On Measures of Non-Compactness in Regular Spaces

N. A. Yerzakova

Abstract. Previous results on non-compactness obtained in [11-13] are extended to regular spaces of measurable functions, and new criteria for the μ -compactness of sets and operators are proved. An application of the abstract results to elliptic boundary problems is given as well.

Keywords: Regular spaces, measures of non-compactness, measures of non-equiboundedness, Lebesgue spaces, Sobolev spaces, embedding operators, elliptic boundary value problems

AMS subject classification: 47 H 09, 46 E 30, 46 E 35, 47 B 07, 47 B 38

1. Introduction

Let Ω be some subset of \mathbb{R}^n and μ a non-negative continuous measure on a σ -algebra of subsets of Ω such that $\mu(\Omega) < \infty$. Throughout this paper, P_D denotes the operator of multiplication by the characteristic function of a measurable subset $D \subseteq \Omega$.

Definition 1 (see [5, 14]). A Banach space E of measurable functions is called *regular* if

- (a) $||x||_E \leq ||y||_E$ for all $y \in E$ and measurable function x with $|x(t)| \leq |y(t)|$
- (b) $\lim_{n\to\infty} ||P_{D_n}x|| = 0$ for every $x \in E$ and decreasing sequence of measurable sets $\{D_n\}$ with empty intersection.

is fulfilled.

Remark 1. It is well-known (see [5, 14]) that all Lebesgue spaces, Lorentz spaces and Orlicz spaces whose generating N-function satisfies a Δ_2 -condition are regular spaces.

Definition 2 (see [5, 14]). A set U in a Banach space E of μ -measurable functions is called μ -compact if it is compact in the topology induced by μ -convergence, i.e. convergence in the measure μ .

Definition 3 (see [1, 9]). Given a bounded subset U of a normed space E, the (Hausdorff) measure of non-compactness $\chi_E(U) = \chi(U)$ is defined as the infimum of all $\varepsilon > 0$ such that there exists a finite ε -net for U in E.

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag

N. A. Yerzakova: Khabarovsk Tech. Univ., Dep. Math., R – 680035 Khabarovsk, Russia e-mail: erz@hpicnit.khstu.khabarovsk.su

Definition 4 (see [1, 9]). Let E and G be Banach spaces. The upper χ -norm of a bounded linear map $A: E \to G$ is defined by

$$||A||^{(\chi)} = \inf \left\{ k > 0 \middle| \chi_G(A(U)) \le k \chi_E(U) \text{ for every bounded } U \subset E \right\}.$$

Remark 2. In [6] the equality $||A||^{(\chi)} = \chi(AS)$ was proved, where $S = S(E) = \{x \in E : ||x||_E = 1\}$ is the unit sphere in E.

We denote the measure

$$\nu(U) = \limsup_{\mu(D) \to 0} \sup_{u \in U} \|P_D u\|_E \tag{1}$$

for $U \subset E$, where E is a regular space.

Remark 3. The characteristic (1) was introduced and studied for Lebesgue spaces E in [10] and, independently, in [3] (see also [4]). For regular spaces E the characteristic (1) was considered first in [2].

A bounded subset U of a regular space E is compact if and only if it is μ -compact and $\nu(U) = 0$. Check of μ -compactness presents a real challenge. In this paper we shall propose a necessary and sufficient criterion of μ -compactness for all normed spaces of μ -measurable functions which can be embedded into the Lebesgue space. The criterion is reduced to the equality $\nu = \chi$. The theory of measures of non-compactness has a lot of applications. There exists a large amount of literature devoted to this subject (see, e.g., [1, 9] and the references therein).

2. The results

We shall research a conjunction between the Hausdorff measure of non-compactness χ and the measure ν defined by (1) for any sets and operators.

Lemma 1. The measure ν has the following properties:

(a) $\nu(U) \leq \nu(V)$ if $U \subseteq V$.

.0

(b) $\nu(U \cup V) = \max\{\nu(U), \nu(V)\}.$

(c) $\nu(U) = \nu(\overline{U})$, where \overline{U} denotes the closure of U.

