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Spatial Generalization of the Complex 11-Operator 

K. Gürlebeck and U. Kãhler 

Abstract. The 11-operator plays a mayor role in complex analysis, especially in the theory of 
generalized analytic functions in the sense of Vekua. The present paper deals with a hyper-
complex generalization of the complex 11-operator which turns out to have most of the useful 
properties of its complex origin such as mapping properties and invertibility. At the end an 
application of the generalized 11-operator to the solution of a hypercomplex Beltrami equation 
will be studied. 
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1. Introduction 

As it is well-known, there are close connec 'tions between Complex Analysis and the 
theory of partial differential equations. Using functional analytical methods many re-
sults of classical function theory can be applied for solving partial differential equations. 
Often the transformation of partial differential equations into integral equations is the 
starting point for such methods. The most important integral operators in this part of 
complex analysis are the so-called T- and 11-operator introduced by Vekua [15]. 

In multidimensional complex analysis many of these methods and efforts are lost. 
One of the most important reasons is the fact that in the theory of several complex vari-
ables there are no "good enough" analogies of the complex differential operators j and 

. That means these analogies have not the property to factorize the Laplacian. But, 
"good" elliptic analogies of and jj exist in another generalization of one-dimensional 
complex analysis, namely, in the Clifford analysis. The hypercomplex Cauchy-Riemann 
operator has most of the properties of its complex origin. 

For spatial generalization of Vekua's theory we have to generalize the integral ope-
rators used by Vekua. Till now, only one of these two operators, the T-operator, was 
systematically applied in generalized form [7, 13, 141. It is not so well-known that 
SpröBig studied not only a generalization of the T-operator but also of the 11-operator 
[13]. 
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This paper deals with this hypercomplex 11-operator in the following generalized 
11-operator called. Starting from the results of [13) we study the II-operator in Sobolev 
spaces. We prove an integral representation formula, continuity, invertibility, norm 
estimations, and some algebraic properties. An essential result for applications to the 
solution of boundary value problems is the description of the interaction between H and 
the Bergman projection onto the L 2 -space of monogenic functions. The application of 
this generalized II-operator to the solution of a hypercomplex Beltrami equation shall 
only be sketched because this area of Clifford Analysis is still mainly undiscovered. 
But first steps have demonstrated that it seems to be possible to generalize not only 
the complex theory of generalized analytic functions by Vekua but also the complex 
methods for solving nonlinear systems of partial differential operators by Tutschke. 

2. Preliminaries 

Let e 1 ,. .. , e, be an orthonormal basis of lR'. The Clifford algebra Cto ,, is the free 
algebra over R' generated modulo the relation 

= — I x 1 2eo	. 

where e0 is the identity of Cto , ,. These algebras were introduced by Clifford in 1878 
[2]. We remark that in the case of n = 1 the algebra CE0, , is isomorphic to C. For the 
algebra CE0, ,, we have the multiplication rule 

e i ej + e,e = —2823 eo	(i,j = 1,...,n) 

where bii is the Kronecker symbol; Taking this rule we get a basis of this algebra in the 
form	 .

{eA}Ac{1,,} 

with eA .= e,	e , e {;} = e 1 (i = 1,... ,ii) and e0 = e0 . Each element of the algebra 
CE0, ,, can be represented in the form

xAeA 
Ac{1 .... . n} 

where XA are real numbers. This algebra has the dimension 2". The elements of the 
Clifford algebra are called Clifford numbers. If the set A contains k elements, then we 
call eA a k-vector. Likewise, we call each linear combination of k vectors a k-vector. 
The vector space of all k-vectors is denoted by A) R". Obviously, CE0, ,, is the direct 
sum of all A) 1R" for k'<n. By	 .	. . 

)±=	>	) x4e4 
Ac(i .....


where eA = ii ik ... 6i, and ë3 = — e3 (j =	.. , n) we define a conjugate element. 

In the following we identify the Euclidian space Rn+l with the direct, sum 
A° R" A' R". 'For all what follows let Q C R"'- 1 be a domain with a sufficiently
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smooth boundary r =. ô. Then functions f defined in Q with values in CEO , are 
considered. These functions may be written as 

f() =	ef(z)	(zE ). 

