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Abstract. We consider the condition of orthogonal polynomials, encoded by the coefficients of 
their three-term recurrence relation, if the measure is given by modified moments (i.e. integrals 
of certain polynomials forming a basis). The results concerning various polynomial bases are 
illustrated by simple examples of generating (possibly shifted) Chebyshev polynomials of first 
and second kind. 
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1. Introduction 

Let a be a given positive measure with infinite support S(a). Then there uniquely exists 
a family {j}jENo of monic polynomials Fr j with 

fFr 1 (x)ir i (x)du(x) = 0 (1<j)	and	f i^(x)da(x) > 0. 

They satisfy a three-term recurrence relation 

	

= (x - aj ) Fr j 	- 

if we set *_ I = 0. We follow the usual convention 

	

/90 =J1da(x) . (1) 

which has no meaning for the recurrence relation, but unifies some other formulas (see 
equation (14) below). 

It is well-known that the generation of the orthogonal polynomials (or, equivalently, 
of the coefficients aj and 6,) from ordinary moments 

	

ilk =fxkda(x)	(kENo) 
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is severely ill-conditioned (see the classical paper of W. Gautschi [3]). More promising 
there are modified moments 

mk = fPk(x)dcl(x)	(kENO)	 (2) 

with some properly chosen polynomials Pk (e.g. Chebyshev polynomials). Of course, 
we should be able to calculate or estimate the condition of the map 

K	[ma,... ,m2n_i]T	[00,... ,Ofl1,	.. 

In [3] and [5], the map Gn from modified moments to the vector of nodes and weights 
of a Gauss quadrature rule is considered, instead, and from this estimates are given for 
the condition of our original map K. Fortunately, a more direct approach is possible. 

2. Maps and norms 
If we denote by m E R In the vector of the first 2n modified moments [ma,. . . , m2n_i]T 
and by p the vector of the recursion coefficients [do,.. ,a_1,flo...... then we 
are interested in the condition of the map K,,: ll2t .... 2n defined by 

K,,(rn) = p. 
In order to compare our results with those of W. Gautschi [3 - 5], we introduce the 
vector

= [r i ,... ,T,,, a 1 ,... ,a,,] T 
of nodes and weights of the Gauss-Christoffel quadrature rule 

fq(x)da(x) = >akq(Tk) 

for any polynomial q of degree less or equal 2n - 1, and denote by G,, the map G,, 
R In - R2" defined by

G,,(rn) =-y.	- 
The sensitivity of the nonlinear maps K,, and G,, can be measured by the norm of the 
Fréchet derivatives K and G,, which are linear maps (the Jacobians of K,, and G,,) 
from R2 " into R2 . We consider here only two norms of matrices A = (a ,k): The 

2n-1 
sup-norm hAil00 

= 0<-i I a 

and the
2n-1 

(j,k=0

...1/2 
Frobenius norm hIAhlp= (TrATA)2 

= 

We mention here that the condition number "cond" defined in [3: Formula 2.11 for the 
map 7 = G,,(m) in our notations will be 

cond(G,,,m) =	hl G ( m)hI	 (3) 

(compare [3: Formula 2.2]). The partial derivatives constituting the Jacobian K, will 
be evaluated in the following section.
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3. Calculation of some partial derivatives 

We assume that (p,)7_0 is any polynomial basis in the space PN of all polynomials of 
degree less or equal N, i.e. there is a representation 

q(x) = >cj (q)pj (x)	 (4) 

for all polynomials q E PN, with some linear functionals c. Note that for the degree of 
the polynomials we do not assume deg(p,) = j, i.e. the case of Bernstein polynomials 
or Lagrange interpolation polynomials is included! The case of ordinary moments is 
included as well, here we have pi(x) = x3 and c,(q) = i.o) (remember that we are in 
a finite-dimensional space, where all norms are equivalent and all linear operations are 
continuous). For the following, we need partial derivatives of integrals. 

Lemma 1. Let q E PN be some polynomial depending on m 0 ,. . . , mi.' , with con- 
tinuov.s partial derivatives in some neighbourhood of the point (mci ,... ,mN ] T, and let 
(2) and (4) hold. Then 

j-_ f q(x) dcr(x) = ck(q) 
+ 

J --- do(x). 
1Mk Om 

Proof. From (2) and (4) we have immediately 

I	 N 

q(x) do,(-) =E cj(q)mj 

and, differentiating, 

o	'	 0c3(q) 
in3 -J q(x)do(x)=ck(q)+, 

j=0 
N 

ck(q)+c,( Oq 
=	 ) 

j=o 

The interchange of partial derivatives and the functionals c i is justified, since the latter 
are continuous I 

Now we consider the orthonormal polynomials in (j E N0 ), satisfying the relations 

f7rI (x)-i (x)do, (x)=0 (l<j)	and	
f 7r

j 2 (x) da (x) = 1.	(6) 

,From the algorithm given in [5] it is clear that aj and Pj for j :5 N2 L (and thus all *, for 

.y ^ 1.) are just rational functions of mo,. . . , MN . Normalization inserts square-roots 
of positive quantities, and consequently the 7n1 are differentiable functions of m0 ,. . . ,mN 

(5)
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in some sufficiently small neighbourhood of fm 0 ,.. , rnN). Differentiating the relations 
(6) we obtain first, with the help of (5), 

O=	 I7r1(x)7rj(x)do(x) 
aMk 

( Ck 7r, 7r2) + J air,(x)	 _____ =	 ____ dc(x) 
0771k ômk 

Ck( 7r I lr,) + J	ôir1(x) 
dc(x) =	7rl(x)

ômk 

for 1 <j, i.e.

