
Zeit.schrift für Analysis und ihre Anwendungen 
Journal for Analysis and its Applications 

Volume 15 (1996), No. 1, 245-262 

On the Variational Stability 
of a Class of 

Nonlinear Parabolic Optimal Control Problems 
N. S. Papageorgiou 

Abstract. In this paper we study parametric optimal control problems governed by a non-
linear parabolic equation in divergence form. The parameter appears in all the data of the 
problem, including the partial differential operator. Using as tools the G-convergence of opera-
tors and the 17-convergence of functionals, we show that the set-valued map of optimal pairs is 
upper-semicontinuous with respect to the parameter and the optimal value function responds 
continuously to changes of the parameter. Finally, in the case of semilinear systems we show 
that our framework can also incorporate systems with weakly convergent coefficients. 
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1. Introduction 
In this paper we study the dependence of a nonlinear optimal control problem on a 
parameter. The parameter appears in all the data of the problem, including the par-
tial differential operator. First we establish the non-emptiness of the set of optimal 
"state-control" pairs and then we investigate how this set as well as the value of the 
problem respond to changes of the parameter. Such sensitivity analysis (also known 
in the literature as "variational stability") is important because it gives us information 
concerning the tolerances that are permitted in the specification of mathematical mod-
els, it suggests ways to solve parametric problems and can also give us valuable, insight 
for the comuputational treatment of the problem. 

Our tools are the G-convergence of operators and the r-convergence of functionals. 
Using these two convergence concepts, we derive continuous dependence results. Our 
approach follows that of Buttazzo and Dal Maso [2], who examined linear elliptic control 
systems and systems monitored by ordinary differential equations. Here we consider 
parabolic systems with nonlinear dynamics. 

r-convergence is a convergence notion for sequences of functions specially designed 
in order to study convergence of solutions and values of corresponding minimization 
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problems; i.e. it is a "variational convergence". Among variational convergences, F-
convergence plays an important role for its nice compactness properties and for the 
powerful results it generates concerning the limits of integral furictionals. In addition, 
F-convergence is closely related to the notion of C-convergence, which is used in the 
study of the convergence properties of the solutions of a sequence of elliptic and parabolic 
problems. Finally, almost all other variational convergences can be easily expressed in 
the language of r-convergence. Hence it seems appropriate to use these notions to study 
the variational stability (sensitivity) of optimal control problems. 

2. Preliminaries 

Let H be a separable Hilbert space of norm . Let X be a reflexive, separable Banach 
space with dual X such that X ç H ç X* with dense and compact injections. The 
norms of X and X will be denoted by 11 . and 11 . , respectively. We will use (x, x) 
to denote the duality brackets between x E X and x E X* . This coincides with the 
inner product in H, whenever x E H. Such a triple of spaces is usually known in the 
literature as "evolution triple" (see Zeidler [13]; the names "Gelfand triple" or "spaces in 
normal position" are also used). In concrete applications, evolution triples are generated 
by Sobolev spaces (see Section 3). 

Let T = [a, b] and define 

W(T) = {X E L2 (T,X): i E L(T,X)}. 

In this definition, the derivative of x is understood in the sense of vector-valued distri-
butions. Furnished with the norm

1/2 
II X IIW(T) = (II x II 2 (T,X) + IkIIL2(T,X.)) 

W(T) becomes a Banach space which is separable and reflexive. Furthermore, W(T) 
embeds continuously into QT, H) and compactly into L 2 (T, H). When X isa Hilbert 
space too, then so is W(T) with inner product (x, y )w(T) = (x, y)L2(T,x)+(±, ')L2(Tx.). 
For further details we refer to Zeidler [13: Proposition 23.23, pp. 422-423 and p. 450]). 

Following Kolpakov [6), we say that a sequence of operators A : X —* X G-
converges to an operatorA X — X* if, for all ri> 1, the inverse operators A;',A-1 
X* X are defined , and; for every x E X', A'f — A''x weakly in X (hence 
strongly in H). We will use the symbol C to indicate C-convergence. This is a nonlin-
ear version of a convergence concept introduced first by Spagnolo [11] for linear parabolic 
and elliptic equations and which was later extended to abstract linear evolution equa-
tions by Zhikov, Kozlov and Oleinik [14]. 

Next, following Buttazzo and Dal Maso ([1: Chapter 51 and [2]), we introduce the 
notion of multiple sequential F-convergence. So let X 1 and X2 be two topological spaces 
and let f. : x X2 — R = R  {—oo, +oo (n > 1) be a sequence of functionals. We 
indicate by Z(+) the sup operator and by Z(—) the mi operator. Let ( X I, X2) E X 1 xX2
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and denote by Si the set of all sequences in Xi converging to x (i = 1, 2). Finally let 
a3 (j 0,1,2) be one of the signs + or -. We define 

Fseq(NQ° V2 '2 
= Z(aI)( fl )Es, Z ( a2)(Z)ES2 Z ( —ao)kEN Z (ao)fl>kffl(x' , x). 