Properties such . as continuity, differentiability, integrability, and so on, which are as-
cribed to f have to be possessed by all components fk(z) (k = 0,. . :, n). In this way 
the usual Banach spaces of these functions are denoted by C, C,, and ,1,V,,k. In the case 
of p = 2 we introduce in £2() the Ce0 -valued inner product 

(U, V) = f u()v (e) dcl. .	 (1) 

We now define the generalized Cauchy-Riemann operator by 

D=ek. 

For this operator we have that
DD=DD= (2) 

where A is the Laplacian and D = 0 ëk- is the conjugate Cauchy-Riemann 
operator. A sufficiently smooth function f: Q '- C O3 ,, is said to be left-monogenic if it 
satisfies the equation (Df)() = 0 for each E Q. The Cauchy-Riemañn operator has 
a right inverse in the form	 -

 Z) 

	

(Tf)(z)	J.
	11f(e)dcl. (z E ) 

where E(e, z) = - is the generalized Cauchy kernel and w stands for the 
surface area of the unit sphere in R"'. This operator acts from W,,k(Q) to W1(Q) 
with 1 < p < 00 and k e u{0} (see [7]). We remark that for n = 1 we get from this 
definition the complex T-operator	. 

Ti h(z) =	 h(C) 	(zEci)	. . 
ir	ç1 (—z	. 

up to the factor two. .	.	 .	.	. . 
Introducing the boundary integral operator 

	

(Frf)(z)	
j I_zIn+)"	(zotinr) 

where a() is the outward pointing normal unit vector to I' at the point , we get the 
well-known Borel-Pompeiü formula	. .	.	. 

(Frf)(z) + (TDI)(z) = 1(z) : ( z E ).	..
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Obviously, DFrf = 0 and FrTf 0 hold. In [7) it is proved that Fr acts from W(r) 
into W() (1 <p < ; k €). 

Notice that above all our integral operators will be defined in spaces of Holder-
continuous functions. It is possible to extend these operators to Sobolev spaces in 
the classical way be approximation (with Hoelder- continuousfunctions). We omit the 
detailed discussion here. We remark that then all the referred formulas have to be 
understood in the generalized sense. 

Taking the traces of Fri we introduce the projections 

(Prf)(z) = urn (Fr f)() 
LEn, .Er 

(Qrf)(z ) =	lim	(—Frf)(). 
EW'+'\fl, Er 

Pr is the projection onto the space of all Clifford-valued functions which may be left-
monogenic extended into the domain ft Qr, is the projection onto the space of all 
Clifford-valued functions which may be left-monogenic extended into the domain Rhl \ ft For these projections Qr Prf = PrQrf = 0 holds for all i (for further details see 
[7]). For an integral operator 

(Af)(z) = af(z) + L k( - z) i() d	,(z E ) 

where a E C4, we define a conjugate operator A by 

(Af)(z) = af(z) + 
j 

k( - z) i() d	(z E ç). 

In the same way we define for a loundary integral operator 

(Ari)(z) = af(z) + 
j 

k(C - z) a(e) f() df 

a conjugate operator by 

(Ari)(z)	ai(z)+jk(e—z)f(e)dre. 

It will be clear from the context whether z E Q or z E r 
For this paper we also need the following decompositions of the space 
Theorem 1. The right Hubert modul £2(1) allows the orthogonal decompositioiis 

£2 (Q) = kerD(1) fl £2 (cl) T(W(c))	 (3) 

£2 (Q) = kerT() fl £) D(W (1))	 (4) 

with respect to the inner. product (1). 

