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On a
Spatial Generahzatlon of the Complex H-Operator

K Gurlebeck and U. Kahler

Abstract. The [-operator plays a mayor role in complex analysis, especially in the theory of
generalized analytic functions in the sense of Vekua. The present paper deals with a hyper-
complex generalization of the complex II-operator which turns out to have most of the useful
properties of its complex origin such as mapping properties and invertibility. At the end an
application of the generalized Il-operator to the solution of a hypercomplex Beltrami equation
will be studied.
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1. Introduction

As it is well-known, there are close connections between Complex Analysis and the
theory of partial differential equations. Using functional analytical methods many re-
sults of classical function theory can be applied for solving partial differential equations.
Often the transformation of partial differential equations into integral equations is the
starting point for such methods. The most important integral operators in this part of
complex analysis are the so-called T- and II-operator introduced by Vekua [15]

In multidimensional complex analysis many of these methods and efforts are lost
One of the most important reasons is the fact that in the theory of several complex vari-
ables there are no “good enough” analogies of the complex differential operators a_ and

. That means these analogles have not the property to factorize the Laplacian. But,

good” elliptic analogies of 2 3; and aa_ exist in another generalization of one-dimensional
complex analysis, namely, in the Clifford analysis. The hypercomplex Cauchy Riemann
operator has most of the propertles of its complex origin.

For spa.tla.l genera.llzatlon of Vekua’s theory we have to generahze the integral ope-
rators used by Vekua. Till now, only one of these two operators, the T-operator, was
systematically applied in generalized form (7, 13, 14]. It is not so well-known that
SpréBig studied not only a generalization of the T-operator but also of the [I-operator
(13].
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This paper deals with this hypercomplex II-operator in the following generalized
II-operator called. Starting from the results of [13] we study the II-operator in Sobolev
spaces. We prove an integral representation formula, continuity, invertibility, norm
estimations, and some algebraic properties. An essential result for applications to the
solution of boundary value problems is the description of the interaction between I and
the Bergman projection onto the L,-space of monogenic functions. The application of
this generalized II-operator to the solution of a hypercomplex Beltrami equation shall
only be sketched because this area of Clifford Analysis is still mainly undiscovered.
But first steps have demonstrated that it seems to be possible to generalize not only
the complex theory of generalized analytic functions by Vekua but also the complex
methods for solving nonlinear systems of partial differential operators by Tutschke.

2. Preliminaries

Let el.,. ..,€en be an orthonormal basis of R®." The Clifford algebra C¥¢ , is the free
algebra over R™ generated modulo the relation '

z? = —|z{%e

where eg is the identity of CZO n. These a.lgebx;a.s were introduced by Clifford in 1878
[2]. We remark that in the case of n = 1 the algebra C¥p , is 1somorph|c to C. For the
algebra Cfy,, we have the multiplication rule

e;ej + eje; = —26,-}~e0 ) (Z] = 1,...,77.)

where §;; 1s the Kronecker symbol Taking thls rule we get a ba31$ of thls algebra in the
form -

{eA}AC{l n}

withes =e; - -e;,,e3 =€ (1=1,...,n)and ey = eo. Each element of the algebra
C¥,, can be represented in the form

where z 4 are real numbers This a.lgebra has the dimension 2" The elements of the
Clifford algebra. are called Clifford numbers. If the set A contains k elements, then we
call e4 a k-vector. Likewise, we call each linear combmatlon of k vectors a k-vector.
The vector space of all k-vectors is denoted by /\ R". Obv1ously, C¢y,n is the direct
sumofa.ll A R" for k < n. By

H'|

S e
AC{L,..n}
where €4 = €;, ---&;, and &; = —e,; (j =1,...,n) we define a conjugate element.

