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On Measures of Non-Compactness in Regular Spaces

N. A. Yerzakova

Abstract. Previous results on non-compactness obtained in [11-13] are extended to regular

spaces of measurable functions, and new criteria for the u-compactness of sets and operators

are proved. An application of the abstract results to elliptic boundary problems is given as

well. i

Keywords: Regular spaces, measures of non-compaciness, measures of non-equiboundedness,
Lebesgue spaces, Sobolev spaces, embedding operators, elliptic boundary value prob-
lems

AMS subject classification: 47 H(09, 46 E 30, 46 E 35, 47B 07, 47 B 38

1. Introduction

Let Q be some subset of R™ and p a non-negative continuous measure on a o-algebra
of subsets of {2 such that x(Q) < co. Throughout this paper, Pp denotes the operator
of multiplication by the characteristic function of a measurable subset D C Q .

Definition 1 (see [5, 14]). A Banach space E of measurable functions is called
reqular if

(a) llzlle < llylle for all y € E and measurable function z with_ lz(t)| < |y(t)|

(b) limy—o || Pp, z|| = 0 for every z € E and decreasing sequence of measurable
sets {Dn} with empty intersection.

is fulfilled.

Remark 1. It is'well-known (see [5, 14]) that all Lebesgue spaces, Lorentz spaces
and Orlicz spaces whose generating N-function satisfies a A,-condition are regular
spaces. . _ A TR

Definition 2 (see 5, 14]). A set U in a Banach space E of u-measurable -func-
tions is called p-compact if it is compact in the topology induced by u- convergence, ie.
convergence in the measure u.

Definition 3 (see [1,9]). Given a bounded subset U of a normed space E the
(Hausdorff) measure of non-compactness xg(U) = x(U)'is defined as the mﬁmum of all
€ > 0 such-that there exists a finite e-net for U in E.
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Definition 4 (see [1, 9]). Let E and G be Banach spaces. The upper x-norm of a
bounded linear map A : E — G is defined by

|A]|) = inf {k > 0‘ xc(A(U)) < kxg(U) for every bounded U C E}.
Remark 2. In [6] the equality ||A]|X) = x(AS) was proved, where S = S(E) =
{z € E :||z||g = 1} is the unit sphere in E.

We denote the measure

v(U) = limsup sup |Ppullg 1)
#(D)—0 ue ' '

for U C E, where E is a regular space.

Remark 3. The characteristic (1) was introduced and studied for Lebesgue spaces
E in [10] and, independently, in [3] (see also [4]). For regular spaces E the characteristic
(1) was considered first in [2].

A bounded subset U of a regular space E is compact if and only if it is u-compact
and v(U) = 0. Check of u-compactness presents a real challenge. In this paper we shall
propose a necessary and sufficient criterion of u-compactness for all normed spaces of
p-measurable functions which can be embedded into the Lebesgue space. The criterion
is reduced to the equality v = x. The theory of measures of non-compactness has a lot
of applications. There exists a large amount of literature devoted to this subject (see,
e.g., (1, 9] and the references therein). - '

2. The results
We shall research a conjunction between the Hausdorff measure of non-compactness x
and the measure v defined by (1) for any sets and operators.

Lemma 1. The measure v has the following properties:

(@) v(U) < (V) sfUCV.

(b) v(UUV) =max{v(U),v(V)}.

(¢) v(U) = v(0), where U denotes the clo.sure ofU

(d) v(tU) = |t|v(U) for allt € R.

(e) v(convU) = v(U), where convU denotes the convez hull of U.

() v(U+V)<vU)+v(V), where U+V ={u+v: ueU andv eV}

(8) lv(U) — v(V)| < kdist (U, V), where dist (U, V) denotes the Hausdorff distance,
and the constant k does not depend on U and V.

(h) v(U) = 0 if U is relatively compact, but V(U) = 0 does not imply that U 1s
relatively compact.

Proof. The proof follows directly from the definition (1). and a well-known com-
pactness criterion in regular spaces (see, e.g., [14]) 11
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Lemma 2. Let U be a bounded subset of ¢ regular space E. Then v(U) < x(U).