(d) $\nu(tU) = |t|\nu(U)$ for all $t \in \mathbb{R}$.

(e) $\nu(\operatorname{conv} U) = \nu(U)$, where $\operatorname{conv} U$ denotes the convex hull of U.

(f) $\nu(U+V) \le \nu(U) + \nu(V)$, where $U+V = \{u+v : u \in U \text{ and } v \in V\}$.

(g) $|\nu(U) - \nu(V)| \le k \operatorname{dist}(U, V)$, where $\operatorname{dist}(U, V)$ denotes the Hausdorff distance, and the constant k does not depend on U and V.

(h) $\nu(U) = 0$ if U is relatively compact, but $\nu(U) = 0$ does not imply that U is relatively compact.

Proof. The proof follows directly from the definition (1) and a well-known compactness criterion in regular spaces (see, e.g., [14])

Lemma 2. Let U be a bounded subset of a regular space E. Then $\nu(U) \leq \chi(U)$.

Proof. For the unit ball $B = B(E) = \{x \in E : ||x||_E \le 1\}$ in E we have $\nu(B) = 1$, since $||P_D x||_E^{-1} P_D x \in B$ for every measurable $D \subset \Omega$ and $x \in E$. Let $\varepsilon > 0$. Applying Lemma 1 to any $[\chi(U) + \varepsilon]$ -net $C_{\varepsilon} = \{c_1, \ldots, c_m\}$ for the set U we obtain

$$\nu(U) \le \nu \big(C_{\varepsilon} + [\chi(U) + \varepsilon] B \big) \le \chi(U) + \varepsilon$$

which proves the assertion

Let $u_0 = u_0(t)$ be a unit in E, i.e. a fixed non-negative function such that $\operatorname{supp} u_0 = \operatorname{supp} E$ (see [14]), and T > 0. In what follows, we denote by $[x]_{u_0,T}$ ($x \in E$) the truncation

$$[x]_{u_0,T}(t) = \min\{|x(t)|, Tu_0(t)\} \operatorname{sgn} x(t).$$

Lemma 3. Let U be a bounded and μ -compact subset of a regular space E. Then

$$\chi(U) \leq \sup_{x \in U} \left\| x - [x]_{u_0,T} \right\|_E$$
(2)

and $\chi(U) \leq \nu(U)$.

Proof. Let $D(x, u_0, T) = \{t \in \Omega : |x(t)| \ge Tu_0(t)\}$. By [14: Theorems 1 and 3] we know that

$$\lim_{T\to\infty}\sup_{x\in U}\mu[D(x,u_0,T)]=0.$$
 (3)

Furthermore, for every T > 0 we have

$$\limsup_{\mu(D)\to 0} \sup_{x\in U} \left\| P_D[x]_{u_0,T} \right\|_E \leq \limsup_{\mu(D)\to 0} T \| P_D u_0 \|_E = 0.$$

Since U is μ -compact, from [14: Theorem 15] it follows that the set $\{[x]_{u_0,T} : x \in U\}$ is compact in E. Consequently,

$$\chi(U) \leq \sup_{\mathbf{x} \in U} \left\| x - [x]_{u_0,T} \right\|_E \leq \sup_{\mathbf{x} \in U} \left\| P_{D(x,u_0,T)} x \right\|_E$$

which together with (3) proves the statement

Combining Lemmas 1-3 we arrive at the following

Theorem 1. Let U be a bounded subset of a regular space E. Then $\nu(U) \leq \chi(U)$, and $\nu(U) = \chi(U)$ if U is μ -compact.

We are now going to apply Theorem 1 to a particularly important class of regular spaces.

Theorem 2. Let U be a bounded subset of $L^p(\Omega, \mu)$, where $L^p(\Omega, \mu)$ is the space of μ -measurable functions with the usual norm

$$||x||_{L^p(\Omega,\mu)} = \left(\int_{\Omega} |x|^p d\mu\right)^{1/p} \qquad (1 \le p < \infty).$$

Then U is μ -compact if and only if $\chi(V) = \nu(V)$ for every $V \subseteq U$.

