compact in one variable in order to guar-
antee that the fixed point solutions Zn converge to the solution Z of equation (33). 

Also note that Argyros' theorem requires that the bilinear operators F,, be symmet-
ric, while this is not needed for Theorem 4.2/(a). This fact is quite important for an 
operator B(x, w) that is compact in only one variable, for if B is "symmetrized" using 
the formula

B(x w) = B(x, w) + B(w, x) 
2 

then the compactness in one variable is destroyed. These points should be kept in mind 
for Example 5.1 below. 

5. Applications to integral equations 

In the final section of this paper, we employ our iterative scheme and our previous 
results to obtain approximate solutions to the two classes of integral equations given in 
the introduction. In both examples, we work in X = L2 [a, b], —00 a <b oo. While 
we have considered different finite-dimensional subspaces of L2 (R) in our examples, we 
have found that it is quite beneficial to utilize the closed subspaces Vn C L2 [a, b] with 
V,, c V,-+ 1 (n E N), that form a multiresoluiion analysis (MRA) of L 2 [a,b] (see [4, 7] 
for a treatment of multiresolution analysis). The multiresolution analysis gives rise to 
a so-called wavelet basis	where for fixed n, {.'k}k forms an orthonormal basis 
for the space Wn, V,,+1 V,, SW,,. For n,k E Z, {,bnk} forms an orthonormal basis 
for L2 [a, b]. For L2 (R), Daubechies [8) was the first to construct an orthonormal basis 
{ Onk} generated from one compactly supported mother wavelet ,&. For L2 [a, b], — 00 < 
a < b < oo, similar constructions can be found in [5, 6, 131 among others. 

It is desirable to use an orthonormal basis in the subsequent computations since each 
iterative step involves solving a linear finite-dimensional system. In addition, the com-
pact support properties of the wavelet basis greatly reduce the number of numerical in-
tegrations that must be performed when we project our operator into finite-dimensional 
subspaces.
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Example 5.1. Consider the Chamdrasckhar integral equation 

H(s) + JstsH(s) J s+tdi
	 (35) 

0 

which arises in the theory of radiative transfer [3]. 

We consider solving (35) in L 2 [0, 1] for the function H(s). While this equation is 
generally solved in C[O, 1] (see [1, 16]), it has been shown in [19] that an L2 -solution to 
equation (35) is in fact in C[O, 1]. If we put y(s) = 1 and define B L2[0, 11 x L2 [O, 1] 
L2 [O,1J by

B(G, H)(s)	sG(s) f s+tdi
	 (36) 

0 

then the Chandrasekhar equation (35) can be expressed in the form 

y = x + .XB(x,x).	 (37) 

To obtain a bound on H B II, note that

2 1 /	1 

IIB(G,H)112 =
	

(scsj T 
f 

H(i) di) ds 
0 

(I ()2)) 
ds

 
dt

by the Cauchy-Schwarz inequality. Then

2 
II B( G , H )11 2	c2 IIGII 2 IIH[I 2	where c2 = sup/	di 

	

0<s<lJ	s+t)	2 
0 

so JIBIJ	Note that the linear operator 

B(G, .)(s) = sG(s) f	di 
s+t 

0 

is compact for each C(s) E L2 [O, 11. Hence Theorem 4.2/(a) applies for appropriate A 
and U, and any orthonormal basis of L2 10 , 11. It is worthwhile to note that Theorem 
4.1 1( B ) does not apply, since the operator B is only compact in one variable. It is 
not clear that Theorem 4.3 of Argyros can be applied to this example since B is only 
compact in one variable.
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This example is an illustration of and not a rationale for Theorem 4.2. Using 
more information about equation (35) than is used here, it can be proven that (see [31) 
equation (35) has a solution for 0	A	1, while our results apply for J AI	--1 2 . Our 

vf 
numerical experiments indicate that this iterative scheme converges for 0 A 1, but 
we choose a A value below that is justified by Theorem 4.2/(a). 

In order to compute approximate solutions to eqaation (37), we use the iterative 
scheme similar to (4):

Q(xIc) = k4.1	(k E N)	 (38) 

where Q was defined by (32), and approximate the fixed point z, of (38). We then 
choose larger and larger V,, spaces and repeat the iterative process. Finally, we appeal 
to Tiieorem 3.3 to conclude that the z approach the true solution. 

Suppose we wish to compute the fixed point z, of (38). Let {e 1 ,.. ,ep} be an 
orthonormal basis for V,, set y(t) = 1, and consider projecting (37) into V. 

(S+AB)x	_.yfl 

where y'1(t) =	ye(t) with y!' = (y, es). To obtain a matrix representation A" for
B k , we let

= if et(s)èi(s)ei(t)dtds	(i,j,k = 1,...,N)	 (39) 

so that the entries of A" are given by 

apq	14' 
=	

X,	where x"(t) = > x i ei(t). 

We start with x 1 := y and then iterate by repeatedly solving the system 

n	 k+I 
Yi	

--	

x1 

=(I AA") 
n	 k+I

'Y *N 

where the ri x n identity matrix In is the matrix representation of S. Note that the 
b j 's must only be computed once in this scheme and that b j is symmetric in i and k. 
In addition, if the basis functions have compact support within [0, 11, then it is possible 
to a priori assign certain	= 0. Certain wavelet bases have this property. IJ 

To illustrate the above scheme, we have chosen the first two bases to be N = 
4 dimensional subspaces while the third choice is an N = 5 dimensional subspace. 
We make no claim as to which is the best choice - we provide these three bases for 
comparative purposes. Figure 1 illustrates our approximate solutions, where P3 ([0, 1])
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is the space of polynomials of degree three or less spanned by the classical Legendre 
polynomials.	 . 