Proof. For the unit ball B= B(E) = {z € E: ||z||g <1} in E we have v(B) = 1,
since || Ppz||z' Ppz € B for every measurable D C  and z € E. Let ¢ > 0. Applying
Lemma 1 to any [x(U) + €]-net C, = {cy,...,cm} for the set U we obtain

v(U) < v(Ce + [x(U) +€]B) < x(U) +¢

which proves the assertion ll

Let ug = uo(t) be a unitin E, i.e. a fixed non-negative function such that suppup =
suppE (see {14]), and T > 0. In what follows, we denote by [z]s,, 7 (z € E) the
truncation

(2]uo,7(t) = min {|z(t)], Tuo(t) } sgn =(t).

Lemma 3. Let U be a bounded and pu-compact subset of a reqular space E. Then
- x(U) £ Sle“g ”2: - [z]uo,T”E . (2)

and x(U) < v(U).

Proof. Let D(z,uo,T) = {t € Q: |z(t)| > Tuo(t)}. By [14: Theorems 1 and 3] we
know that
lim sup u[D(z,uo,T)] = 0. (3)
T—o0 zelU

Furthermore, for every T > 0 we have

lim sup sup ||PD[:1:],,°,T||E < hm sup T||Ppus|le =
u(D)—0 z€U D)—

Since U is p-compact, from [14: Theorem 15] it follows that the set {[z]u,,7: z € U}
is compact in E. Consequently,

x(V) < sup |z = [#luo.|| 5 < sup |1 Po(z o 1= &

which together with (3) proves the statement il
Combining Lemmas 1-3 we arrive at the following

Theorem 1. Let U be a bounded subset of a regular space E. Then v(U) < x(U),
and v(U) = x(U) if U is p- compact

We are now going to apply Theorem ltoa pa.rtxcula.rly 1mporta.nt class of regular
spaces.

Theorem 2. Let U be a bounded subset of LP(S2, /1) where L”(Q i) is the space of
u-measurable functions with the usual norm

\

lellm(n,u)=( / Izl’d#) 1<p<o)
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Then U 1s p-compact if and only if x(V) = v(V) for every V C U.

Proof. Let U C LP(Q, 1) and x(V) = v(V) for every V C U. We shall show that
U is p-compact. If x(U) = 0, the assertion is certainly true. So let x(U) =v(U) > 0.
Obviously, U is. u-compact if the set [Ulr = {[z]r : z € U} is p-compact for every

T > 0, where
' ) @IS T
lelr(t) = {0 if |z(2)] > T

Suppose that the set [U]r, is not u-compact for some T3 > 0. Then there exists a
sequence {zn} C U such that, for all n#m, .

: |z(t) — y(t)]
pllznlr;lzmln) 2 ¢ where p(z,y =/———-—d
and the constant ¢ is independent of n and m. By hypothesis, for the set V =
{r1,22,23,...} we have x(V) = »(V). Let 0 < € < x(V), and let {ci1,...,cm} be
a finite [x(V) + €]-net for V. For T; > T) large enough we get then

525121? ”PD(Z T2)C‘”LP(9,#) <e

where D(z,T) = {t € Q: |z(t)] > T}. Choose n # m such that, for{=norl=m
“PD(Ix,Tz)II“Lv(n,,‘) 2y(V)-e=x(V)-e¢

and ||z; — cillpr(a,0) S x(V) + ¢ for a suitable i € {1,...,m}. Consequently,

”[Iil'f‘z - C'”LP(Q u) — ”‘T’ Cillzv(ﬁ,#) .—‘”PD(”'T’)(ZI - Clj)”};"(n,#') te?
(V) +el” = [x(V) — 2] + €7
S k1€p. : .