Proof. Let $U \subset L^{p}(\Omega, \mu)$ and $\chi(V) = \nu(V)$ for every $V \subseteq U$. We shall show that U is μ -compact. If $\chi(U) = 0$, the assertion is certainly true. So let $\chi(U) = \nu(U) > 0$. Obviously, U is μ -compact if the set $[U]_{T} = \{[x]_{T} : x \in U\}$ is μ -compact for every T > 0, where

$$[x]_T(t) = \begin{cases} x(t) & \text{if } |x(t)| \leq T \\ 0 & \text{if } |x(t)| > T. \end{cases}$$

Suppose that the set $[U]_{T_1}$ is not μ -compact for some $T_1 > 0$. Then there exists a sequence $\{x_n\} \subset U$ such that, for all $n \neq m$,

$$ho([x_n]_{T_1}, [x_m]_{T_1}) \ge c$$
 where $ho(x, y) = \int_{\Omega} \frac{|x(t) - y(t)|}{1 + |x(t) - y(t)|} d\mu$

and the constant c is independent of n and m. By hypothesis, for the set $V = \{x_1, x_2, x_3, \ldots\}$ we have $\chi(V) = \nu(V)$. Let $0 < \varepsilon < \chi(V)$, and let $\{c_1, \ldots, c_m\}$ be a finite $[\chi(V) + \varepsilon]$ -net for V. For $T_2 > T_1$ large enough we get then

$$\sup_{x\in U} \sup_{1\leq i\leq m} \left\| P_{D(x,T_2)}c_i \right\|_{L^p(\Omega,\mu)} < \epsilon$$

where $D(x,T) = \{t \in \Omega : |x(t)| > T\}$. Choose $n \neq m$ such that, for l = n or l = m,

$$\left\|P_{D(x_{l},T_{2})}x_{l}\right\|_{L^{p}(\Omega,\mu)} \geq \nu(V) - \varepsilon = \chi(V) - \varepsilon$$

and $||x_l - c_i||_{L^p(\Omega,\mu)} \leq \chi(V) + \varepsilon$ for a suitable $i \in \{1, \ldots, m\}$. Consequently,

$$\begin{aligned} \left\| [x_l]_{T_2} - c_i \right\|_{L^p(\Omega,\mu)}^p &\leq \left\| x_l - c_i \right\|_{L^p(\Omega,\mu)}^p - \left\| P_{D(x_l,T_2)}(x_l - c_i) \right\|_{L^p(\Omega,\mu)}^p + \varepsilon^p \\ &\leq [\chi(V) + \varepsilon]^p - [\chi(V) - 2\varepsilon]^p + \varepsilon^p \\ &\leq k_1 \varepsilon^p. \end{aligned}$$

From this we further obtain

$$\left\| [x_n]_{T_2} - [x_m]_{T_2} \right\|_{L^p(\Omega,\mu)} \leq k_2 \varepsilon$$

 $(1,1) = \{1,1,2,\dots,n\}$

· • • .

and

$$c \leq \rho([x_n]_{T_1}, [x_m]_{T_1}) \leq \rho([x_n]_{T_2}, [x_m]_{T_2})$$

$$\leq \int_{\Omega} |[x_n]_{T_2} - [x_m]_{T_2}| d\mu \leq k_3 ||[x_n]_{T_2} - [x_m]_{T_2}||_{L^p(\Omega, \mu)}$$

$$\leq k_2 k_3 \varepsilon$$

where the constants k_i (i = 1, 2, 3) do not depend on ε . This contradiction shows that U is μ -compact. Conversely, if U is μ -compact, then $\chi(V) = \nu(V)$ for every $V \subseteq U$, by Theorem 1

Theorem 3. Let G be a Banach space and $A : G \to L^p(\Omega, \mu)$ $(1 \le p < \infty)$ a bounded linear operator. Let $S = S(G) = \{x \in G : ||x||_G = 1\}$ be the unit sphere in G, and suppose that $\nu(AV) = \chi(AV)$ for every $V \subseteq S$. Then A is μ -compact, i.e. if U is an arbitrary bounded subset in G, then AU is μ -compact in $L^p(\Omega, \mu)$.