J7rj	
ôir(x)

da(x) = —Ck( 7r t 1r ).	 (7) 
arflk 

The second relation in (6) gives 

°
amk 

da(x) 

and this means
Jirj(x)	da(x) =	Ck(7i).	 (8) 

Thus we have the following 

Corollary 1. Under our assumptions (2),(4) and (6) the formula 

1 
=  

(9mk	
—ck(7r,7r) irj - Ck(r^) 7rj	for 2j <N 

E<j 

holds. 

Though this is interesting, it is not our main goal. We consider now the dependence 
of the coefficients a j and 3 on the moments in k . The three-term recurrence relation 
for the orthonormal polynomials ir j reads

1/2 
ir i (x) = (x - aj) ir ( x ) - fl -j- l (x)	(j E No).	(9) j+ 1

Differentiating with respect to mj, we arrive at 

1/2 
j+1	1/2  

amk	 ôrnk
(10) 

-	 Oirj(x)  
 

_____	

ir,_1(x) - /3l/2ô7TJ1(X) 7r3 (x) + (x -	_____  
- ôrnk	 OTnk - ômk	 ôrnk 

Since

	

(x —aj)ir+i(x) = fl42ir+2(x)+(a+i	 7r(x)
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and the orthogonality of 7r3 and rj2 with any polynomial of lower degree, multiplying 
(10) by	integrating and using (8) we have 

1/2 
af3 ,	1 1/2	2	1 1/2 
&fl/ç -	 i+i C k( 1 +1) = — /3,+i ci(r). 

This immediately gives
1/2

1	1/2 
ôTflk 

=	+ick(+l —ir) 

and (after multiplication by 2i3J4)

=  ôTrlk	
i3i Ck(71 1 - ir).	 (11) 

Multiplying (10) by 7rj and integrating we get 

1/2	 ôa,
/32c(irr)	 (12) 

	

Ck(lrjlr,+1)= am,,	J 

	

since in virtue of (9) we have (x - a,)ir,(x) = /3	ir,+i(x) +/32 r3 _1(x) and thus by

relation (7)

I  (x - a)irj(x) 
ôirj(x)	 1/2 do(x) = —j3,	ck(7r....17r3). 

	

J	 (Jmk 

The derivation of (11) is not valid for j = —1. The equation, however, is true: We have 
by (1) and (5)

Oflo	 (i\	2	2 
am k 

=C!(1)=/3Ck	=/9oCk(lro —ir-1)
TO 

since ir 2 =	and	= 0. This is (11) for j = —1. Writing j instead of j + 1 in

relation (11) we finally obtain the following 

Theorem 1. Let (2),(4) and (6) be satisfied. Then the partial derivatives of the 
coefficients in the three-term recurrence relation a3 and Bj with respect to m k evaluate 
as	 =	

Ck(jj1) - fl 2 c,,(j_i)	for 2j + 1 N	(13)

arnk 

and

	

am,, 
=6c,,(7 —ir..i)	for 2j <N.	 (14)


The Jacobian K consists of the partial derivatives 

aaj	 ôf3 - and - 
am,,	 ôm,,	 \k=0,...,2n-1
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so it is clear that we must have a polynomial basis with N 2 2n - 1. Now we can 
introduce the notations 

02i ( X ) = /3(ir(x) -	 (15) 

	

1/2	 1/2 

	

,b2,+i(x) = /,+'	(x)+1(x) - /9	r_ i (x)ir3 (z)	 (16) 

for 	0,... ,n-1. Then t,b, is a polynomial of degree j, and obviously II K II = II'I'II 
and II K IIF = II'F II p , where '1' (l,b3k)j,k=o .2n-1 with Ojk = Ck( t,bj) . These norms 
can be estimated (or evaluated exactly in some special cases) for various choices of 
polynomial bases (pj )n0 N. We first reconsider ordinary moments, investigate the 
(somewhat exotic) bases of Bernstein polynomials and Lagrange interpolation polyno-
mials, and are finally concerned with the practically important case, where the p3 are 
orthonormal polynomials with respect to some other measures. 