In the followmg we identify the Euclidian space R"*! with the direct, sum
/\ R™ @ A' R". "For all what follows let & C R™! be a domain with a sufficiently
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smooth boundary T' =. 99Q. Then functions f defined in  with values in C¢; , are
considered. These functlons may be written as

) =S eh(s)  (seq).
k=0

Properties such-as continuity, differentiability, integrability, and so oi'l, ‘which are as-
cribed to f have to be possessed by all components fx(z) (k = 0,..:,n). In this way
the usual Banach spaces of these functions are denoted by C* , Lp a.nd W" In the case
of p = 2 we introduce in £2(Q) the C@o a-valued inner product

(wo)= [ a(c>v(e)daf. ) )

We now define the generalized Cduchy-Rjemann operator by

n
= E e —
k=0

For this operator we have that o :
DD=DD=A (2)
where A is the Laplacian and D = > k=0 é"a_?:. is the conjugate Cauchy-Riemann
operator. A sufficiently smooth function f : Q = Cly n is said to be left-monogenic if it

satisfies the equation (Df)(£) = 0 for each £ € Q. The Cauchy-Riemarnn operator has
a right inverse in the form

@) =~ / L9 zl,,+,f(6)d95 . e®)

where E(§,z) = L]%L:I%r is the generalized Cauchy kernel and w stands for the

surface area of the unit sphere in R"**. This operator acts from W}(Q) to Wi+(Q)
with 1 < p < co and k € U{0} (see [7]). We remark that for n = 1 we get from this
definition the complex T-operator Co S

Toh(z) = -%//Q %d{dr} (z€Q)

.

up to the factor two

Introducmg the bounda.ry mtegra.l operator

(Frf)e) = L lf lnl,a(s)f(o«ﬂ‘s (zotinT)

where a(€) is the outward pointing normal unit vector to T at the pomt £, we get ‘the
well-known Borel- Pompelu formula . : .

(Fef)(z) + (TDf)z) = £(z) (zéfz).
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Obviously, DFr f = 0and FrTf = 0 hold. In [7] it is proved that Fp acts from W,, > ()
into W5 () (1 <p<oo;k€).

Notice that above all our integral operators will be defined in spaces of Hélder-
continuous functions. It is possible to extend these operators to Sobolev spaces in
the classical way be approximation (with Hoelder-continuous functions). We omit the
detailed discussion here. We remark that then all the referred formulas have to be
understood in the generalized sense.

Taking the traces of Fr f we introduce the projections

(A=) = lm (Fef)E)

(€N, el

(Qrf_)(z)'— lim  (=Frf)E).

gen'\+l\n €l

Pr is the projection onto the space of all Clifford- va]ued functions whlch may be left-
monogenic extended into the domain Q. Qr is the projection onto the space of all
Clifford-valued functions which may be left-monogenic extended into the domain R™*1\

Q. For these projections QrPrf = PrQrf = 0 holds for all f (for further details see
[7]). For an integral operator _ \

(AN) = o) + [ HE- 1% (zeD)
where a € CEQ’,‘ we deﬁné a conjugate operator A by o

AN = of)+ [ ME-D/Od%  (z€9)
In the same way we define for a boundary integral operator
() = af(e) + [ K€~ 2)al©) FO) T
a conjugate operator by 1 R
(A f)(e) = af(e) + [ FE=2) o) S(6) dTe.
It will be clear from the context whether z € Q or 2 € I'.

For this paper we also need the following decompositions of the space L2(€2).
Theorem 1. The right Hilbert modul [:2(9) allows the orthogonal decompos;tmns

£2(9) = ker D(Q) N L3(Q) & DOV} (R)) (3)

L2(92) ker D(Q) N L2(Q) & D()'V2l () (4)
with respect to the inner product (1).

For the idea of the proof we refer to a proof of a similar theorem in [7 Theorem 3 1]
made in the case of the Dirac operator. Besides we will only prove the decomposition
(3), because the proof of (4) is analogous to that of (3).
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Proof of Theorem 1. The right linear sets
X, = ﬁz(Q) N ker D(Q) and Ay = CZ(Q) e X,

are subspaces of £2(2). For any u € £2(f2) we have Tu € W} (). From this it follows
that there exists a functlon v € W3(Q) with u = Dv. Let u € A3. Then, we have for

a.ll g€ X
f ' h / Do gdQ =
and, in particular, for‘ any [l €
/ Do g1d = 0 (5)
Q
with
(z—w)

9@ = T (1€, weR™\Q).