So, for example, 

['seq (N + , N X,Xflf(x 1 ,x2 )= inf sup limsupf(x,x'). 
Zi -1 2'-2 Tl-00 

When the [',,q-limit is independent of the sign + or -, associated with one of the spaces, 
then this sign is omitted. So, for example, if 

['seq (N X,X)fn(xi,x2)=['seq(N,X,Xflfn(xi,z2), 

then their common value will be indicated by ['seq(N,X.,Xflfn(xi,x2). 

If the topological spaces are first countable, then the above definition is equivalent 
to the original topological definition of the ['-limits (see Dal Maso [3: Proposition 
8.1/p. 86]). This is also the case in Banach spaces with a separable dual, equipped 
with the weak topology, and in reflexive Banach spaces again with the weak topology 
(see Dal Maso [3: Chapter 81). The theory of ['-convergence is an important tool 
in Optimal Control and in the Calculus of Variations, because the equicoercivity and 
the ['-convergence of a sequence of functionals I,, to 1, 1 not identically +oo, imply 
the convergence of the minimizers (x -+ x) and of the corresponding minimal values 
(f(x) - f(x)) (see Dal Maso [3: Theorem7.19/ p. 80]). The interested reader can 
find a comprehensive introduction to the subject of F-convergence and its applications 
in the well-written monographs of Buttazzo [1] and Dal Maso [3]. 

Next we introduce our optimal control problem. So let T = [0, r] and Z a bounded 
domain in RN with smooth boundary I' = ÔZ. Let A be a complete metric space of 
R !c va1ued , measurable functions defined on Z (the parameter space) with metric d( . , .). 
We will be studying the following optimal control problem, parametrized by elements 
in A:

JJ L(t, z, x(t, z), u(t, z), A(z))dzdt	inf = 

such that 
ax 
Tt - div(a(z, Dx(t, z), A(z))) = f(t, z, z(t, z), A(z)) u(t, z) a.e.	(1)


= 0 and x(0, z) = xo(z) (x 0 E L2(Z)) 

Iu(t, z)I	8(i, z, .X(z)) with u measurable 

where Dx = (D i x,... ,DNXN) denotes the gradient of x. 

Throughout this paper the following hypotheses will be in effect.
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H(a) a(z, v, A) = Dça(z, v, A), where D denotes gradient with respect to the v E RN 
variable and : Z x R' x R' - R is a function satisfying the following conditions: 

1. (z, A) -+ (z, v, A) is measurable. 
2. v - p(z,v,A) is convex. 
3. —c29 :5 (p (z, v, A(z))	c3B( 1 + 11 v 11 2 ) a.e. on Z for every [v, A] E R"' x B 

with B c A compact, 0 < C1B c3B < oo and 0 <c2B <. 

• f7 (a(z, Dx 1 (z), A(z)) - a(z, Dx 2 (z), A(z))) (Dx i (z) - Dx2(z))dz 

2 y IBlI x 1 - X 2 11 
11,1(Z) for every x 1 ,x 2 E H(Z) and every A E B, with B c A 

compact, 71  >0, a(z, 0, A) = 0 and 
y2H( 1 +I x IH01 (z)) for all x  H(Z) with -Y2B >0. 

5. ç(z,v,An(z)) -* ç(z,v,A(z)) a.e. on Z when A -p A in the metric space A. 

H(f) 1: T x Z x R x Rk -* R is a function satisfying the following conditions: 
1. (t,z,A) - f(t,z,x,A) is measurable. 
2. If(, z, x, A(z)) - f(, z, y, A(z))	k(t, z) I x -	a.e. for all A E B, B c A 

compact, and kB E L1(T,L°°(Z)). 

3. If(t, z, x, A(z)) 
I <aB( i , z) + bB JxJ a.e. for all A E B, B c A compact, with 

a B E L 2 (T x Z) and bB 2 0. 
4. f(t, ., x, A( . )) -, f(t, •, x, A( . )) in L 2 (Z) for almost all t E T when A - A in A. 
Remark 1. We could have assumed that the controls are R'-valued (m > 1), in 

which case f = f(, z, x, A) is R'-valued and the right-hand side of the partial differen-
tial equation becomes (f(t,z,x(Z),A(Z)),U(Z))Rm with ( . ,.)Rm denoting the Euclidean 
inner product in R. However to simplify our notation, we have assumed that in = 1. 

For a function L = L(i, z, x, u, A) let L* denote the conjugate function with respect 
to u, i.e.

z, x, u', A) = sup {(u, u) Rk - L(t, z, x, u, A)} 
u EE 

where (., .)	is the Euclidean inner product in Rk. 