To evaluate the norms, we just have to find a way to express 

N 

a(q) =	Ic(q)I	and	a2(q) =	c(q) 
k=O	 k=O 

for all q E PN . Then evidently we will have

 max nil00 - O<j<2n-1	 (17) 

2n-1	1/2 

ll K llF = llll 
= (	

a2(0j))	.	 ( 18) 

Since the coordinate functionals ck are linear, one easily observes that a00 ( . ) and a2(.)h12 
are norms in PN, i.e. they must satisfy the norm inequalities 

	

a00 (q + r) a00 (q) + a00 (r)	and	a2(q + r) 1 / ? <a2(q)1/2 + 

for q,r E PN. 

4. Some examples 

In order to illustrate our results, we consider Chebyshev polynomials of first and second 
kind. 

Example 4.1 (Cheb1jshev polynornioL of first kind). These polynomials are the 
orthogonal polynomials with respect to the measure 

du(x) =	
dx	

for xE[-1,1] 
— 

and
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(observe that we use the normalization a([-1, 1]) = 1, i.e. j30 = 1). In this case, we 
have a = 0 by symmetry, 13 =. for j = 1 and P, = for j > 1. The orthonormal 
polynomials will be Ji	for j=0 

forj>0. 
Then the polynomials Oj defined above can be calculated easily using the well-known 
identities for Chebyshev polynomials (see [1: Formula 22.7.24]): 

1	 for j=0 
1 

	

2j 
=	T2	 for  = 1	 (19) 

- T2 _ 2) for j > 1 

and
Ti( 	 for j=0 
1

= (T2 + — T2 , _ 1 ) for >0.	 (20) 

To compare our results with those of W. Gautschi [3], we consider shifted Chebyshev 
polynomials as well (we will mark any quantity related to the shifted polynomials with 
an asterisk). 

Example 4.1 (Shifted Cheb1jshev polynomials of first kind). The measure here is 
defined by

	

do(x) 
=	X	

for x E [0, 1]. 
irJx(1—x) 

Again it has total weight 1, and the orthonormal polynomials are connected with the 
above via

11	for3=0 
7r(x) ir3 (2x —1)	

v'T7(x) for j >0 

where the common notation for shifted Chebyshev polynomials of first kind is used (see 
[1: Formula 22.5.14]): T,(x) = T(2x - 1). The recurrence coefficients of these shifted 
polynomials can be readily determined from their scaling properties: 

• a, +i	1	•	1	 for j=1 

aj	2	2	
and	 1 for j>1 

(this is essentially [2: Chapter I/Exercise 4.4(a)]). Of course, we have j3 = 1. From 
(15) and (16) we obtain 

= 02 (2x - 1) (i ^ 1) and	+(x) = b2j+(2x 1) (j ^ 0), 

	

respectively; clearly it must be	= 1. Thus, the explicit formulas will read as 

1 for j=0 
for j=1	 (21) 

( T2*j - T_2) for j > 1



230	H.-J. Fischer 

and

1T	 for j=0 

	

=	 (22) 
- (T j - T_ 1 ) for j >0. 

Example 4.2 (Chebyshev polynomials of second kind). These polynomials are the 
orthogonal polynomials with respect to the measure 

	

d(x) =	- x2 dx	for x e —1, 1]
ir 

(again we use the normalization cy ([-1,i]) = 1,i.e. 8 = 1). In this case, we have a 3 = 0 
by symmetry, 3, = - for j > 0, and the orthonormal polynomials will be ir = U. The 
polynomials V;j can be calculated easily using the well-known identities for Chebyshcv 
polynomials of second kind (see [1: Formula 22.7.25]) 

forj=0 
2j = { 1 U2j for j > 0	 (23) 

and

	

U2i+1.	 (24) 

As in the preceding subsection, we will consider shifted polynomials. 

Example 4 .2* (Shifted Chebyshev polynomials of second kind). The measure is 
defined by

da(x)=x(1—x)dx	for xE[0,1]. 

The explicit formulas for our polynomials 03 can be obtained analogously as above: 

*	fi	for j=0 
2j -
	for j > 0	 (25) 

16 2j 

and

02j+1= Uj+17 (26) 

where U denotes the shifted Chebyshev polynomials of second kind: U(x) U(2x-1) 
(see [1:. Formula 22.5.15]).
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5. Ordinary moments 

	

For our special choice p,(x) = x 3 and c,(q) =	the following lemma holds. 

Lemma 2. Let q E PN be a polynomial with real coefficients. Then the auxiliary 
quantities a(q) and a2(q) introduced in Section S can be written down explicitly: 

(i) If the coefficients of q have alternating sign, then a(q) = 

(ii) If q contains only odd (or only even) powers of x with coefficients of alternating 
sign, then a(q) = q(z). 

(iii) The quantity a 2 (q) can be expressed as a 2 (q) =	f02ff Iq(e ) 12 d. 

Proof. (i) We have e (-1)'c,(q) > 0 with some e = ±1, and from this there follows 

a(q) =c(q) =
	

(1)c(q) = c	c(q)p(-1) = eq(-1). 