Obviously, g1 € ker D(Q) N £2(Q) We assume that the set {yi}:c is dense in R"*!\ Q.
Then we get for any y;

/Dvg,dn Z/e.a v;je; g1dQ;

-

3,7=0
= - Z/e,e,v,(9 q1d2, + Z/e,e,v,o:.gzdl1
1,7=0 t,7=0

—/f)Dglsz-f-/t_}agldF,
Q r
=/§1&vdr‘z

r

=/FM&“{F:

|z — yi"*?

= w(Fr(trv))(yr)

where tr v denotes the trace of v. Using equation (5) we get Fr(trv) = 0 in R**'\ @

and it follows that trv € imPr N W;(I‘) Consequently, there exists a function
he )'V2 () Nker D(2) with the property that tr A = trv. Taking the function w = v —

he W2 () we get that Dw € D(W2 (R)). The result now follows fromu = Dv=Dw il

Remark 1. The decompositions of the space £,(f2) define the complementary or-

thoprojections _ L
P: £2(92) — ker D(2) N L2(R)

Q: £2(Q) —» D(W(Q))

and

P: £2(Q) — ker D(Q) N L2(R)
. £2(Q) — D(W3(Q)).

O
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It is easy to see that Q = ] — P and Q = I — P. Furthermore, the projection P is
the Bergman operator. We have to remark here that there are other approaches to the
Bergman operator which do not use the decompositions (3) and (4) for the definition and
representation of P- We réfer to.{1, 3] where the authors proved integral representation
formulae of P in some special cases with explicitly known kernel functions. In the paper
[12] integral representations of the Bergman operator are contained, based on derivatives
of the Green function with respect to the Dirichlet problem for the Laplacian. This line
of consideration is devoted to the study of more general properties of the kernel function
and of the Bergman projection. Using the representations from [12] results concerning
the singularities of the kernel function and its behaviour near the boundary are possible
as well as a first description of the operator-algebra generated by P.

For more information about these topics and géheral Clifford analysis see [1, 4 - 7).

3. Definition and properties of the generalizedl H-operator
Sta.rtmg with his generalization of the complex T-operator in [13] Sproﬁlg proposed the
following definition of a hypercomplex analogy of the complex II-operator.
Definition 1. The operator II defined by
If =DTf
is called generahzed I1-operator.. )

This operator acts from C*(9) mto C"(Q) 0<a<l) [13] Applying the definition
of the T- and the D-operator we get an 1ntegra.l representatlon formula for the II-
operator.

Theorem 2. Assume that f € C*(Q) (0 < « < 1) Then

(= 1)+ + DT
@) = - [ T A a8+ {1 1() (6)

holds. T
Proof. Using [10: Chapter IX/§7] we get for f € C*(Q) (0<a<1;k=0,...,n)

the equatnon

(EDIPPN
azk/ = |"+1f (6) df2e.
_"/ S+ (n 4+ 1)(E — 20 (£

Q

]_Ff(f)dﬂe —w——f( )

T A
because o
o [ =2 ] _—ek+(n+1)(£k-zk)f‘—%
zk [I& - z|,,+,] N € — 2|+
and ’ '.
s (é_ I)cos(r 2x)dS —wn(:’fl.

From this we obtain our representation formula by:summation over & i
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Remark 2. Obviously we get from this repr;sentation formula that II is a strongly
singular operator of Calderon-Zygmund type.

Remark 3. In the case of n = 1 this hypercomplex II- operator comc1des with the
usual complex ITI-operator

Moh(z) = i:rnh(z) % //Q %H{dﬂ '

up to the factor two.

Theorem 3. Assume that f € C°(2) (0 < a < 0) Then for the conjugate
operator 11 of I
ﬁf = DT f

holds.