For the idea of the proof we refer to a proof of a similar theorem in [7: Theorem 3.11 
made in the case of the Dirac operator. Besides we will only prove the decomposition 
(3), because the proof of (4) is analogous to that of (3).
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Proof, of Theorem 1. The right linear sets 

Xi =C 2 (Q)flkerD(cl)	and	X2=L2()eX1 
are subspaces of £2(). For any u E £2() we haveu E W'(fl. From this it follows 
that there exists a function v E W21 (Q) with u = Dv. Let u e X2 . Then, we have for 
all gEXi

fvgdf=O 
ft-i 

and, in particular, for any 1 E

f
vg i dcl = 0	 (5)


ci 
with  

g,(x) 
= (1 E, y,E R'41 \)	- 

Obviously, 91 E kerD(Q) fl £(). We assume that the set {yI}Ic is dense in Rn+l Q. 
Then we get for any y, 

fVgidczx=>:fei_vieigidclz 
= — > f ëjeivj_gi dc1 + > 

j ë
3 e2 v , g dI' 

= - j Dg i d 1 + j iv a9l dr, 

= J:avdr 

[ (x—y) - 
a = I	 vdr 

Jr IxYih 

= ('(rrtrv))(Y,) 

where tr v denotes the trace of v. Using equation (5) we get Fr(tr v) = 0 in R" 1 \ 
and it follows that tr y E imr fl W21 (r). Consequently, there exists a function 
h  W(l)flker15(1) with the property that trh = tr y . Taking the function w = v - 
h E W21 (Q) we get that 17W . E (W(Q)). The result now follows from u = v = DwI 

Remark 1. The decompositions of the space £2 (1) define the complementary or-
thoprojections

o 
Q: £2 (Q) '-

and
P: £2()	kerD() fl £2(Z) 

Q: £2()	D(W)).
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It is easy to see that Q = I - P and iQ = I - F. Furthermore, the projction P is 
the Bergman operator. We have to remark here that there are other approaches to the 
Bergman operator which do not use the decompositions (3) and (4) for the definition and 
representation of P We refer to. [1, 3] where the authors proved integral representation 
formulae of P in some special cases with explicitly known kernel functions. In the paper 
[12] integral representations of the Bergman operator are contained, based on derivatives 
of the Green function with respect to the Dirichiet problem for the Laplacian. This line 
of consideration is devoted to the study of more general properties of the kernel function 
and of the Bergman projection. Using the representations from [12] results concerning 
the singularities of the kernel function and its behaviour near the boundary are possible 
as well as a first description of the operator -algebra generated by P. 

For more information about these topics and general Clifford analysis see [1, 4 - 7] 

3. Definition and properties of the generalized H-operator 
Starting with his generalization of the complex T-operator in [13] SpröBig proposed the 
following definition of a hypercomplex analogy of the complex fl-operator. 

Definition 1. The operator II defined by 
Hf =DTf 

is called generalized fl-operator.. 

This operator acts from C'l) into C(1l) (0 < a 1 )1 131 . Applying the definition 
of the T- and the D-operator we get an integral representation formula for the H-
operator.	 V	 . 

Theorem 2. Assume that f E C() (0 <a < 1). Then 

1	(n-1)+(n+1)2 -	1—n 
(Hf)(z) = -- 

j	-	
f()d + 

+j
f(z)	(6) 

holds. 

Proof. Using [10: Chapter IX/71 we get for f E C a (Q) (0 <a < 1; k = 0,. . . , n) 
the equation

ô f (Z) - f()  
; - j11 le—zI'	V 

ë+ (n + 1)(k - Zk)	
f()d - wf(z 

because  

(e-z) ..	ek+(fl+)(ekZk) 

	

OZk ie - Z I' + ' -	 - 

and	 S 

I

(e Z)	 i4
cos(r,zk)dS=w---. 

Ie — z I	 n+1 
From this we obtain our representation formula by summation over k U
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Remark 2. Obviously we get from this representation formula that II is a strongly 
singular operator of Calderon-Zygmund type. 

Remark 3. In the case of n = 1 this hypercomplex fl-operator coincides with the 
usual complex fl-operator 

Hh(z)= —Tflh ( z ) =	11 ),ded?l	t	 S 

up to the factor two. 

Theorem 3. Assume that f E C°(f) (0 < a < 0). Then for the conjugate 
operator H of H

Hf = DTI 

holds.	 . 