H(9) 9: T x Z x Rk	R is a function satisfying the following conditions: 
1. 9(.,.,A(.)) E L(T x Z) and sup {II 9 ( . , ., A( . )) 11 . : A E B) <oo for any B 	A 

compact. 
2. 9(t, •, A( . )) — 9(i, ., A( . )) in L 2 (Z) for almost all t E T, when A -+ A in A. 

H(L) L: T x Z x R x R x R' -p R is an integrand satisfying the following conditions: 
1. (t, z, A) -* L(t, z, x, u, A) is measurable. 
2. 1 u 1 2	L(t,z,x,u,A(z))	13B(1 + x 1 2 + Jul') ac. on Tx Z, for all [x,u,A] E 

R x R x B, B C A compact, and with _Y3B > 0. 
3. 1 L(t, z, x, u, A(z)) - L(t,z,y,u,A(z))I	pB(l x - yl)(e+ IX12 + u i 2 ) for every 

x,y E R such that ix - y I < 1 and every A E B, B C A compact, where
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PB : [0, 1) - R is increasing, continuous and pB(0) = 0, and £ > 0. 
4. u - L(t,z,x,u,A is convex. 
5. L(, , x, u, A,,( . )) -* L(, , x, u, A( . )) weakly in L'(T x Z) for every [x, u] E 

RxR, when A—.AinA. 

Remark 2. This hypothesis which incorporates the quadratic cost functionals con-
sidered by Lions [7], will guarantee the rseq -convergence of 

J(x, u, A) = JJL(t, z, x(t, z), u(t, z), A(z))dzdt 

as A - A in A. In particular, assume that the controls take values in R and consider 
the quadratic cost functional 

J(r, u, A) = JJ 
x ( t , z) - yo (t, z, A(z)) 12 dzdt 

+ ff (N(t,z,A(z))u(t,z), u(t,z))dzdt 
0 z 

with yo(.,.,A(.)) E L 2 (T x Z) and N(.,.,A(.)) E L 1 (T x Z,lRmXm) for every A( . ) E A. 
We assume that, for every (t, z) E Tx Z, N(i, z, A(z)) is symmetric and positive definite 
and so N(t, z, A(z)) 1 exists. Furthermore, we assume that if A - A, then 

Yo (•, , An())	yo 	A( . ))	and	yo 	A( . )) — yo Yo (, , 

weakly in L 1 (T x Z) and

N 	A( .))'	N 

weakly)in L'(T x Z , Rrnxrn ) . So if we set 

z, x, u, A) = x - Yo (t, z, A(Z)) 2 + 
(N (t, z, A(z))u, u), 

we have that

z,x, u, A) = (N(t,z, A(z))' U
 , u '\	- Ix - yo(t, z, A) 12 

and for this function L hypothesis H(L) is satisfied. This type of cost functionais was 
used by Lions [7]
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3. Convergence of the costs and the constraints 

We start with the rseq-convergence of the costs, which can be obtained directly from the 
results of Buttazzo and Dal Maso [2]. Let H = L 2 (Z),X = H'0 (Z) and X = H'(Z). 
From the Sobolev embedding theorem, we know that (X,H,X*) is an evolution triple. 
For this triple we will use the notation introduced in Section 2. Denote 

J(x, u, A) = fJ L(t, z, x(t, z), u(t, z), A(z))dzdt 

for all (x, it, A) E W(T) x L2 (T, H) x A, where W(T) is the Hubert space introduced in 
Section 2. 

Proposition 2. If hypothesis H(L) holds and A - A in A, then 

rseq(N,w-w(T),w-L2 (T, H))J(x,u, A) = J(x,u,A) 

where w-W(T) and w . L 2 (T, H) denote the Hubert spaces W(T) and L 2 (T, H) = L 2 (T x 
Z), respectively, furnished with the weak topology. 

Proof. It goes exactly as the proof of Lemma 3.1 of Buttazzo and Dal Maso [2], 
with the independent variable z E Z replaced by (t, z) E T x Z, since our system 
is parabolic and not elliptic. Also recall that W(T) embeds compactly into L2 (T, H) 
(see Section 2), which allows us to consider W(T) with the weak topology instead of 
L2 (T, H) with the strong topology U 

Next let p: H(Z) x H,(Z) x  -* R be- the Dirichiet form defined by 

p(x,y,A) = fa(z,Dx(z),A(z))Dy(z)dz. 

From the Cauchy-Schwartz inequality, we have for all A E B, B c A compact (cf. 
hypothesis H(a)/4): 

	

Ip(x, y, A)	a(., Dx( . ), A(.)) I L 2 ( zr'J ) DylL2(zN) 

72B( 1 + IIxIIH(Z))IIYIIH(Z). 