Proof. It is enough to show that rAB is μ -compact for any r, where B = B(G) is the unit ball in G. Using Lemma 1 and the properties of χ (see [1: Subsection 1.1.4]), we have

$$\nu(rAB) = \nu(rA \operatorname{conv} S) = r\nu(\operatorname{conv} AS)$$
$$= r\nu(AS) = r\chi(AS) = \chi(r \operatorname{conv} AS) = \chi(rAB)$$

which by Theorem 2 implies the μ -compactness of rAB

Now let Ω be a domain in \mathbb{R}^n and m the Lebesgue measure on Ω . For $1 \leq p < \infty$ and $s \in \mathbb{N}$ we consider the following function spaces:

$$\begin{split} L^p(\Omega) &= L^p & \text{ is the Lebesgue space} \\ W^{s,p}(\Omega) &= W^{s,p} \text{ is the Sobolev space} \\ L^{s,p}(\Omega) &= L^{s,p} & \text{ is a space of generalized functions on } \Omega \text{ defined by the} \\ & \text{ seminorm } \|u\|_{L^{s,p}} = \|\nabla_s u\|_{L^p} = \left(\int_{\Omega} \left[\sum_{|i|=s} |D^i u(x)|^2\right]^{p/2} dx\right)^{1/p} \\ \tilde{L}^{s,p}(\Omega) &= \tilde{L}^{s,p} & \text{ is } L^{s,p} \text{ with the norm } \|\nabla_s u\|_{L^p} + \|u\|_{L^p(\omega)} \text{ (see [8]), where } \omega \\ & \text{ is some (non-empty) open set with compact closure } \overline{\omega} \subset \Omega \\ C^{0,1}(\Omega) &= C^{0,1} & \text{ is the space of all Lipschitz functions on an arbitrary compact} \\ & \text{ subset } Q \subset \Omega \\ W^{s,p}_0(\Omega) &= W^{s,p}_0 & \text{ is the closure of } C^\infty_0(\Omega) & \text{ in the norm of } W^{s,p} \\ L^{s,p}_0(\Omega) &= L^{s,p}_0 & \text{ is the closure of } C^\infty_0(\Omega) & \text{ in the norm of } L^{s,p} \\ & C & \text{ is the closed subspace of all constant functions on } \Omega. \end{split}$$

Theorem 4. Let E be a regular space of m-measurable functions on a domain $\Omega \subset \mathbb{R}^n$ with $m(\Omega) < \infty$. Then for $S^{1,p} \in \{W^{1,p}, W_0^{1,p}, L_0^{1,p}, L_0^{1,p}\}$ the equality

$$\|I\|^{(\chi)} = \limsup_{m(D)\to 0} \sup_{x\in U_D} \frac{\|x\|_E}{\|x\|_{S^{1,p}}}$$

holds, where $U_D = \{x \in C^{0,1} \cap S^{1,p} : x = 0 \text{ outside } D\}$, $I : S^{1,p} \to E$ is the embedding map for $S^{1,p} \in \{W^{1,p}, W^{1,p}_0, L^{1,p}_0\}$, and $I : L^{1,p}/C \to E/C$ is the embedding map modulo constant functions for $S^{1,p} = L^{1,p}$.

Proof. We shall consider only the case $I : L^{1,p}/C \to E/C$, since the proof is analogous for $S^{1,p} \in \{W^{1,p}, W_0^{1,p}, L_0^{1,p}\}$. The existence of the embedding $I : L^{1,p}/C \to E/C$ means that

$$\inf_{c \in C} \|u - c\|_E \le k \|\nabla u\|_{L^p} \qquad (u \in L^{1,p})$$

where the constant k does not depend on u.