But, since a(q) is non-negative and Jej = 1, we must have eq(-1) = 

(ii) We have c23 (q) = 0 for 2j N, and again e(_1)3cj(q) 0 for 21 + 1 N 
with some C = ± 1. Consequently, from (-1)' = (—i)z 2) = ( — i)p2+i(i) we obtain 

	

i 2 i	 N 

a(q) =	c2i(q)l	e(_1)2c2,+l(q) = (—i)e	cj(q)pj (i) = (—i)eq(i). 
j=o	 i=o	 i=o 

	

As above, we have l(—i)el = 1, and the equation (—i)eq(i)	q(i)I follows. The case 

of only even coefficients with alternating sign can be dealt with analogously. 

(iii)The formula for a2 (q) is an immediate consequence of the orthogonality of the 
functions eijo I 

We are now ready to give explicit results for the simple Examples 4.1 - 4.2 above. 

Theorem 2. For our examples the sup-norm of the Jacobian K can be calculated 
exactly.

(i) Let the measure a be defined as in Example 4:1 (Chebyshev polynomials of first 
kind). Then the sup-norm of K, will be 

II
"

"nIIOO - 
"	4 U,,_ 2 (3)	for n > 2.	 (27) - 

In the case of shifted Chebyshev polynomials of first kind this norm evaluates as 

Il K ll =4U2_3(3)	for n >2.	. .	(28) 

(ii) For Chebyshev polynomials of second kind (Example 4.2) we have the result 

II 

	

"Kn'II°° - U_1(3)	for n 2.	 (29) -
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Finally, in the case of shifted Chebyshev polynomials of second kind (Example 4.2*) we 
obtain the formula

IIK lao = 1 U2 _ 1 (3)	for n > 2.	 (30) 

Proof. First, we prove equation (27). According to equation (17), we have to in-
vestigate the functionals aao(bj ). The fact that the Chebyshev polynomials T = T,, (x) 
and U, = U(x) contain only odd or even powers of x with coefficients of alternating 
sign, is well known (see the explicit expressions [1: Formula 22.3.6] and [1: Formula 
22.3.71 or [6: Formula 4.151 and [6: Formula 4.16]). For the polynomials Tj - T,_1 
this follows from the identity

- T.. 1 (x) = 2(x 2 - 1)U3 _ i (x)	 (31) 

(this is [1: Equation 22.7.25] with n = j and m = 1). Thus, the polynomials h satisfy 
the assumptions of Lemma 2, and we have aao(&j) = ( i ) I . From equations (17), (19), 
(20) and (31) we can see that Il K llao will be the maximum of 

3 max l',(i)l = ,	max IU2__2(i)l,	2 max 1U2j _ i (i). O<j<2 2<j:5n—I	 1<j<n-1 

We will need the formulas for Chebyshev polynomials of first and second kinds (see [6: 
Formulas 4.13 and 4.14]): 

T(x)= ((x+Vx2_1)n+yx2_1)-)	 (32) 
1 

U. W = _____ 

2Vx 2 - 1 
((X + VX2 - 1)' - (x - x2 - i) n )	(33) 

We see easily that there always holds 1U(i)l ^! IU,_j(i)l. Consequently, the maximal 
value will be 2max i <<_ 1 1U2,_ i (i)l = 2 I U2_3( z )l if only this is not less than 2 . To 
convert the result to real expressions, we need the identity 

U2J_1(x) = 2xU_ 1 (2x 2 1)	 (34) 

This equation follows at once from the trigonometric form of the definition U(cos 9) = 
sin(n+1)O 

sin 	(see [1: Formula 22.3.16]), since we have 

sin 2j9 - sin 29 sin(j . 29)
= 2 COS OUji (COS 29). U23_i(cos9)	

sin 	- sine	sin 29 

Setting x = i, we obtain U2 _ 3 (i) = 2iU_2 (-3) and ll K IIcx> = 2I2iU_2(3)I 
4U_2 (3) (this value is greater than for all n 2 2). 

The equation (28) can be shown analogously. First, we have to check the assump-
tions of Lemma 2. Indeed, the polynomial U has coefficients of alternating sign: From 
(34) we see

u;(x) = U,(2x —1) =
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The same is true for the polynomials T + 1 - T,_ 1 , since (31) gives (with 2x - 1 instead 
of x)

T31(x) —T," 1 (x) = 8(x2 —x)U3_1(x). (35) 

Hence, all polynomials 0 3 have coefficients of alternating sign, and a() = I0;(-1)I. 
Again, from equations (17), (21), (22) and (35) we obtain II K ,'j Ioc, = 
4U2 _ 3 (3), if only this is not less than max = o ,1,2 I(—l)I = , and this is true for all 
n 2. 