From this we further obtain

zalrs = lemlzsll 5 a5 < ke

c < p([xn]Tl ) [zm]Tl) < p([IH]Tn [Im]T,) )
< [ Nfznlr, = lemlr,|du < b L lzmlnllu(n 9
< k‘zksé‘

where the constants k; (i = 1,2,3) do not depend on ¢. This contradiction shows that
U is p-compact. Conversely, 1f Uis p- compact then x(V) = v(V) for every V C U, by
Theorem 11
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Theorem 3. Let G be a Banach space and A: G — LP(Qp) (1 <p< x)a
bounded linear operator. Let S = S(G) = {z € G : ||z|lc = 1} be the unit sphere in G,
and suppose that v(AV) = x(AV) for every V C S. Then A-is p-compact, i.e. if U is
an arbitrary bounded subset in G, then AU is u-compact in LP(Q, u).

Proof. It is enough to show that rAB is u-compact for any r, where B = B(G) is
the unit ball in G. Using Lemma 1 and the properties of x (see [1: Subsection 1.1.4]),
we have

v(rAB) = v(rAconvS) = rv(convAS)
=r1v(AS) = rx(AS) = x(r convAS) = x(rAB)

which by Theorem 2 implies the pu-compactness of rAB Il

Now let €2 be a domain in R® and m the Lebesgue measure on . For 1 < p < oo
and s € N we consider the following function spaces:

LP(Q) = LP is the Lebesgue space
W*P(Q) = W*P is the Sobolev space
L*?(2) = L*P is a space of generalized functions on 2 defined by the
seminorm [jullger = [[Vsullir = (fo [Zpye, 1D"u(z)P]" dz) "/
L*?(Q) = L*? is L*P with the norm ||V,u||z» + [l r(w) (see (8]), where w
. is some (non-empty) open set with compact closure w C |
C%1(Q) = C°! is the space of all Lipschitz functions on an arbitrary compact
subset Q C 2
Wy'P(S2) = WP is the closures of C$°(Q) in the norm of W*P
LyP(Q) = Ly is the closure of C§2(R) in the norm of L*?
C  is the closed subspace of all constant functions on Q.

Theorem 4. Let E be a regular space. of m-measurable functions on a domain
 C R™ with m(Q) < co. Then for S*P € (WP, Wol”’, L(l,‘p, L1'?} the equality

| = limsup sup lzlle
m(D)—0 z€Up [|Z]ls1.»

holds, where Up = {z € C®* N S?: z =0 outside D}, I: S'? — E is the embedding
map for SYP € {Wl» WP L3P}, and I : L'?/C — E/C is the embedding map
modulo constant functions for S''? = LVP,

Proof. We shall consider only the case I : LY'2/C — E/C, since the proof is
analogous for §'? € {W'? W,*?, L}’?}. The existence of the embedding I : L?/C —
E/C means that

inf u—cle < kl[Vull  (ue L) -

where the constant k does not depend on u.

. .Let S={z € L' : ||[Vz|1» = 1}. By [8: Theorem 1.1.2 and Lemma 1.1.11] there
exists a set By C S such that B} is bounded in L'? and S = B + C. By [8: Theorem
4.8.4], By is m-compact. Therefore, since the embedding map I : L'?/C — E/C is
bounded, we can choose any bounded m-compact set By C S such that $ = By + C.
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Obviously, xg/c(S) = xe(Bo). By Theorem 1 we have-

X2(Bo) = vE(Bo) = limsup sup IPozle. - )
m(D)—0 z€Byp :

In the last limit, by [8: Theorem 1.1.5/1], we may assume without loss of genérality
that B C C°°(Q?). In addition, we use the inequality

XE(Bo) < sup ||a: - [:z:]T”E (T > 0)
T€EBy

which follows from (2). In view of (3) we obtain

. llzlle
XE(Bo) < limsup sup
m(D)—0 z€Up ||VI”L'{

since
z - [zlr € Upamy = {z € CONQ)NL'P(Q): z =0 outside D(z, T)}.