So there exists a generally nonlinear operator A : X x A -p X* defined by 

(A(x,A),y)=p(x,y,A) for every x,y,E X and AE A 

where (.,.) denotes the duality brackets for the pair (H (Z), H - ' (Z)) (see Section 2). 
Also let f T x H x A -* H be the Nemitsky (superposition) operator corresponding 
to the function F = f(t,z,x,A), i.e. f(t,x,A)(z)	f(t,z,x(z),A(z)). Furthermore, let 

U(t,A) = {u e L2 (Z): Iu(z)I <8(t,z,A(z)) a.c.}.
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Clearly because of hypothesis H(9), U(t, A) c L(Z) for every (t, A) E T x A and so 
given any u E U(t,A), (f(t,x,A)u)(.) E L2 (Z). Note that, for every A E A, the graph 
of the set-valued map t - U(t, A) is given by 

GrU( . , A) = (t, U) E Tx L2(Z) JJu(z)l dz < J9(t,z,A(z)) dz, CE B(Z) 

with B(Z) being the Borel a-field of Z. Let 

i (u, C) =u(z)I dz	and	2(U, C) =
	

9(t, z, A(z)) dz.


Then u —* i (u,C) is continuous, while by Fubini's theorem t — 2 (t,C) is measurable. 
Recall that B(Z) is countably generated and so we can find a countable field {C}> 1 c 
B(Z) which generates B(Z), i.e. a(IC)> i ) = B(Z). Define 

= 1 (u, C)	and	2(t) = 2 (u, C,,). 

We have that 

GrU( . , A) = fl {(t,u) E T x L2 (Z): i,,(U) e2(t)} E B(T) x B(L2(z)) 
n>I 

with B(T) and B(L2 (Z)) being the Borel a-fields of T and L2 (Z), respectively. So 
t —+ U(t,A) is a measurable set-valued map (see Wagner [12: Theorem 4.2]) and by 
Aumann's selection theorem (see Wagner [12: Theorem 5.10J), it admits measurable 
selectors (i.e. maps u : T — L 2 (Z) measurable such that u(t) E U(t, A) for all t C T). 

Then we can rewrite the dynamics of our optimal control problem (1) in the equiv-
alent evolution equation form 

(t) + A(x(t), A) = f(t, x(t), A)u(t) 

X(0) =	 ( 2)

u(t) E U(t, A) a.e., u( . ) measurable 

where o = x0 ( . ) E L2(Z). 

By an admissible "state-control" pair of problem (2) (equivalently of problem (1)) 
we mean a pair Ix, u] E W(T) x L2 (T,H) satisfying problem (2) (equivalently the 
constraints of problem (1)). Given A E A, let L(A) 9 W(T) x L2 (T,H) be the set of 
admissible state-control pairs corresponding to this particular choice of the parameter. 
Let	u) be the indicator function of L(A), i.e. 

10	if[x,u] E	(A) S(A)(X,	= +oo otherwise. 

Then problem (1) can be rewritten in the equivalent unconstrained form 

m(A) = inf {J(x,u,A) + 6(A)(x,u)1.
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In the next proposition, we establish the rgeq-convergence of the sets of admissible 
state-control pairs. 

Directly from the definition of rseq-convergence, we have that if V1 and V2 are 
topological spaces and Bn c Vi x V2 (n E N), then 

Fscq(N,VI,V)SB(x,y) = 5B(X,y) 

if and only if the following two conditions hold: 

(i) If x, - x in V1 , y, - y in V2 and (Xn,yn) E B,, for infinitely many n, then 
(x, y) E B. 

(ii) If (x, y) E B and x,, - x in V1 , then there exist {yn}n>i C V2 and no > 1 such 
that y,, - yin V2 and (Xn,yn) E B for all n n0. 

(See also Buttazzo and Dal Maso [2: p. 388].) 

Remark 3. Let V1 and V2 are first countable and condition (ii) above be replaced 
by the following weaker condition: 

(ii)' If (x, y) e B, then there exists a sequence {(X,,,yn)}n>i C Vj x V2 such that 
(x,,, y,,) E B,, for all  > land x,, - x as well as y,, —i y as n —400. 

Then we have a characterization of the classical Kuratowski convergence of sets (see 
Dal Maso [3: p. 41]). 

We will use the above observation concerning the r,eq-convergence of indicator 
functions to establish the I'seq-limit of the sequence	•)}n>I. 

Proposition 4. If hypotheses H(a), H(f) and H(&) hold and An - A in A, then 

Fseq(N,w - W(T),w - L 2 (T,H)) 6(A)(X,U) = 

Proof. Let Ix, u] E (A) and u,, - u weakly in L2 (T,H) with u,,(t) E U(t,A,,) 
a.e. Let x,,( . ) E W(T) be the unique trajectory generated by the control u,,( . ) (see 
Papageorgiou [8: Theorem 3.4]). Uniqueness follows from the (strong) monotonicity of 
A( . , A,,) (cf. hypothesis H(a)/4) and the Lipschitzness of f(t, ., A,,)u,,) (cf. hypothesis 
H(f)/2). So we have 

1,,(t) + A(x,,(t), A,,) = j(t, x,,(t), A,,) u,,(t) a.e. 
x,,(0)= 1 

u,,(t) E U(t,A,,) a.e. 