Proof. Using our representatlon formula. of the II- operator and the definition of
the conjugate operator we get

n—1 n (&- ')
@) )———/( )+( b )Wf(ﬁ)dﬂﬁ

- z|n+1

—1(2)

with f € C*(Q) (0 <a < 1). Ca.lculatihg DT f we have

— n — n+1 _ (£-2) no
DTf—Zek (_l)/n ex + (n+ 1)(é k)wf(f)‘ms**zni £

w = +1

___/ (n—l)+(n+ )ﬁ;

—z|n ) = f(£) d%% +

f(Z)

From this we conclude ITf = DTf [
Remark 4. In general the relation

IIf =TDyf

N Al
is not true.

If we look for applications of the generalized II-operator, then we need its mapping
properties within Sobolev spaces.: Because we have that the II-operator is an ‘operator of
Calderon-Zygmund type we can apply the theory of Calderon and Zygmund. This means
that first we have to look for the symbol of the IT-operator. In the theory of singular
integral operators the symbol is the main tool for investigating these operators. For the
sake of brevity we use the same notations as in [10]-and we refer to this textbook for
more information and the details. In our case the symbol of a singular integral operator

(Af)(z) = af(z) + /n KE - ) F(E)d%
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is defined by
B(6) = a + F(£)(6)

where F(k)(9) is the Fourier transform of k(C) = k(E-2) (6 = I;_I) Using the
representation of the symbol by the characteristic x(6') = k(¢)|¢|™*! with §' = TET we
get for the generalized Il-operator .

&(6) =

F ' 1 i, .
(6) = /; (6") [ln m +.—2—51gncos 7] dSy

where ®(8) is the symbol of the singular integral and S is the unit sphere in R**1. We
denote by « the a.ngle between 6 and 6’ (m the Founer tra.nsform) For the characteristic
k(8) we have

x(6) = %((n ~1) +(n+ )F°).

Applying the theorem of Calderon and Zygmund [10: Chapter XI 9.1] we obtain the
following

Theorem 4. Suppose that 1 < p < oo and k € U{0}. Then
I: W) - WEQ)

holds.

By the help of the theory of Calderon and Zygmund we have that the norm of the
II-operator is equal to the essential supremum of the absolute va.lue of the symbol. That
means we obtain

Il (@), ca0) = supess|&(6)].

Or with other words if we use the representation of the symbol $(8) = }== T+ &(6) by
the characteristic, then we get the estimate

2

z ' 1 i '
&) = — 4 s 7
1 )I_ '/sn(g) [h] | cos | ZSlgn co® ]dS

< [ Iw@)F|in —
(/ I(6)[* dS> (/ |1n|cos7| = sign cos1| ds)l ‘w
< (/5|~(e)|4d_s>' eq-w

; 2
+ zsign cos’yl dS ‘w
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with some constant ¢4 (see below), where

(mew¢g%g(ﬁ qa)%
< (‘%/S(n—]+n+l)4d5‘)%

4n?

w2

(n=1)+(n+1)8

w

<

From this we obtain an estimate of the norm of the generalized Il-operator in the form

n—1 2n,/cq

II <
I1Tlli2a(0),cay < Tt "

. i
Cqy = / 1 dSa'

is a constant. We remark that in the case of Cly2 = H we can calculate the integral
(Js I=(0)[* dS)l/2 exactly. So we get

(7)

where

1 + T,
n—— + —sign cos
lcosy| = 2 & 7

(Lo dS)% -([[ / 7 L)1 sin? g sina dips dipy a)

1
L (65in<p1 +4sin(3gp1))zsin(p2 :
= / 7 dypz dpy
o Jo m . ‘
V26
—_ =
or for our norm estimate
' 1 21/26
[2(8)] < 5t - 4

For further details see [8]. Notice that Theorem 4 remains true in the case of @ = R™*!.