Let $S = \{x \in L^{1,p} : \|\nabla x\|_{L^p} = 1\}$. By [8: Theorem 1.1.2 and Lemma 1.1.11] there exists a set $B'_0 \subset S$ such that B'_0 is bounded in $\tilde{L}^{1,p}$ and $S = B'_0 + C$. By [8: Theorem 4.8.4], B'_0 is *m*-compact. Therefore, since the embedding map $I : L^{1,p}/C \to E/C$ is bounded, we can choose any bounded *m*-compact set $B_0 \subset S$ such that $S = B_0 + C$.

Obviously, $\chi_{E/C}(S) = \chi_E(B_0)$. By Theorem 1 we have

$$\chi_E(B_0) = \nu_E(B_0) = \limsup_{m(D) \to 0} \sup_{x \in B_0} \|P_D x\|_E.$$
 (4)

In the last limit, by [8: Theorem 1.1.5/1], we may assume without loss of generality that $B_0 \subset C^{\infty}(\Omega)$. In addition, we use the inequality

$$\chi_E(B_0) \leq \sup_{x \in B_0} ||x - [x]_T||_E \qquad (T > 0)$$

which follows from (2). In view of (3) we obtain

$$\chi_E(B_0) \leq \limsup_{m(D) \to 0} \sup_{x \in U_D} \frac{\|x\|_E}{\|\nabla x\|_{L^p}}$$

since

$$x-[x]_T\in U_{D(x,T)}=\Big\{x\in C^{0,1}(\Omega)\cap L^{1,p}(\Omega): x=0 \text{ outside } D(x,T)\Big\}.$$

On the other hand, for every $x \in U_D$ there exists a constant $c_x \in C$ such that $\|\nabla x\|_{L^p}^{-1}(x-c_x) \in B_0$, i.e.

$$k_0 \|\nabla x\|_{L^p} \geq \|x - c_x\|_E \geq \|P_{\Omega \setminus D} c_x\|_E$$

where k_0 is independent of x. From this it follows that

$$|c_x| \leq k_0 \frac{\|\nabla x\|_{L^p}}{\|P_{\Omega \setminus D} \mathbf{1}\|_E}$$

. .

and

÷ •

.

$$\limsup_{m(D)\to 0} \sup_{x\in U_D} \frac{\|P_D c_x\|_E}{\|\nabla x\|_{L^p}} \le \limsup_{m(D)\to 0} k_0 \frac{\|P_D 1\|_E}{\|P_{\Omega\setminus D} 1\|_E} = 0$$

Thus from (4) we conclude that

$$\chi_E(B_0) \geq \limsup_{m(D) \to 0} \sup_{x \in U_D} \frac{\|x - c_x\|_E}{\|\nabla x\|_{L^p}} = \limsup_{m(D) \to 0} \sup_{x \in U_D} \frac{\|x\|_E}{\|\nabla x\|_{L^p}}.$$

The proof is complete

Remark 4. It follows from Theorem 4 that the upper χ -norm of the embedding map $I: L^{1,p}/C \to L^q/C$ is a characteristic of non-compactness which has been assumed as a basic criterion of compactness in [8: Lemmas 4.2 and 4.4.1, and Subsections 4.8.1 and 4.8.2].

· · · ·

.

3. Applications

As an example of an application of our results we consider now the solvability of the *Neumann problem* for the linear operator

$$Ju = \sum_{|i|,|j| \le s} (-1)^{|i|} D^{i}(a_{ij} D^{j} u)$$

in the space $W^{s,2}(\Omega)$. Here the coefficients $a_{ij} \in L^{\infty}$ are assumed to satisfy the boundedness condition

$$\sup_{i,j} \|a_{ij}\|_{L^{\infty}} \le c_1 \tag{5}$$

as well as the ellipticity condition

$$Re\int_{\Omega}\sum_{|i|=|j|=s}a_{ij}D^{i}u\,\overline{D^{j}u}\,dx\geq c\,\|\nabla_{s}u\|_{L^{2}}^{2}\qquad(u\in L^{s,2}).$$
(6)

We say that $u \in W^{s,2}(\Omega)$ is a generalized solution of the Neumann problem Au = f if

$$\int_{\Omega} \bar{v} A u \, dx = \int_{\Omega} \sum_{|i|,|j| \leq s} a_{ij} D^{i} u \, \overline{D^{j} v} \, dx = \int_{\Omega} f \bar{v} \, dx$$

for any $v \in W^{s,2}$ and $f \in L^2$.