We will derive some a priori bounds for the x,,'s. First let B = (A,,, A},,> 1 c 
A compact. Then from hypothesis H(a)/4 we have for A' E B with some constants 
7B,Y,7 > °

(A(x,A')— A(y,A'),x - y) 2 YBII X - y112 

(A(x,A'),x) 2	ixii 
II A( x , A )II.	5'(1 + JJxJJ
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where	and	. denotes the norm of H01 (Z) and H'(Z), respectively. Also 
(.,.) denotes the duality brackets for the pair (X,X*) (H(Z),H-1(Z)), while in 
what follows by (.,.) we will denote the inner product in H = L2 (Z) and by I I the 
corresponding norm. Recall that (.,.) I X.H  = (.,.) (see Section 2). Then we have 

(±(t),x(t)) + (A(x(t),A),x(t)) = (f(t,xn(t),.Xn)n(t),xn(t)) a.e. 

which implies 

1 

	

 
I'()I 2 + 5'II x n( i ) II 2 < f(t, x(t), A) u (t)III x n( t )II	a.e. 

Applying on the right-hand side Cauchy's inequality with e > 0, we get 

1 d	
< "j(t, x(t),	) u(t)II + HI x n( i ) I1 2 a.e.	(3) Ix(t)I 2 + 5'IIn(t)II2 - 2"	 2e 

Let e = -i,--. We have 
17.

1 	 1 - 
Ixn(t)I 2	--- f(t, x,, (t), A) u(t)M2 

which implies 

x(t)I 2	IoI +	f J(s, x(s),	) u (s )II 2ds 2% 0 

IoI +	f If(s,xn(s),n) un(S)Ids 
78 0 

IoI +	- (10, 
j(s,xfl (s),) I 2 ds) sup 

2i B

From hypothesis H(9)/1 we have that sup> 1 II(, , ')II <no. So 

Ix(i)I 2	I 0 I 2 + 11 B	(2&B (S)2 + 2b I x (s ) I 2 ) ds 

with /18 > 0, ã8 (s) = IIaB(s, •)I12 and bB > 0 as in hypothesis H(f)/3. Invoking 
Gronwall's lemma, we deduce that there exists a constant M1 > 0 such that for all 
n>1 and all tTwehave

x(t)l < M1 .	 (4)


Next in inequality (3) above, let e = f,-. We get 

id
Ix(t)I 2 + 78	(i)I12 <H At, x n (t) , A n )un (t)I 2 a.e. — 2
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which implies 

t	.
1 J 11X. (S) <	o 1 2 + , sup lI(, •, A)II f (2&B(s)2 + 2blx(s)I2)ds. 

78 '^ 
0	 0 

Using bound (4) above, we deduce that there exists a constant M2 > 0 such that 

II X n1I0(T,X) 5 M2	(ii > 1).	 (5) 

Finally using hypotheses H(a)/4 and H(f)/3 as well as bounds (4) and (5) we conclude 
that there exists a constant M3 > 0 such that 

X nhIL 2 (T,X . )	M3	(ri > 1).	 (6) 

From (5) and (6) above we deduce that the sequence {x}> 1 is bounded in W(T), hence 
relatively weakly sequentially compact. So by passing to a subsequence if necessary, we 
may assume that x --+.i  weakly in W(T). 

Next let g(t) = f(t,x(i),))u(t) and let y( . ) E W(T) be the unique solution of the 
evolution equation

(t) + A(t, y. (t), A) = g(i) a.e. 
y(0) = o. 

The existence and uniqueness of y,( . ) E W(T) solving the above Cauchy problem is 
guaranteed by [13: Theorem 30.A/p. .771]. Let U be the family of all open subsets of 
Z and define the functional : H'0 (Z) x U x A - R by 

(x, Z', ) 
= J y(z, Dx(z), (z)) dz. 

Then from hypothesis H(a)/5 together with Dal Maso [3: Theorem 5.14/p. 51 and 
Proposition 8.10/p.93] we have that 

rseq(N,w - Hol 	cI(x,Z',A) = 

Hence invoking Defranceschi [5: Theorem 3.2] we get that A(, .\) ...* A( . ,.\). Then 
Kolpakov [6: Theorem 1] tells us that y —* x weakly in W(T). Exploiting the mono-
tonicity of the operator A( . , An), we have 

-	(t), x(t) — y(i)) 

< (f (t, x(t),	) u(t) - g(t), x(t) - y,,())
	

a. e. 