Theorem 5. Suppose that f € W)(Q) (1< p< oo). Then

DIIf = Df L ®

IDf=Df-DFrf - (9)

FrIIf = (DT - TD)f (10)
(DO - 1ID)f = DFyf (11)
FrlIFrf =NFrf ’ o (12)

hold.
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Proof. For the proof of (8) - (12) we have always in one line:

DIif = DDTf = DDTf = Df
NDf =DTDf =D(I - Fr)f =Df - DFrf
Frlif = (I = TD)DTf = DTf — TDDTf = (DT — TD)f
(DI - 1D)f = (D - D + DFy)f = DFrf
FrlIFy f = (DT - TD)Y(I - T D)f = DT(I - T D)f = IFf
and the proof is finished B

From equation (8) we obtain the following important mapping property of the gen-
eralized Il-operator.

Proposition 1. The relation
I1: ker D(2) N L2() — ker D() N L,()
i3 true.

In terms of the orthoprojections we obtained I : im P + im P. From equation (9)
and Fru = 0 for any function u € W;(Q) we get the following

Proposition 2. The relation
IT: DOV} (Q)) — DOV} ())
is true. T '

Proposition 2 means that _
: I:imQ~ imQ.

Therefore, the Bergman operator preserves the orthogonal decomposition of £3(2) in
a certain sense. More exactly, decompositions generated by D are transformed into
those generated by D. In [11] the authors study the J-problem for quaternionic-valued
functions. They prove the existence and a representation formula of the solution using
the subspaces imP and ker P, respectively. In [7] the orthoprojection P is used to
solve second order boundary value problems of Dirichlet’s type. Therefore, from the
present point of view it seems to be advantageous to preserve the mentioned invariance
properties also in the class of problems connected with applications.of II.

Using the same ideas we can obtain similar results for I, namely we have the
following

Remark 5. Again 1nvest1gatmg the above mapping properties for the conjugate
operator II we get

I: 1mP — imP
MI:imQ—imQ.
- The complex II-operator is a unitary operator for special domains (see, e.g., [15}).

Investxgatmg the hypercomplex II-operator we get the following connection between the
II-operator and its conjugate operator 1.
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Theorem 6. Suppose f € WE(Q) (1< p< oo; k€). Then we have

MNf = DT DTf = D(I - Fr)Tf = f - DFrTf
NIf = DTDTf = DI — Fy)Tf = f - DFvTS.

The first part of this theorem was proved by Spréfig in the case of Holder-continuous
functions.

Corollary 1. The relations

Mf=f foraifeimQ
I f = f forall f €im Q
hold.
. Proof. From f € imQ we get tr Tf =0 and f € im Q implies trTf=0.8

The following formula for functions f € W"(Q) (ke,1<p< oo) is also of some
interest for the invertibility of IT in case of bounded domains.

Corollary 2. Suppose f € Wi(Q) (k€,1< p< o). Then

TDUNf=TDf
holds.

Proof. Let f € WX(Q) (k €; 1 < p < o). Then we obtain T DDT Tf=TDf
by the help of equation (2) il

Now let §2 be the whole R™*!. Then the following theorem was proved in [13]
Theorem 7. Let f € C°°(IR"+‘) Then'

My = OITu = u

holds. ‘ ‘ ' -

Using this theorem and (7) we get a result for the invertibility of II defined on a
class of functions containing essentially more than in the above theorem.

Proposition 3. Suppose u€ Cz(lR"“) Then
MMy = HHu =u

holds.

Proof. The proof follows from the fact that C°(R"*!) is dense in CQ(R"+1) and
from the boundedness of II as an operator from L(R™*!) into L(R™F1) 8

Now, let us discuss the case of Sobolev spaces W2 (2) (k €). Moreover, for a given
operator A we denote by A* the £;-adjoint operator with respect to our scalar product

(1.
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Theorem 8. Assume u,w € W2 () (k€). Then
(114, v) = (u, TDv)

hold.s

For the proof we ma.ke use of T =-T a.nd D* = —D. Taking this theorem we can
put a representation of the £;-adjoint operator II* in a special case.

Proposition 4. Let f € Vi’f(ﬂ) (k €). Then
*f =TDf. -

holds.

Applymg this result we obtain that in this special case II* is a left inverse of the
generalized II-operator.

Proposition 5. We have:
M*u = u

for allu e V{’cf(Q) and k €.