Lemma 4. Let the embedding operator $I: L^{1,2}/C \to L^2/C$ be bounded. Then for all $u \in L^2 \cap L^{s,2}$ the estimate

$$\sum_{k=0}^{s-1} \|\nabla_k u\|_{L^2} \leq C(U(\varepsilon), n) \|\nabla_s u\|_{L^2} + C(\varepsilon) \|u\|_{L^2}$$

is true, where

$$C(U(\varepsilon),n) \leq \frac{aU(\varepsilon)}{1-aU(\varepsilon)}, \quad a = n^{1/2} + 1, \quad U(\varepsilon) = \sup_{m(D) < \varepsilon} \sup_{u \in U_D} \frac{\|u\|_{L^2}}{\|\nabla u\|_{L^2}}.$$

Proof. Given $\varepsilon > 0$ and $u \in L^2 \cap L^{s,2}$, and putting $T = \inf\{t : m(D(u,t)) \leq \varepsilon\}$, by Theorem 4 we get

$$\begin{aligned} \|u\|_{L^{2}} &\leq \left\||u| - T\right\|_{L^{2}_{D(u,T)}} + \left\||u| - T\right\|_{L^{2}(\Omega \setminus D(u,T))} + T[m(\Omega)]^{1/2} \\ &\leq U(\varepsilon) \|\nabla u\|_{L^{2}} + 2T[m(\Omega)]^{1/2}. \end{aligned}$$

Now, following a similar reasoning as in [8: Proof of Theorem 4.8.2], we denote by Ω_{ϵ} any bounded subdomain Ω with a $C^{0,1}$ -boundary such that $m(\Omega \setminus \Omega_{\epsilon}) < \frac{\epsilon}{2}$. Since $m[D(u,T)] \ge \epsilon$ we have $m[D(u,T) \cap \Omega_{\epsilon}] \ge \frac{\epsilon}{2}$. Hence $\|u\|_{L^{r}(\Omega_{\epsilon})} \ge 2^{-1/r}T\epsilon^{1/r}$ for any $r \ge 1$, and therefore

$$\|u\|_{L^{2}(\Omega)} \leq U(\varepsilon) \|\nabla u\|_{L^{2}(\Omega)} + 2^{1-1/r} [m(\Omega)]^{1/2} \|u\|_{L^{r}(\Omega)}$$

where the embedding map from $L^{1,2}(\Omega_{\epsilon})$ into $L^{r}(\Omega_{\epsilon})$ is compact. The remaining part of the proof goes precisely along the line of [8: Proof of Lemma 4.10.2]

Theorem 5. Let

$$||I||^{(\chi)} < \frac{\sqrt{c}}{a[\sqrt{4c_1} + \sqrt{c}]}$$

where I is the embedding map from $L^{1,2}/C$ into L^2/C , $a = \sqrt{n} + 1$, c and c_1 are the constants from (5) and (6). Then, for $\operatorname{Re}\lambda$ large enough, the equation $Au + \lambda u = f$ has a unique generalized solution for each $f \in L^2$.

Proof. By (6),

$$\operatorname{Re} \int_{\Omega} \sum_{|i|,|j| \leq s} a_{ij} D^{i} u \, \overline{D^{j} u} \, dx \geq c \, \|\nabla_{s} u\|_{L^{2}}^{2} - c_{1} \sum_{k=0}^{s-1} \|\nabla_{k} u\|_{L^{2}}^{2}.$$