= (f(t, x(t), A) u8(i) — j(t, x(t), A) u(t), x(t) - y(t)) 

+ (J(t,x(t),A) u(t) — J(t,x(i),) u(t),x(t) — y(i)) a.e.
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which implies 

1
Ix(t) - y(t)I2 

/ 
(f (s, x e (s), A) u n (s) - f(s, i(s), A) u n (s), x(s) - yn(s)) ds 

+
0	

(s,  i(s), A) u n (s) - J(s, i(s), A) u(s), x(s) - yn(s)) ds 

 (s,  x(s), A) u n (s) - J(s, i(s), A) u(s) Ix(s) - yn(s)I ds 

+ / (j(s,x(s),An) u n (s) - f (s,x(s),A)u(s),x(s) - yn(s))ds. 

Observe that 

J J(s , in(s), A) u n(s) - f(s, i(s), A) n(5) in(s) - y ( s )I ds 

15 sup II O(, , An)II J J(s, x(s), A) - f(s, i(s), A) I Ix.(.5) - yn( s )I ds 
11>1

0 

<sup II(, , A)II f k B( s )I in( s ) - yn(s)I2ds 
n>1

0 

with kB(s) = 11 k8(s , )I . Also we have 

/ (J(s, i(s), A) u n (s) - J(s, i(s), A) u(s), in(s) - yn(s)) ds 

+ Ii (f(s,z,i(s,z),A(z)) u(s,z) - f(s,z,i(s,z),A(z))) 

X u(s,z)(x(s,z) - yn(S,z)) dzds 

= JJ f(s, z, ks, z), An(z)) (u(s, z) - u(s, z)) (i(s, z) - i(s, z)) dzds 

+ // (f (s, z, i(s, z), A. (z)) - f(s, z, x(s, z), A(z))) 

X u(s, z)(in(s, z) - yn(5, z)) dzds.
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Since W(T) embeds into L2 (T, H) compactly, we have that Zfl .- 3 and I/fl 4 3 x in 
L2 (T,H) = L2 (T x Z). Also by hypothesis u, —s u weakly in L2 (T x Z) and because of 
hypothesis H(9), we have u, - u w . weakly in L(T x Z). So using hypothesis H(f), 
we get 

Jf f(s, z, x(s, z), An (z)) (u n (s, z) - u(s, z)) (x(s, z) - yn(S, z)) dzds + 

ff (f ( S ' z, x(s, z), A(z)) - f(s, z, x(s, z), A(z)))u(s, z)(x(s, z) - yn (s, z)) dzds 

as n —* oo which implies 

/ 
(1(s,x(s),An)un(s) — f(s,x(s),A)u(s), rn(s) — y(s))ds	0 

as n —i oo. Thus in the limit n —* oo we get 

— x(t) 2 <2sup 9( . , •, A)I f k B( s ) x (s ) — x(s)2ds. 
n>1

0 

From Gronwall's lemma, we conclude that x = i Hence every subsequence of {x}> 
has a further subsequence which weakly converges in W(T) to x. Since {x}> 
equipped with the relative weak-W(T) topology is metrizable, we conclude that x, —+ x 
weakly in W(T) and [ x n ,yn ] E A ( An) (n > 1). So we have established condition (ii) in 
the characterization of rseq (N, w — W(T)-' , w — L2 (T, H))(j,,)(.,.) provided earlier. 

Next we will show that condition (i) is also valid, establishing this way the desired 
rseq-convergence of the indicator maps p ( . , ). So let [x, u 8 j E b ( A n) (ii > 1) and 
assume that x — x weakly in W(T) and u, —+ u weakly in L2 (T, H). We will show 
that [x, u] E L(A). Let 

g(t) = ](t, x(t), A) u(t)	and	g(i) = .f(i, x(t), A) u(t). 

We have already seen in the first part of the proof that, by passing to a subsequence 
if necessary, we may have g —* g weakly in L2 (T, H). Let v, E W(T) be the unique 
solution of the evolution equation 

i(t) + A(v(i), A) = g(t) a.e. 

v(0) = o. 

Since A( . , A,) —*G A( . , A), from Kolpakov [6: Theorem 11 we know that v, -4 v weakly 
in W(T), with v(•) E W(T) being the unique solution of the evolution equation 

(t) + A(v(i), A) = g(i) a.e. 
V(0) = o.
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Recalling that W(T) embeds compactly into L2 (T, H) and continuously into C(T, H), by 
passing to a subsequence if necessary, we may assume that z,,(t) - x(i) and v(t) - v(t) 
in H for all t E T (in fact, using the results of Simon [9], we can actually show that 
{x}> 1 and {v}> 1 are relatively compact in C(T,H)). Exploiting the monotonicity 
of A( . , An) we have 

(x(t) - t)(t), x(t) - v(t)) 5 (9,(t) - g(t), x(t) - v(t)) a.e. 

which implies

Ix(t) - v(t)I 2	(gn(t) - g(t), x(t) - v(t)) a.e. 