Proof. Let u,v € )'{12"(9) (k €). Then
(I*Nu,v) = (T Du,v) = (v,DTv) = (u;v), -

for all v € VOV; (9) from which II*Iu = u follows il

Considering the whole space R™*! and using the fact that the spaces W5(R™*!)
(k €) are dense in L2(R™*!) we can derive from Proposition 3 an expression of the
L2-adjoint operator in the case of Lo(R"*1) .

Proposition 6. Suppose u € Lo(R™*!). Then

My = Mu-
holds.

We see from Propositions 3 and 6 that IT : L(R™*') — L3(R"™*?) is a unitary
operator. Therefore, we get from this proposition a property important for applications
of the hypercomplex II-operator.

Proposition 7. Let u,v € L2(R"!). Then
© (Mu,Mv) = (u,0) ~cand  ||Tuljg,me+y = Hlullcymny
". hold ‘ . : .
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4. Application of the IT-operator to the solutlon of a
hypercomplex Beltrami equation -

oindent In complex function theory the Beltrami equation plays an imp.brta.nt role
for solving systems of partial differential equations. In hypercomplex function theory the
Beltrami equation has not yet this importance, but nevertheless, it is a basic condition
for the transfer of complex methods and efforts for solving partial differential equations
to the hypercomplex case. In this section we will see how this equation can be solved
using our generalized II- -operator.

Let £ C R**! be a bounded, snmply connected domain with a sufﬁc1ently smooth
boundary, and ¢ :  — C¢ . a measurable function. Moreover, let w : Q — Cély,n be a
sufficiently smooth function. Then we call the equation

Dw = q Dw (13)
generalized Beltrami equation. Applying the ansatz
w=¢+Th o (14)

where ¢ is an arbitrary left-monogenic function we transform the equation (13) into the
integral equation

h = q(Dé +IIh). o (15)

Obviously, w is a solution of equation (13) if A is a solution of equation (15). On the
other hand each solution of equation (13) can be represented by (14). Investlgatxng the
norm of the operator gII we have that in the case of

llell <
IIHII

this operator is contractive. That means we can get a solution of equation (15) using
the Banach fixed-pcint theofem (the other conditions of the Banach fixed-point theorem
can easily be verified). Applymg our norm estxmate (7) for the generalized II- operator
we get the condition

1

n—1 2n./cq4

”q‘”[[,:(f_)).ﬂz(n)] s
n¥l + wlle

being sufficient for the existence of a solution of equation (15). We only remark that in
the case of the complex Beltrami equation we have the condition ||g|| < llgo]| < 1.

In [9) we can find another hypercomplex generalization of the complex Beltrami
equation. For this we have to introduce the real linear mappings J; : Cfg ,, — Céo n, by

Ji(e;) = &; and Ji(ex) =ex . (k,g=1,...,n; k#3).

Especially deﬁne the mappmg

. zakek - z ,
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Let A = {al,.i..,a.'} with 0 € a; < ... < a; £n,Ja = Ja, - Jo, a composition
of mappings J; and Jp the identical mapping. Using these mappings we can represent
each real linear mapping L : Cly n — Cly » in the form

'

L(z) = ) cala(z)

A

with suitably chosen hypercomplex coefficients c4 € Clp n where A C {0,...,n} [6).

Let QA = (QM, .,@na) be arbitrary vector functlons mapping mto the space
Cly . = Clyn x -+ x Cly n. Then the equation .

Dw = Z < Q-‘A;VfJAw >
A

with Vz = (8:1 ooty B ) defined as a forma.l vector and < -;- > standing for the
Euclidian scalar product is a generalization of the complex Beltrami equation. This
generalization is not a direct generalization, i.e. unlike the generalized Beltrami equation
(13) we do not get the usual Beltrami equation in the case of C¢; = C, because the
differentiation with respect to zo is not in Vz. On the first view we can think that
there is not a great difference, but to solve this equation we have to introduce a new
generalization of the II-operator, a generalization which acts between spaces of vector
functions where the components are Clifford-valued functions [9].
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