On the other hand, for every z € Up there exists a constant ¢; € C such that
IVzllZ3 (2 — cz) € Bo, i.e.

kol|Vz|lLr 2 ||lz — czlle 2 |[Paype:lle
where kg is independent of z. From this it follows that

IVeliLe

el < ko V2l
| 1Pavnllle

and

P . Ppl
limsup sup WLRCNE o ook, APRUE
m(D)—0 zeUp IVZlliLr = m(py—o  lIPa\DlllE

Thus from (4) we conclude that

XE(BO) > limsup sup w = limsup sup ”xllE .
m(D)~0 zeUp [IVellLr " m(D)~0 zeUp V2 lLr

The proof is complete B

Remark 4. It follows from Theorem 4 that the upper x-norm of the embeddmg
map [ : L'?/C — L9/C is a characteristic of non- compactness which has been assumed

as a basic criterion of compactness in [8: Lemmas 4.2 and 4.4.1, and Subsections 4 8.1
and 4. 8 2.
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3. Applications

As an example of an application of our results we consider now the solvability of the
Neumann problem for the linear operator

Y (-)¥D'(ai; D'u)
lEL1I<s

in the space W""’(Q). Here the coefficients a;; € L™ are assumed to satisfy the bound-
edness condition

sup [lai;flz= < e )
iJ
as well as the ellipticity condition
Re/ Z ai;D* ‘w Diudz > cllva"”u (ue L* 2) (6

lil=1jl=s
We say that u € W*2(Q) is a generalized solution of t.he Neumann problem Au = f if
/vAud:z: = / Z ai; D' ‘w Diydz = /fvd:z:
0 lil.151<s Q
for any v € W*? and fe L

Lemma 4. Let the embedding operator I : LY2/C — L?/C be bounded. Then for
allu € L? N L*? the estimate

s—1
> IViullez < CUE),n)IVsullz + Ce)lfullee
k=0

1s true, where

aU(e) 1/2 llulles
——2—, a=n"'"4+1, U(e)=. su su .
Tl U i A
Proof. Given ¢ > 0 and u € L? N L*2, and putting T = inf{t : m(D(u,t)) < €},
by Theorem 4 we get
1/2
lallze < el =Tl o+ el = Tl gy gy + Tl

< U()lIVullza + 2T[m(R)] /2.

C(U(e),ﬁ) <

Now, following a similar reasoning as in [8 Proof of Theorem 4.8.2], we denote by
Q. any bounded subdomain § with a C%! boundary such that m(2\ Q.) < £. Since
m[D(u,T)] > ¢ we have m[D(u,T) N Q.| > £. Hence |u|/r(n,) = 2~ l/'Tf:l/' for any
r > 1, and therefore

lullex@y < UE)IVullaa) + 2'7 1/'[m(ﬂ)]’"||ullu(n)

where the embedding map from L'?(Q.) into L"(f2,) is compact. The remaining part
of the proof goes precisely along the line of [8: Proof of Lemma 4.10.2]
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Theorem 5. Let
1190 < Ve
: a[vAcr+ /)
where I is the embedding map from LV2/C into L?/C, a = /n + 1, ¢ and c; are the
constants from (5) end (6). Then, for Re) large enough, the equation Au+ Au = f has
a unique generalized solution for each f € L?.

Proof. By (6),

. s—1
S a;D'uDiudz > c||[Vaulds — a1 3 [ Veullds.
a lilbiss k=0

By Theorem 4 and the assumption on ||I||(X)'there exists an'e > 0 such that

a’U(e)? <.C

*T=aU(OF = 20

Consequently,

i P 1
Re/ (|'|§| '|<: a;; D'u Diu + ,\|u|2) dz 2 5| Vaulliae + (ReA = ca)llullZza),
LR A

i.e. the “coercivity” condition

Z |IVxulj32 < const Re/ ( Z ai;jD'uDiu + /\‘|u|2> dz

k=0 [il,151<s

is fulfilled for sufficiently large ReA. But this implies (see, e.g., [7: Theorem 2. 9. 1]) the
assertion of our theorem i

Remark 5. In the special case when I : L?/C — L2/C is compact, i.e. ||I||(X)
0, Theorem 5 implies [8: Theorem 4.10.2}.
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