From here

- v(t)I2 

/ ((gn(s) - g(s), x n (s) - X(S)) 

+ (gn(s) - g(s),x(s) - V (S)) + (ga(s) - g(s),v(s) - v(s)))ds, 

thus Ix(t)—v(t)I -i 0 and Ix(t)—v(t)I = 0, i.e. x = v follows. Therefore [x, u] E L(A). 
So we have established condition (i) , and we can conclude that rscq (N, W - W(T), W - 

L2(T,H))8(A)(x,u) = SA(A)(x,u)I 

4. Main convergence theorem 
In this section, using the auxiliary propositions of Section 3, we will examine the vari-
ational stability (sensitivity) of our optimal control problem (1). 

Let Q(A) be the optimal state-control pairs corresponding to the parameter \ E A, 

Q()	E W(T) x L2 (T,H): [x, u] solves problem (i)}. 

Recall that if Y and Z are Hausdorff topological spaces, then a set-valued function 
R: Y - 2z \ {ø} is said to be upper-semicontinuous if, for all U open in Z, R+ (U) = 
{y e Y: R(y) ç U} is open in Y. An upper-semicontinuous function R( . ) with closed 
values has a closed graph, i.e. if [y,6 , zfl ] is a net in YxZ, z,6 E R(yfl ) and [ye, z] --+- [y, z], 
then we have z E R(y). 

Theorem 5. Let hypotheses 11(a), 11(f), H(9) and H(L) hold. Then: 

() Q(A) 0 for all A € A. 

(ii)m: A - R is continuous. 
(iii)A - Q(A) is upper-semicontinuous from A into the non-empty, weakly 

compact subsets of W(T) x L2(T,H).
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Proof. From the a priori bounds established in the-proof of Proposition 4, we * know 
that,.for every A E A, i(A) is weakly sequentially compact in W(T) x L2 (T,H). Also, 
if , An = X. (n . > 1) (constant sequence), we have from Proposition 2 that J(•, , A) is the 
rrelarizatjon of itself and so from Buttazzo.[1: Proposition 1.3.1/p. 16] we get that 
J( . ,., A) is sequentially weakly lower semicontinuous on W(T) x L2 (T, H). So for every 
A e A the problem inf{J(x,u,A): [x,u] E L(A)} is solvable, i.e. Q(A) 54 0. 

Next let A - A in A. Combining Propositions 2 and 4 of this paper with Buttazzo 
and Dal Maso [2: Theorem 2.1], we get that 

I IX, U] = w - lim [x flk, u flk j with 
W - urn sup Q(A) = . [x, u] E W(T) x L2 (T, H) 

^ 
[xfl k ,ufl k ] E Q(An k ) and k lao 

cQ(A). 

But we saw in the proof of Proposition 3.1 that U,,> i Q(A 
)W 

is a weakly compact subset 
of W(T) x L2 (T, H) (recall that the weak topology on this product space is the product 
of the weak topologies, i.e. (W(T) x L2 (T,H)) = W(T) x L2 (T,H)). So from 
DeBlasi and Myjak [4: Remark 1.61 we get the desired upper-semicontinuiuty of the 
function A - Q(A). 

Next let A - A in A and let [x, u,,] E Q(A) (n> 1). Then 
m(A) = J(x,u,An) 

and by passing to a subsequence if necessary, we may assume that x - x weakly in 
W(T) and u -' u weakly in L2 (T, H). Then from Proposition 4 we have [x, u] e Q(A). 
Also from Proposition 2 and the definition of r,-limits we have 

J(x,u,A) liminf J(x,u,An) = liminf{A} 
which implies

m(A) <liminf M(A).	 (7) 
Next let [x, u] E Q(A) and e > 0. We have m(A) = J(x,u,A) for [x, u] E (A). From 
Propositions 2 and 4 and Buttazzo and Dal Maso [2: Corollary 2.11 we have that 

rseq(N, W - w(T), w - L2 (T, H) - ) (J(, ., An) + S p)(, .))(x, u) 
= (J(., ., ) + 6( . , .))(x, u). 

Then from the definition of rseq-limits we know that we can find a sequence { [x,, u} } i 
C W(T) x L2 (T, H) such that x, .- x weakly in W(T), u - u weakly in L2 (T, H) 
and

lim sup {J(x, u,A) + &(A)(x, u)} J(x, u, A) + S ) (z, u) + e <oo. 
Hence for all n large enough we have that [z, u] € A( A n) and so 

"M SUP m(A) limsup J(x,u,A) m(A)+c. 
Let e .L . We get that

lim sup m(A) m(A).	 (8) 
From (7) and (8) above we deduce that m(A) - m(A) and so we have proved that the 
function A - m(A) is continuous I
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5. Semilinear systems 

In this section we consider systems with semilinear dynamics. The linearity of the partial 
differential operator x — A(x, A) allows us to incorporate in the framework of this 
paper semilinear systems with weakly convergent coefficients (e.g. rapidly oscillating 
coefficients). 

