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A Note on the Bonnet-Myers Theorem 
V. Boju and L. Funar 

Abstract. The aim of this note is to derive a compactness result for complete manifolds whose 
Ricci curvature is bounded from below. The classical result, usually stated as Bonnet-Myers 
theorem, provides an estimation of the diameter of a manifold whose Ricci curvature is greater 
than a strictly positive constant. Weaker assumptions that the Ricci curvature function tends 
slowly to zero (when the distance from a fixed point goes to infinity) were already considered 
in [2, 3]. We shall improve here their results. 
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We will be concerned with the following analytic 

Problem. Given a function a: [ro, +oo) - ( 0, +oo) we consider positive solutions 
y = y(r) of the differential equation

y" + ay = 0 

satisfying y(ro) = 0. Obviously, y has to be concave. We have to determine the functions 
a = a(r) for which y has a further zero r 1 > ro which may be bounded from above. 

It is clear that there is such a bound in case a is a positive constant, but this bound 
tends to infinity as a(r) -i 0. The above problem seems to be interesting for functions a 
satisfying limr ..+ c,, a(r) = 0. It turns out that the right asymptotic is a(r) cr 2 , with 
critical value c = . In fact, for c = + v2 one gets the solution y(r) = r sin v( log ),ro 
and hence there is a second zero. In this paper we show that in fact the constant v2 
may be replaced by a function which tends as weakly as an iterated logarithm to zero, 
which enters in our definition of some function Ak,0 = Ak,0(r). 

Let us first make some notations. For each natural number k we set

Logo(r) = r 

Lk(r) = log ... log r 
k 
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whenever is defined, and 

Ak,(r) = 42 (i + Li(r)2 +	+ L i (r) 2 L2 (r) 2 ••!

1 + 4v2 
+ 

L l (r) 2 L2 (r) 2 ... Lk(r)2) 

For a Riemannian manifold M, we denote by Ric(Y) the Ricci curvature in the direc-
tion Y € T(M), for a point x E M and T(M) being the tangent space to M in x. The 
space M is said to have an almost positive asymptotic Ricci curvature (abbreviated to 
be an AP-Riemannian space) if there exist k, V, ro > 0 and p E M such that 

Ric(Y) ^! (n -. 1) Ak,v(r )1 Y 1 2	 (1) 

holds for all x E M whose distance from a fixed point p is r = dist(p,x) ^! ro and for 
all vectors Y E T(M). Also I stands for the norm in the tangent space induced by 
the metric, and n is the dimension of M. 

Our result can be stated now as follows. 

Theorem 1. A complete AP-Riemannian manifold is compact, and its diameter 
d(M) is bounded by

d(M) < - e k	Lk_I I (	
' 

-	 exP— V max{ro,ek(0)})) 

where eo(x) = x and em+i(r) = expem(x) form > 0. 

Notice that the case k = 0 is discussed in [2] and the case k = 1 is covered by [3]. 
Also, Dekster and Kupka [31 proved that the constant 1 is sharp, i.e. for any function 
A = A(r) using in the place of Ak,r so that Theorem 1 holds we must have 

lirn A(r)r2 and	lim. (A(r)r2 - 	(log r)' > 1 
r—.+oo	 4	 r—+ 60 

So our result identifies the higher order terms which might be added in spite to preserve 
the boundedness of the manifold. We think that the function Ak,0 is sharp. 

Proof of Theorem 1. We write the Jacobi equation associated to the sectional 
curvature function Ak,0, namely

V) + A(r)y = 0.	 (2) 

We claim that this equation admits the basic solutions 

	

T O = I k(r ) cos vLk(r)	and	W = k(r) sin vLk(r) 

where
L	I	 k. 

k(T) =r 2 L1(r) 2 ...



A Note on the Bonnet-Myers Theor:em	277 

For k = lit is easy to see that r 2 cos(v log r) and r 2 sin(v log r) are solutions kr equation 
(2). By recurrence we prove first that the following relations are fulfilled (for k = 1 they 
are simply to check):

	

+ A,c,o4 = 0	and	2L + kL' =0. 
In fact we have

	

k+IkL	and	Lk+1= log Lk, 
hence

+k+lkL, =	 =0. 
On the other hand

k+1	A
	(Lk )2 	-	.4 = 'k,0 +	- 

holds and the two relations stated above are proved. 
Furthermore we verify that 

T it = I' cos(vL,) - v(2'k L'k + cIkL'k ) sin(vLk) - v2 kL cos(vLk). 
The two relations stated above and the obvious identity 

complete the proof of our claim for 'F 0 (the case of 41 1 is similar). 
Both T O and 'hi are defined on the interval [ek(0),+oo). Set r 1 = max{ro,ek(0)}. 

Therefore, for each A > ek(0) the linear combination 
Yk,,A(r) = - sin(vLk(A)) 'Po(r) + cos(vLk(A)) Wi (r)	 (3)

is a solution for equation (2), which satisfies also Yk,,A( A ) = 0. Also, we may write 
Yk,A(r) = sin(v(Lk(r) - Lk( A )) 4'k(T ) Lk(r) 

so that Yk,v,A is positive on the interval (A, #(A)) where /3(A) = ek_l(Lk_l(A)exp ( f)) 
and vanishes again in j3(A). This is a consequence of the straightforward formula 

Lk(/9( A )) - Lk(A) = 
A standard argument (see, for instance, [1]) proves that the diameter of the manifold 
M is less than /9(n). Since M is complete from the Hopf-Rinow theorem it follows that 
M is in fact compact and this ends the proof of the theorem U 

Remark 2. The form of the function Ak, is in some sense sharp. In fact, for V = 0 
the analog result is false: We may choose on M = R'2 - K, with K being a sufficiently 
large compact, the metric with radial symmetry dr + Pk(r)dO (in polar coordinates) 
where dO is the metric form on the standard sphere S' and 

k 
Pk(r) = r ( L(r)2) 

Then a straightforward computation shows that Ric(Y) = Ak,o(r )1 Y 1 2 for all points x 
outside the compact K and all tangent vectors Y. 
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