The proof of equations (29) and (30) goes along the same lines U 

The comparison of (28) with the result of W. Gautschi [3: Inequality 5.91 is very 
interesting. He investigates the map G instead of K. and obtains the estimate 

(17 + 6/)12 cond(G,,,m)>
64n2 

where cond,,, is defined via (3) with the norm	.	. From our equation (28)

together with (33) we have the asymptotics 

II "Kn'II"°° 4	
(3+,,r8-)2.-2 

 = 2(17 - 6) (17 + 
2/ä 

6. Bernstein polynomials 

The set '3N = (BN,j). 0 of well-known Bernstein polynomials defined by 

	

BN,(x) =	xi(1 - 

form a basis of PN. Since 13N is not a subset of 13M for M > N, we have to indicate 
the dependence of coordinate functionals and norms on the degree N explicitly: 

q(x) =cN,(q)BN,(x) (q E PN)	and	aN,(q) = 

(we consider here the supremum norm only). 

Lemma 3. Let q E 2N C PM (i.e. N M). Then we have the inequality 

M+1 

	

aMoo(q)	
N + 1 a

N, ,,0 (q).	 (36) 

Proof. Obviously, we have to prove our proposition only for M = N + 1, the general 
case follows via induction. From the identity 

BN,,(x) 
= N+1—j 

N + 1 BN+I,j(x)+ j+1 N+1BN+1,j+1(x)
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for j	0,. ... , N we obtain 

cN+1,j(q) 
= N + 1 

N+1—j 
cN ,j(q) + 

j 
N + 1 

cNJ_I(q) 

for q E PN and  = 0,.. . , N + 1 (the undefined functionals CN,N+1 and CN1 have 
coefficient zero). This gives

N+I 
aN+1,00(q) =

j=o

N+1— 
Ic N, (q) +	

N+ 1 
IcN,1(q)I 

j=O	 j=1

—(N+1—j j+1\ 
N + 1 + N + 

i) IcN,(q) 

N + 2 N 

= N + 1	
IcN,(q) 

N +2 
N + 1 

aN,(q) 

and the assertion is proved I 
The following result enables us to evaluate a N,00 (q) explicitly in some special cases 
Lemmea 4. Let q E PN, and let its coefficzentsc , ( q) in the basis 13N have alter-

nating sign. Then the equality 

aN , (q) = (N + 1) J  (2u - fl N q
 (2u—i) du

	 (37) 

holds. The coefficients have alternating sign, if all zeros of the polynomial q are real 
and contained in [0, 11. 

Proof. Suppose first that all coefficients c N, ,(q) are positive. From the well-known 
fact that f BN, 3 (u )du =	we obtain 

aN , (q) =	cN, j (q) = (N + i ) j q(u) du. 

The first proposition now follows easily, from the identity 

(2u - 1)N BN, 
(2u i) = 

( _ 1)N_JBN,j(u). 

If all zeros x 1 ,. . . , XN of q are real and contained in [0, 11, then we have 

q(x) = c[J(x - x) = cfi ((1 - x)x - x(1 - x)) 

and this polynomial obviously has coefficients of alternating sign in the basis 13NI
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We choose N = 2n - 1, and equation (17) takes the form 

"K '	= max aN,(cb ) . II	nII°°
O<j<N 

Of course, our equation (37) enables us to evaluate	only. But in some cases

we will be able to show

max 
O<j<N 

aN,( t,b )	aNc,(t,bN) 

using the inequality	

OO(i),) < N + 1 
aN  j+1 

Since the natural interval for Bernstein polynomials is [0, 1], we illustrate our results 
with shifted Chebyshev polynomials only. 

Theorem 3. Let the measure o, be defined as in Example 4.2 (shifted Chebyshev 
polynomials of first kind). Then the supremum norm of R' , can be estimated as 

H K' H -	 _____   '	r()r(2n - ) - 2' F()r(2n - 
— 2	r(2n - 1)	F(2n + 1) +0(1) 	(38) 

for n -	. In the case of Example 4.2 (shifted Chebyshev polynomials of second kind)

we have the estimate

	

II K II -	
F()(2 +	+ 0(1)	 (39)

2 (-	r(2n+1) 

for n - oo. 

Proof. First, we consider shifted Chebyshev polynomials of first kind and define the 
polynomials q3 = T - T_ 2 for j ^: 2. tFrom (35) we have q,(x) = 8x (x - 1) U,-2(x). 
This polynomial has all its zeros in [0, 1] and thus fulfils the assumptions of Lemma 4. 
Using equation (33) we get 

	

qj(x) = 2Vx 2 - x((2x - 1 + 2x 2 - x)	- (2x —1 - 2 2 - 

and from this 

(2u - 1)'q 
(2u 

u 
1) 

= 2u -	+ 2u - u2)'' - (1— 2u - u2)31). 

Our Lemma 4 yields 

	

aj , (qj) = f2 \/u - u2((1 + 2u -	- (1 - 2u - u2) 21 ) du. 