So let T and Z ç R' be as before. We consider the following optimal control 
problem:	 . 

ff L(i, z, x(t, z), u(t, z), A(z)) dzdt	inf = m(A) 

such that 

-	D (aj(z, A(z)) Dx(i, z)) = f(t, z, x(t, z), A(z) ) u(t, z)	(9) 

a.e. on T x Z 

XTxr = 
01	-(01 Z) = xo(z) a.e. on Z with xo( . ) E L2(Z) 

Iu(z)I <9(t, z, A(z)) a.e 

We will make the following hypothesis: 

H(a) j The coefficients a 13 = a 3 (z, A) in problem (9) satisfies the following conditions: 

(i) a,,( . , A( . )) E L°°(Z) and a1,(.,A(.)) = a, 1 ( . , A( . )) (i,j = 1,... ,N) 
for every A E A.

 (ii) milizil2	N 
=1 a(z,A(z))z 1 z	m2flz 2 for every z ERN , where 

0<z.mi<m2<00 
a 13 ( . , A( . )) —*,, a 13 (, A( . )) (i,j = 1,. . . , N) in L2 (Z) as A,, 	A in A. 

(iv)	Da1(., A(.))	,	Da(•, A( . )) (j = 1,..., N) in H 1 (Z)	as

A. -. A in A. 

In this case 

p(z,x,A) = (A( z , A )x , x ) RN	where A(z,A) = (a1j(z,A))". E RNXN


Let: Hol  

(x, Z', A) 
= j	

(z,x(z), A(z)) dz 

where as before (see the proof of Proposition 2) U is the collection of all open subsets 
of Z. Then because of hypothesis H(a) i we have that, if A — A, then rseq (N, W -
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H0'(Z))(x,An) = (x, A) (see Dal Maso [31). So if for A' E A we define Api') E 
£(H01(Z),H(Z)) by 

(A(A')x,y ) = f	aij(z,A'(z))Dx(z)D(z)dz, 
z 

then from Defranceschi [5: Theorem 3.2] we have that A(A) —* G A(A). Hence the 
proof of Proposition 4 goes through and therefore we can state the following result. 

Theorem 6. Let the hypotheses 11(a) i , H(f), H(0) and 11(L) hold. Then: 

(i) Q(A)O for all AEA. 

(ii) m: A - R is continuous. 

(iii) A - Q(A) is upper-semicontinuous from A into the non-empty, weakly compact 
subsets of W(T) x L2 (T, H). 

As a simple illustration, let Z c R2 and assume that the sequence of partial differen-
tial operators of the approximating problems is B = -A cos(nz2 )D. Remark that 
{ cos(nz2)} >1 is a sequence of C'-functions, which converges strongly in H'(Z) 
but not in L2 (Z) (recall that by the Riemann-Lebesgue lemma 1 cos(nz2 ) -* 0 weakly 
in L2 (Z) and since L2 (Z) embeds compactly into H(Z) we have 1 cos(nz2 ) -i , 0 in 
H 1 (Z)). Then B —G B A and so Theorem 6 is applicable for systems monitored 
by parabolic partial differential equations involving these operators. In particular then 
we have convergence of the corresponding optimal values. 

If N = 1, the situation is simpler. In this case the partial differential operator is 
—(a(z,A(z)) ) and hypothesis H(a) i takes the following form. dz 

H(a) 2 The coefficient a = a(z, A) in problem (9) satisfies the following conditions: 

(i) m 1 <a(z, A(z)) <m2 for every A E A and a.a. z E Z, where 0 < m 1 m2 <oo. 

(ii) a(.,A,.())	W• a(.,A(.)) in L°°(Z) as A - A in A. 

Under this hypothesis, we know (cf. Dal Maso [3]) that 

J-'seq(N,w - H(Z')) 'Ii(x,Z',An) = 4(x,Z',A) 

where : Hol 	x U x A - R is given by

(dx  \
)

4(x, Z', A') 
=f 

a(z, A'(z)) - Idz. 
z'	 dz 

So again Proposition 4 is valid and so we can state the following result.
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Theorem 7. Let hypotheses H(a) 2 , H(f), H(8) and H(L) hold. Then: 

(i) Q(A) 54 0 for all A E A. 

(ii) A - m(A) is continuous. 

(iii) A - Q(A) is upper-semicontinuous from A into the weakly compact subsets of 

W(T) x L2(T,H). 

This is the case, for example, if an ( Z ) = 1 +ez and a(z) = 1. Then - -,. = 1a.
in L°°(Z). Note that Il an - all,,, = 1. So an 74 a strongly in L'°(Z). 

Remark 8. This type of coefficient convergence was considered by Sokolowski [10]. 

Finally, we mention that the framework of this paper allows us also to treat optimal 
control problems with homogenization in the dynamics. In this case in the context 
of semilinear systems a(z) = atj(ynz) with aij periodic and -y. - 0 (see Dal Maso 
[3: Chapter 24]). Also we can investigate systems with controls in the coefficients (see 
Sokolowski [101). 

Acknowledgement. The author wishes to thank the two anonymous referees for 
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