Proof. Using our representation formula of the fl-operator and the definition of 
the conjugate operator we get

( 
1	(ri - 1) + ( ii + 1) _z) 2

 I_zl2 
f() dfZe + =	

-	 1+ 

with f e C"(Q) (0 <a < 1). Calculating DTf we have 

•	 P —e + (n + 1)(k - Zk (-z)
	 2 

DTf=>2ek(_i\J	
ei'	 fl+ k=O	"	'	 k=Ol 

7 (n—l)+(n+i)	
f()de+	n z). 

2	 1— 
—f( Ie_zItl + l	 .1+n 

From this we conclude Hf = DTf I 

Remark 4. In general the relation 

-	.	Hf=TDI 

is not true. 

If we look for applications of the generalized fl-operator, then we need its mapping 
properties within Sobolev spaces. Because we have that the II-operator is an operator of 
Calderon-Zygmund type we can apply the theory of Calderon and Zygmund. This means 
that first we have to look for the symbol of the H-operator. In the theory of singular 
integral operators the symbol is the main tool for investigating these operators. For the 
sake of brevity we use the same notations as in [10] . and we refer to this textbook for 
more information and the details. In our case the symbol of a singular integral operator 

(Af)(z) = af(z) + in k( - z) f() dllt



290	K. Gürlebeck and U. Kahier 

is defined by
= a + F(k)(9) 

where .F(k)(9) is the Fourier transform of k (C) = k( - z) (9 =	). Using the 
representation of the symbol by the characteristic t(9') = k )I(I'" with 9' =	we

get for the generalized 11-operator 

(9)	+ 
1+n

1	 1 
(9) =

is
i(O') in	

1	+ iir 
--sign Cos 7] dS9' 

L	Icos-yl 

where '1(9) is the symbol of the singular integral and S is the unit sphere in R. We 
denote by 7 the angle between 9 and 9' (in the Fourier transform). For the characteristic 

we have

tc(8)= 

Applying the theorem of Calderon and Zygmund [10: Chapter XI 9.11 we obtain the 
following 

Theorem 4. Suppose that 1 <p < oo and k E U{0}. Then 

H: W) W(1l) 

holds. 

By the help of the theory of Calderon and Zygmund we have that the norm of the 
11-operator is equal to the essential supremum of the absolute value of the symbol. That 
means we obtain

IHhI[c2(n),c201)J = supessl4(9)I. 

Or with other words if we use the representation of the symbol c1(9) =	+,6(0) by

the characteristic, then we get the estimate 

I(9)I 2 = i
s'

(9) Iln 
C0S71 + 

1sign cos] dS 

jk(9)I2 ln1 l 1+
 sign Cos 7dSw 

(IS k(9)I dS). 
(is

ni  _
càI + 

sign cos dS) . w 

(L K(0) 4 ds) C4
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with some constant c4 (see below), where

I 

(is dS)	 dS <(fhn_1+n+i24	
2 

) 

1 
1

I f(n_1+n+1)4ds) 

4n 2 

3. 
WI 

From this we obtain an estimate of the norm of the generalized H-operator in the form 

n — i
+

 2n 
1-i-n	1	 (7) 

where
/  

1	z Sir	
4 \I ii 

C4	I I in	+ —sign cos dS9. 
\Js	Icos7I	2 

is a constant. We remark that in the case of C O32	IHI we can calculate the integral 

(fS 

I"(°)I dS) 2 exactly. So we get 

(1	 2 if(0)14 dS"1 (10 " 10"10 If(9)I sin 2 sin 2 d 3 d 2 d1) \JS	I
I (IT (6sinço i +4sin(3i i )) 2 sin 2	2 

7r 
3

ir7	 d9i2di) 

or for our norm estimate

S.	 R(0)i <	
2 FN^f2 6 . c 

For further details see [8]. Notice that Theorem 4 remains true in the case of 92 = RT1+. 