0 

Now we can see that the integrand is monotonically increasing in j, and consequently 
we obtain

1	 1 
aj , (qj) <	a - N + 1 N,(qN)	for 2 j N.
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Together with (36) this implies 

aN,(qj)	
N+1

+ a
j, ( q3 ) aN , (qN)	for 2 <j N. 

Since according to equations (21) and (22) we have	 -L=qj for even j > 2 and 
= q, for odd j > 2 and N = 2n - 1 is odd, the inequality 

aN()	a,(q)	a,(q) = aN,(N)	for 2 <j < N 

follows immediately. This yields the equation 

max aN,( b ) = aN,(l,bN), 2<j<N 

and since we will see that aN,(N) tends to infinity as N -	, we have 

II K II = max aN() = aN(N) = aN(qN) 

for N large enough. This quantity can be estimated easily: Our Lemma 4 gives the 
expression 

N	
aN,(qN) = J2Vu - 2((1 + 2u -	- ( i - 2u - 2)N_1) du. 

0 

But Ii - 2Vu -	1, and consequently the right-hand side equals 

I2 
Vu - u2((1 + 2u - 2)N_I + ( 1 - 2u - u2)N_I)du + 0(1). 

The last integral can be evaluated: First, in the integral

I

1/2 

2	
- u2(1 + 2Vu - u2)N_ldu = 2 f 2V, u2(1 + 2u - 

we substitute V =	+ s/fT	to obtain 

p (V
	P2 

2 I ' -	v2N_2dv. 
v'2v2 

Further, in the integral 

I 2v/u - u 2 (1 - 2u - u2)N	
1/2 

du = 2	- u 2 (1 - 2u - u2)N_Idu
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we substitute v =	- /i to obtain 

2J
(v2 - 1)2 v22dv. 
v'2 _- V2 

0 

Putting these integrals together, we obtain the equation 

1  
aN (qN) 

= 
21 (v2 - 1)2 v2N_2 dv + 0(1). 

N + 1 	/2 - v2 
0 

Using the simple identity 

(v2 - 1)2 v2N_2 =	1	
v22 - V2 - v2 v2N, 

.V2_v2	V'2_v2 

the substitution v =	and the well-known formulas for the Beta integrals (see [1: 
6.2.1 and 6.2.2])

B(z,w) = f jZl( - t)' di = rrz)r(w 

we finally arrive at 

1 N ()f(N - ) 
- 2 N	 + 0(1). 

I'()1'(N + 
N + 1 aN

, (qN) = 2'	
(N)	 (N + 2) 

Inserting this in equation (40) and observing N = 2ri - 1, we obtain our proposition 
(38). The proof of our second proposition (39) is almost identical to the above one and 
will be omitted here I 

7. Lagrange interpolation polynomials 
Suppose we are given N + 1 (different) nodes xo,.. . ,x,v of interpolation. If we denote


.'N+1(x) = (x - x 0 ) . . . ( - XN), 

then the basic polynomials of interpolation in Lagrange form will be 

IN,j( X ) =	
WN+l(X)

 
w +1( x ) (x - x3) 

and we have the identity 

q(x) =	q(x)1N,(x)	for q E PN 

Thus, our coordinate functionals c3 have the simple form c,(q) = q(xj ) for all q E PN, 
and clearly the following result holds.
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Lemma 5. Let q E PN and [a, b] be any interval containing given nodes x 3 (j = 
0,. . . , N). Then we have the estimate 

a00 (q) <(N + 1) jjqjj.	 (41) 
where 1 q 1100 is the usual sup-norm: j jqjj. = SUP-E[-,b) Iq(x)I. 

In many practically important cases we have bounds for the modulus of orthonormal 
polynomials on the support of the measure. 

Lemma 6. Let the measure a have support S(a) C [a, b] and assume


	

a([x,y])^:C(y—x)7	for x,yE[a,b] 

with some constant C > 0. Then we have the bound 

	

I1flhI00	
/C(b - a)	

for n 2 1.	 (42) 

Proof. We denote for brevity II 1r 1100 by M. Then clearly Mn = 7r(x) for some 
x	[a, b], and from the classical Markov theorem we know 

2n2 

	

Iir ( y)l —Ma	for y  (a, b]. 
b—a 

With the notation
B = {x e (a,b): Ix— x1

4n2 I 

this implies

X =	(x) + f(y)dy 2 In(x)I - Ix - x1 
2n 2 

Mn 2 M 
-	.	1• 

for x E B, and we obtain the inequality 

	

1 
= f ir(x)da(x) 

> L 7r(x)da(x) >	. a(B)>	. C 

Solving this inequality for M, we arrive at our proposition (42) (the idea of this proof 
is well known, compare the proof of Theorem 1.10 in (7: p. 1451)1 

Now we are able to give simple estimates for the norm II K 1100 in the case of these 
measures. 