By Theorem 4 and the assumption on $||I||^{(\chi)}$ there exists an $\varepsilon > 0$ such that

$$2\frac{a^2U(\varepsilon)^2}{[1-aU(\varepsilon)]^2} \le \frac{c}{2c_1}$$

Consequently,

$$\operatorname{Re} \int_{\Omega} \left(\sum_{|i|,|j| \leq s} a_{ij} D^{i} u \, \overline{D^{j} u} + \lambda |u|^{2} \right) dx \geq \frac{1}{2c_{1}} \|\nabla_{s} u\|_{L^{2}(\Omega)}^{2} + (\operatorname{Re} \lambda - c_{2}) \|u\|_{L^{2}(\Omega)}^{2},$$

i.e. the "coercivity" condition

$$\sum_{k=0}^{s} \|\nabla_{k}u\|_{L^{2}}^{2} \leq \operatorname{const} \operatorname{Re} \int_{\Omega} \left(\sum_{|i|,|j| \leq s} a_{ij} D^{i} u \, \overline{D^{j} u} + \lambda |u|^{2} \right) dx$$

is fulfilled for sufficiently large $\text{Re}\lambda$. But this implies (see, e.g., [7: Theorem 2.9.1]) the assertion of our theorem

Remark 5. In the special case when $I: L^{1,2}/C \to L^2/C$ is compact, i.e. $||I||^{(\chi)} = 0$, Theorem 5 implies [8: Theorem 4.10.2].

References

- Akhmerov, R. R. et al.: Measures of Noncompactness and Condensing Operators (in Russian). Novosibirsk: Nauka 1986; Engl. transl.: Basel: Birkh"auser Verlag 1992.
- [2] Appell, J.: Misure di noncompattezza in spazi ideali. Rend. Sci. Ist. Lomb. 119 (1985), 157 - 174.
- [3] Appell, J. and E. De Pascale: Su alcuni parametri connessi con la misura di noncompatezza di Hausdorff in spazi di funzioni misurabili. Boll. Unione Mat. Ital. 3-B (1984), 497 – 515.
- [4] Appell, J. and P. P. Zabrejko: Nonlinear Superposition Operators. Cambridge: Cambridge University Press 1990.

- Birman, M. Sh. et al.: Functional Analysis (Reference Mathematical Library; in Russian). Moskva: Nauka 1972; Engl. transl.: Groningen: Wolters-Noordhoff 1974.
- [6] Gohberg, I. Ts., Gol'denstein, L. S. and A. S. Markus: Investigation of some properties of bounded linear operators in connection with their q-norm (in Russian). Uchen. Zap. Kishin. Univ. 29 (1957), 29 - 36.
- [7] Lions, J.-L. and E. Magenes: Problèmes aux limites non homogènes et applications. Paris: Dunod 1968.
- [8] Maz'ja, V. G.: Sobolev Spaces. Berlin: Springer-Verlag 1985.
- [9] Sadovskij, B. N.: Limit-compact and condensing operators (in Russian). Uspekhi Mat. Nauk 27 (1972)1, 81 - 146; Engl.transl.: Russian Math. Surveys 27 (1972)1, 85 - 155.
- [10] Yerzakova, N. A.: On properties of the β-measure of noncompactness (in Russian). Voronezh 1982 (unplubl.; deposited in Moscow: Vsesoj. Inst. Naučn. Techn. Inf. (VINITI) under Nr. # 6132-82).
- [11] Yerzakova, N. A.: The measure of noncompactness of Sobolev embeddings. Int. Equ. Oper. Theory 19 (1994), 349 - 359.
- [12] Yerzakova, N. A.: Measures of noncompactness in applications (in Russian). In: Proc. Intern. Congr. Assoc. "Women-Mathematicians" Moscow-Pushchino 1994, Vol. 2 (ed.: T. A. Vasilyeva). Volgograd: Gos. Univ. 1994, pp. 29 - 32.
- [13] Yerzakova, N. A.: Applications of measures of non-compactness to equations of mathematical physics (in Russian). Coll. Sci. Trans. Khabarovsk: Tech. Univ. 1994, pp. 38 – 49.
- [14] Zabrejko, P. P.: Ideal function spaces (in Russian). Part 1. Vestnik Yaroslavl. Gos. Univ. 8 (1974), 12 - 52.

Received 04.09.1995; in revised form 27.11.1995