Theorem 5. Suppose that f E W(f) (1 <p < co). Then 

DHf=f ...	(8) 
ilDf=f —Frf •'.	(9) 

Frill = (TT - T)f (10) 
(DH - liD)! = DFrf (11) 

Fr HFrf =fl rf (12) 

hold.	 S
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Proof. For the proof of (8) - (12) we have always in one line 

DHf = DDTI = DDTI = Dl 

HDITDI=D(I—Fr)f=Df—DFrf 

Fr ill = (I - TD)T1 = DTf - TDDTI = (TT - 
(Dil - flD)f = ( - + Fr)f = DFrf 

FrflFrf = (DT - TD)(I - T D)f = DT(I - T D)f = HFrf 

and the proof is finished I 
From equation (8) we obtain the following important mapping property of the gen-

eralized 11-operator. 

Proposition 1. The relation 

11: 

13 true. 

In terms of the orthoprojections we obtained H: imP '- imP. From equation (9) 
and Fj'u = 0 for any function u E W() we get the following 

Proposition 2. The relation 

H: D(Wl)) 

is true. 

Proposition 2 means that	- 
II: imQi—+imQ. 

Therefore, the Bergman operator preserves the orthogonal decomposition of 'C 2 (Q) in 
a certain sense. More exactly, decompositions generated by D are transformed into 
those generated by V. In 111] the authors study the 5-problem for quaternionic-valued 
functions. They prove the existence and a representation formula of the solution using 
the subspaces im

p and kerP, respectively. In [7] the orthoprojection P is used to 
solve second order boundary value problems of Dirichlet's type. Therefore, from the 
present point of view it seems to be advantageous to preserve the mentioned invariance 
properties also in the class of problems connected with applications of 11. 

Using the same ideas we can obtain similar results for II, namely we have the 
following 

Remark S. Again investigating the above mapping properties for the conjugate 
operator H we get	 -	- 

U: im p imp 
II: imQ —+imQ. 

• The complex II-operator is a unitary operator for special domains (see, e.g., [15]). 
Investigating the hypercomplex II-operator we get the following connection between the 
11-operator and its conjugate operator H.
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Theorem 6. Suppose I E W(Q) (1 <p< 00; k E). Then we have 

HHf = DT DTf = D(I - r)Tf = I - DFTf 
11Hf = DTDTf = D(I - Fr)Tf = f - DFrTI. 

The first part of this theorem was proved by Spr6l3ig in the case of Holder-continuous 
functions. 

Corollary 1. The relations 

iIf=f	for all fEimQ 

Hflf=f	for all fEiraQ 

hold.

Proof. From fEimwe get trTf=o and feimq implies trf=o 
The following formula for functions I E W() (k E, 1 <p < oo) is also of some 

interest for the invertibility of 11 in case of bounded domains. 
Corollary 2. Suppose f E Wl) (k e, 1 <p < oo). Then 

TDHIII=TDf 

holds. 

Proof. Let f E W(l) (k E; 1 <p < 00). Then we obtain TDDTTTf = TDf 
by the help of equation (2)1 

Now let Q be the whole	Then the following theorem was proved in [13]. 
Theorem 7. Let f E C000(R1). Then'  

HHu=HiTu=u 

holds. 

Using this theorem and (7) we get a result for the invertibility of H defined on a 
class of functions containing essentially more than in the above theorem. 

Proposition 3. Suppose u € £ 2 (R"). Then 

holds. 

Proof. The proof follows from the fact that C'°(R'') is dense in £2(R+') and 
from the boundedness of H as an operator from £2(R '+' ) into £ 2 (RY') I 

Now, let us discuss the case of Sobolev spaces W(Q) (k €). Moreover, for a given 
operator A we denote by A* the £2 -adjoint operator with respect to our scalar próduèt 
(1).
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Theorem 8. Assume u,w E W(l) (IcE). Then 

(llu,v) = (u, Dv)	 - 

holds. 

For the proof we make use of T* = —T and D* —D. Taking this theorem we can 
put a representation of the £2 -adjoint operator fl, in a special case. 

Proposition 4. Let I E W(l) (k E). Then 

11sf =TDI. 

holds. 

Applying this result we obtaiii that in this special case fl, is a left inverse of the 
generalized fl-operator. 