Theorem 4. Let the measure a fulfill the assumptions of Lemma 6 and let all nodes 
, 1 N, where N = 2n - 1, be in the interval of orthogonality [a, b]. Then we can 

estimate	 - 
IIKII00 = Q(2y-4-I	 (43) 

Proof. Since the support S(a) is compact, the coefficients On are bounded, and 
from inequality (42) and the definitions (15) and (16) we deduce I1Il00 = 0(j 2 ). Our 
proposition now follows from the inequality 

IKII 00 = max a00 ( j )(N+1) max II[I00 O<j<N	 - O<j<N 

(cf. Lemma 5)1
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Of course, the bound (42) is very rough. We can obtain sharper bounds for our 
illustrative examples. 

Theorem 5. Let the measure a be defined as in example 4.1 (Chebyshev polynomials 
of first kind), and let all nodes x 0 ,. .. ,x,v, where N = 2n - 1, be in the interval of 
orthogonality [-1,1]. Then the suppremum norm of K can be estimated as 

<2n.	 (44) 

In the case of example 4.2 (Chebyshev polynomials of second kind) we have the estimate 

IIK,',IIoc, <2n2.	 (45) 

Proof. In the case of Chebyshev polynomials of first kind, we can see from our 
equations (19) and (20) that II,I 1 for all j > 0. Consequently, we have the 
estimate

I"I KnIIOO - '	 ab) <(N + 1) max I'jI < N + 1 = 2n. - O<j<N 

In the case of Chebyshev polynomials of second kind, our proposition follows easily from 
equations (23) and (24) and from	 IIUiII =(j + 1) for j > 0. 

Surprisingly, we have simple estimates for II K II00 of only polynomial growth in 
n. Moreover, the result does not depend on the distribution of the nodes inside the 
interval of orthogonality. However, this is somewhat misleading. The norm II K II is 
a measure for sensitivity to small absolute perturbations of the modified moments. But 
if the distribution of the nodes is bad, the basic polynomials may have large peaks, 
and consequently the modified moments may vary greatly in magnitude (compare the 
discussion in [4: Sections 2 and 61) . If the support of our measure a is an interval, we 
could, of course, use well-known good nodes of interpolation (e.g. Chebyshev nodes), 
where the basic polynomials remain uniformly bounded. Unfortunately, this is only 
theoretically useful, too. It is hardly ever possible to compute the "Lagrange moments" 
practically even in the case of very simple measures a. 

8. Orthonormal systems 

Let now {p2 }' be a system of orthonormal polynomials with respect to some measure 
s. Then the coordinate functional c3 will be c, (q) = f q(x)p,(x) ds(x). We shall 
concentrate in this case on the Frobenius norm. Clearly we have 

a2(q) =	c(q) = fq2(x)ds(x)	for q e 

This immediately yields, by (15), (16) and (18), the following result.
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Theorem 6. The Frobenius norm of K is

"2 K IIF = { JW(X)dS(X)} 	 (46) 

where

2n-i 
w(x) =	(x) 

i=o 

=	{((x) -	+ (+(x) - I/2)22} 

For the class of measures mentioned in the preceding section we are able to give 
bounds for the norm II K II p growing only polynomially in n. 

Theorem 7. Let the measure a have support S(a) C [a, b] and assume u([x,y]) 
C(y — x) for x,y e [a, b) with some constant C > 0. Then we have the bound II K II p = 
O(n24). 

Proof. Our assumptions imply II.,II = O(j 2 ), and from equation (46) we deduce 
I 2	 2n-I	2	 2n-i 4 

II K II < s([a, b]) ,= II',II . The proposition follows immediately from	= O(n4)I 
Again, we illustrate our results with Examples 4.1 and 4.2. 

Theorem 8. Let the measure a be defined as in example (4.1) (Chebyshev polyno-
mials of first kind), and lets be any measure with support C [-1, 11. Then the polynomial 
w, defined above can be bounded by 

w(x) 15 2n	for x E [-1,1]	 (47)


and consequently the Frobenius norm of K can be estimated by 

II K II p < /2ns([-1,1]). (48) 

In the case of Example (4.2) (Chebyshev polynomials of second kind) we have the esti-
mates

(2n - 1)(4n2 + 5n + 3)
for x E [-1,11 .	(49) w(x)<1+	12 

and
1 2n - 1 

w(x) < 1 + -	 for x E (-1,1)	 (50) 4 1 - 

and consequently for the special measure ds(x) = dx on [-1, 1] we obtain the inequality 

I	2n-1 2n-1 ______ ______ 
IIKIIF V2+ 4 + 4 ln(n2+ 20 n+3) .	(51)
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Proof. The proof of the inequality (47) is trivial, since for Chebyshev polynomials 
of first kind we saw Ij(x)I < 1 in [-1,1] for all j > 0. The estimate (48) is an immediate 
consequence of formula (46). 

In the case of Chebyshev polynomials of second kind, we have 'o - and b(x) 
U(x) for all j > 1 (see equations (23) and (24)). This gives the inequality 

2n—I

U, (x).	 (52) 

Using the inequality 1U1 (x)l	j + 1 for x e [-1, 1] (this is [1: 22.14.61) and the 
elementary formula 

2n—I	 2n 

> 
j=1	j=1 

we obtain inequality (49). 