Figure 1: H(t) (solid) and the solution (dotted) from P3 ([O, 1)) 

Further, let S([O, 1]) be the space of piecewise continuously differentiable quadratic 
polynomials with possible breakpoints at 0, 1 and 1, spanned by orthonormalized B-2 
splines. These splines serve as a basis for a V1 ([0, 1]) space given in Chui and Quak [5]. 
The results of our computations are given in Figure 2. In each case, A = .1 and six 
iterations were performed. 

Figure 2: H(t) (solid) and the solution (dotted) from S([0, 1)) 

Finally, let Sol ([0, 1]) the space of continuous linear polynomials with possible break-
points at 0,., , and 1, spanned by orthonormalized B-splines. These splines serve
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as a basis for a V1 ([0, 1]) space given in [5]. The results of our computations are given 
in Figure 3. Also here, in each case, A = .1 and six iterations were performed. 

Figure 3: H(t) (solid) and the solution (dotted) from S([0, 1]) 

Remark. The spaces S([0, 1]) and S([0, 1]) can be viewed as generated by scaling 
functions and these functions are compactly supported. Wavelet analysis allows us to 
readily move to the next larger space using the identity V,, 1 = V, Wi,. As n grows, 
the support of both the scaling functions and the wavelets shrink thus reducing the 
number of numerical integrations that need to be computed. 

The exact solution to equation (35) is given in [16] and is of the form 

	

H(t) = exp (- 1,12 log(1- Ascot: ds.	 (40) cos s + t2 sins J 
Rall [16] used a different iterative procedure. He computed some values 

Rail 
0.0159199 1.00333256 
0.0819844 1.01089700 
0.1933143 1.01829896 
0.3378733 1.02435469 
0.5000000 1.02892234 
0.6621267 1.03220522 
0.8066857 1.03445865 
0.9180156 1.03589121 
0.9840801 1.03664375

P3 ([0, 1]) 
1.00958383 
1.02134388 
1.03723329 
1.05 173649 
1.06190891 
1.06818221 
1.07263226 
1.07655348 
1.07947299

S([0 1 1])	S([011]) 
1.00506878 1.00519491 
1.01025220 1.00994962 
1.01764377 1.01796209 
1.02472538 1.02450330 
1.02928548 1.02904480 

103198365 1.03211930 
1.03426463 1.03448647 
1.03594109 1.03586278 
1.03690293 1.03667950 

of his approximate solution in a ten-dimensional subspace of C([0, 1]) and his cornputa-
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tions used seven iterates. For comparison purposes, we list his values with values from 
our approximate solutions in the table above. 

The solution to the Chandrashekhar equation (35) is usually approximated in CEO, 11 
rather than L 2 [O, 1] (see [1, 17]). Theorem 4.2 is general enough to be applied to C[0, 1] 
since only a Schauder basis is assumed. A wavelet basis for a dense subspace of C[O, 1] 
has been reported by Wang [21], so that the benefits of wavelets can be retained if an 
approximate solution in C[O, 1] is desired. 

Example 5.2. Solve for x E L 2 [a, b] the Hammerstein equation 

y(s) = x(s) + A / k(s,t)(x(t))2dt. 

This equation can be expressed as a bilinear one in L 2 [a,b] where 

K(f1 , f2)(S) = / k(s, t)f1 (t)f2 (t) dt 

defines a bilinear operator K : L2 [a,b] x L2 [a,b] F-p L2 [a,b]. Using the Cauchy-Schwarz 
inequality, the map K can be shown to be bounded if 

1c(s) = sup k(s,t) E L2 [a,b].	 (41) 
a<<b 

The linear operator

K(f1, .)(s) = / k(s, t)f 1 (t)( . ) dt 

is compact for each Ii E L 2 [a, b] when (41) holds. Thus Theorem 4.2/(a) applies. 
Actually, we can claim that Theorem 4.2/(b) applies, since K is actually compact (see 
[18]).

We have used the iterative scheme (29). This method is quite similar to that used in 
Example 5.1 only now each successive iteration takes place in a larger subspace. In the 
case when X = L2 (R), it is quite convenient to employ the ladder of subspaces given in 
Daubechies [7]. 

Example 5.3. Consider the Hammerstein integral equation 

Y(S) = x(s) +	k(s,t1,t2, ... ,tn)x(ti)... x(t,)dt 1 ...	 (42) 

As in Example 5.2, (42) can also be viewed as an n-linear equation in L2[a,b] 

y=x+L(x,...,x)
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where the n-linear operator 

L: L2[a,b] x L2 [a,b] x ... x L2 [a,b] i-* L2[a,b] 

is defined by 

L(f1,f2,... ,f)(s) = I k(s, t j , t2,	tfl)fI(t1)f2(t2) ... f(t,)t 1 dj 2 . . .dt. 

It can be shown (see [201) that L is in fact compact when the kernel function is in 
L2 ((a, b1''), so Theorem 4.2/(b) and the iterative scheme (29) apply. 

Acknowledgement. The authors wish to thank the anonymous referees for their 
constructive comments. In particular we wish to thank one of the referees for remarks 
leading to Proposition 2.6. 
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