Proposition 5. We have
fl*fl 

for all u E W2 (Q) and k E. 
o 

Proof. Let u,vEW() (k E). Then 

(fl*Huv) = (Tu,v) = (u,DTv) = (u,v). - 

for all v E W(cl) from which flflu = u follows U 

Considering the whole space R' +1 and using the fact that the spaces 
(k E) are dense in £2 (R + l ) we can derive from Proposition 3 an expression of the 
£2 -adjoint operator in the case of £2 (R +l) 

Proposition 6. Suppose u E £2(W1+). Then 

fl*u flu 

holds. 

We see from Propositions 3 and 6 that 11 £2(R') - £2 (R'') is a unitary 
operator. Therefore, we get from this proposition a property important for applications 
of the hypercomplex fl-operator. 

Proposition 7. Let u,vE £2 (R''). Then 

(flu,Hv) = (u,v)	and	II Hu Ilc2(Rn+ 1 )	IIuIk2)+i 

• hold.	 • •
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4. Application of the H-operator to the solution of a• 
hypercomplex Beltrami equation 

oindent In complex function theory the Beltranii equation plays an important role 
for solving systems of partial differential equations. In hypercomplex function theory the 
Beltrami equation has not yet this importance, but nevertheless, it is a basic condition 
for the transfer of complex methods and efforts for solving partial differential equations 
to the hypercomplex case. In this section we willsee how this equation can be solved 
using our generalized 11-operator. 

Let ci c R'' be a bounded, simply connected domain with a sufficiently smooth 
boundary, and q: ci —, U0, ,, a measurable function. Moreover, let w: ci '- Ceo,,, be a 
sufficiently smooth function. Then we call the equation 

Dw=qT!5w	 (13) 

generalized Belirami equation. Applying the ansatz 

w=4+Th 1 (14) 

where 0 is an arbitrary left-monogenic function we transform the equation (13) into the 
integral equation

h = q ( + Hh). (15) 

Obviously, w is a solution of equation (13) if h is a solution of equation (15). On the 
other hand each solution of equation (13) can be represented by (14). Investigating the 
norm of the operator qil we have that in the case of 

1 
IIII	— 

11111 

this operator is contractive. That means we can get a solution of equation (15) using 
the Banach fixed-point theorem(the other conditions of the Bà.nach fixed-point theorem 
can easily be verified). Applying our norm estimate (7) for the generalized II-operator 
we get the condition	S 

IIqIl2(c),c2(c)J	
1 

=' n+1 

being sufficient for the existence of a solution of equation (15). We only remark that in 
the case of the complex Beltrami equation we have the condition IIH !^ li qoll < 1. 

In [9) we can find another hypercomplex generalization of the complex Beltraini 
equation. For this we have to introduce the real linear mappings J3 : Ceo,,, i—i Cr0, ,,, by 

Ji (ei ) = E-j	and	J3 (ek )=ek	(k,j=1,...,ri; kj). 

Especially define the mapping

Jo: Eakek
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Let A =	 with O< a, <	< &	n, JA = Jo 1	J0, a composition 
of mappings J, and J0 the identical mapping. Using these mappings we can represent 
each real linear mapping L: Cto , , — C4, in the form 

L(x) =	CAJA(X) 

with suitably chosen hypercomplex coefficients CA E ce0, where A c {0,... , n} [6]. 
Let QA = (Q1A,.. . , Qn.) be arbitrary vector functions mapping Q into the space 

= ce01 x	x UO , n. Then the equation 

Dw 
=	

-< QA; V ±' JA W > 

with V = defined as a formal vector and -.< >.- standing for the 
Euclidian scalar product is a generalization of the complex Beltrami equation. This 
generalization is not a direct generalization, i.e. unlike the generalized Beltrami equation 
(13) we do not get the usual Belt ram equation in the case of C 01 = C, because the 
differentiation with respect to zo is not in V. On the first view we can think that 
there is not a great difference, but to solve this equation we have to introduce a new 
generalization of the 11-operator, a generalization which acts between spaces of vector 
functions where the components are Clifford-valued functions [9]. 
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