Recalling the trigonometric forms of the definitions of Chebyshev polynomials (com-
pare equations [1: 22.3.15 and 22.3.161) 

T+ i (cos 0) = cos(j + 1)0	and	Uj (Cos 0) 
= sin(j + 1)0 

sin  

we obtain (with x = cos 0) the identity T,2 1 (x)+(1 - x 2 )U,(x) 1. Consequently, the 
inequality (1 - x2 ) U(x) 1 holds for all j ^! 0 and all real x. Our proposition (50) is 
an easy consequence of this inequality and (52). 

The proof of the estimate (51) is now straightforward. From equation (46) we obtain 

II K II =fw(x)dx = 2 +J (w,, (x) —1) dx. 

If we introduce the notation e, = 8n2+l0n+6' we can estimate (using (49 and 50)) 

J	(w,(x) - i) dx	I	82n
	

dx = 2n - 1  - 1 
R	 4 

1 - e fl < I z I <1	 1-e,,<Izj<1 

and
1—en	 1—en 

2n-1 f	dx	2n-1
 Gn

2i) f (w(x) - 1) dx	J 1 - x2 =
	In 

Putting these estimates together, we obtain our inequality (51)1
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It is very interesting to compare our results with those of W. Gautschi [4]. He 
investigated the sensitivity of the map G. instead (defined in our Section 2) and showed 
the equality

1/2 

II G IIF = U g,, (x) ds (x)) 

where the polynomial g,, of degree 4n - 2 is defined via the weights and nodes of 
a quadrature formula for the measure a (see the following section). For Chebyshev 
polynomials of first kind, he conjectured the polynomials 9n to be uniformly bounded 
on [-1, 11. This is true, as we will show in the following Appendix. Consequently, 
the norms II G II p are bounded, too. In the case of Chebyshev polynomials of second 
kind, the polynomials 9n have large peaks near the ends of the interval [-1,1], and the 
numerical values for II G II p show moderate growth with n. This is in good agreement 
with our estimate (51) for the norms IIKIIt'. 

9. Appendix 

In this section we estimate the polynomials g,, introduced by W. Gautschi (4] in the 
case of Chebyshev polynomials of first kind. We have 

g,,(x) = 	h(x) +	2k(x)	 (53) 

where
h(x) = 1(x)(1 - 21(T)(x - Ti))	 (54) 

and
k,(x) = 1,(x)(x - r) (55) 

are the fundamental Hermite interpolation polynomials in terms of the fundamental 
Lagrange interpolation polynomials 

l(x) - 
-	T,,(x)

(56) 
 T(Tj)(x—ri) 

The nodes r are the zeros of the polynomial T,, (obviously, r, I < 1 for j = 1,... , n). 
First, we have the identity

(57) 

(this is just Hermite interpolation of the "polynomial" which is equal 1 everywhere). 
But in our case we obtain l(r) = 73 (1 - r) 1 (see [4: Equation 4.2]) and from (54) 
there follows h(x) = 1,(x) F9 . Consequently, for x E [-1, 11 we can estimate 

l I TiI	_____ h(x)>1(x) i—	=1(x)	
1	> 1 2 (X). 

r

	

	 (58) 1 + ( r ( -
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This gives immediately h3 (x) 2 0, and from (57) we get h3(x) 1. Thus, the first sum 
on the right-hand side of (53) can be estimated as 

To deal with the second sum, we note a 3 = 3, and (55) and (56) yield 

n	 n 

	

U72 2(X) = n2	
1 

T(x)	
Th2(r,) 

1'. (X). 
j=1	 i=1 

The derivative of T at the zeros can be easily calculated: tFrom the well-known 
identity T(cos9) = cos n9 we obtain sineT,ç(coso) = n sin nO. Thus, sin' OT(cosO)+ 
n2 cos2 n0 = n2 , and substituting x = cosO we obtain (1 - x 2 )T(x) + n2 T(x) = n2. 

	

From this identity the equation T, 2 ( r ) = 	for the zeros of T,1 follows immediately. 
Consequently, our sum can be written as 

aJ 2 k(x) = T(x)	(1 - T) 1(x). 

The last sum can be estimated easily: 

1( 1
 
_-I 

2
	<>l(x) < 2h(x) = 2 

j=1	
J

where we used the inequality 1(x) < 2h,(x) following from (58). Finally, from (53) we 
obtain the interesting inequality

g(x)!^1+2=3	 (60) 

uniformly in n. This result (via a) depends on the normalization of the measure a 
of orthogonality of the Chebyshev polynomials. W. Gautschi [4] used a([-1, 1]) 
instead. This would imply a 3 = and 

	

g(x)	1 + -	1.20264... 

which is not so far from the inequality g(x) 1 conjectured by W. Cautschi.
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