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Weighted Inequalities 
for the Fractional Maximal Operator 
and the Fractional Integral Operator 

Y. Rakotondratsimba 

Abstract. A sufficient condition is given on weight functions u and v on R' for which the 
fractional maximal operator M8 (0<s< n)defined by(M.f)(x) = supq IQI*' fIf(y)Idy 
or the fractional integral operator I (0 < s < n) defined by (I,f)(x) = f5t,. Ix - yI'f(y)dy 
is bounded from L(R",vdx) into L(R',udx) for 0 < q < p with p> 1, where Q is a cube 
and n a non-negative integer. 
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1. Introduction 

The fractional maximal operator M3 of order s (0 s <n) is defined by 

(M3 f)(x) = sup IIQI1 
IQ 

lf(y )I dy Q a cube with Q x}. 

Here n is a non-negative integer, and throughout this paper Q will denote a cube with 
sides parallel to the co-ordinate axes. The fractional integral operator I (0 < .s < n) 
is defined by

(Iaf)(x) 
= it Ix - y I 3 f(y ) dy.	 - 

Our purpose is to derive a sufficient conditionon weight functions u and v on R', i.e. 
non-negative locally integrable functions, for which T = M8 or T = I, is bounded from 
LP = LP(R Th ,vdx) into L'(R",udx) when q <p and 1 <p,q <+00. Precisely, we give 
a condition which ensures the existence of a constant C > 0. such that 

(JR 
(Tf)(x)u(x)dx) <c(j fP (x)v(x)dx)	 (1.1) 

for all f ^! 0. For simplicity, inequality (1.1)-will be often denoted by T: L - L. 
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Inequality (1.1) is findamental in analysis since many classical operators can be 
controlled by T. It is well-known [4] that (1.1) implies a	E L 0 (1R t2 ,dx) and 

IQI 1 (Ju(Y)dY)(Jv(Y)dY)	A	 (12) 

for all cubes Q . So' by the Lebesgue differentiation theorem, a necessary condition to 
(1.1) implicitely assumed is I - 1 . . Consequently, for M = M0 (i.e. the classical 
Hardy- Littlewood maximal operator) the embedding M L — L has a non-trivial 
sense only for q p. 

For 1 <p q < +00, Sawyer [4] proved that M, : LP — L if and only if there is 
a constant S > 0 such that 

(f	
S 

	

.5	

1'	 •
	P(x)v(x)	

(1.3) 

<S( I (?VX dx 

for all cubes Q with XQ being the ' characteristic function of Q . For 1 < q < j '< + 00, 
the author proved in [3] that M3 : LP —* L if and only if 

(j (
M V- P  > AkxQk) (x)xuQ k (x)] u(X)dX)

(1.4) 

	

<	[v kXck s(j ](x)v(x)dx) 

for all cubes Qk and all Ak > 0, with S being independent on Ak and Qk. The main 
point here is the integration on the left restricted to UkQk and which implies that (1.4) 
is not 'a trivial condition for (1.1). Other characterizations foi this embedding were 
found by Verbitsky [6] and D. Gu [1]. 

Although these characterizations of the embedding M, LP — L are available, 
it is not easy in general to-decide whether the test condition (1.3) or (1.4) holds since 
these conditions are expressed in term of M. The necessary and sufficient condition 
found in [6] or [1] isa1so'too difficult for any practical use. Such situations lead us to 
investigate a sufficient condition for T: L - L, when q <p, not too far to a' suitable 
necessary condition and not expressed in term of the operator T. For the range p q a 
solution to this problem is known and due to Perez [2]. One of the contribution of this 
paper is to bring a similar result when q <p. 

The condition (ü,v) E, A(s,p, 'q,t 1 , t 2) (i j , t 2 '> 1) found" inspired from the 
necessary condition introduced by Verbitsky [6], and can be viewed as a substitute of 
the Fefferman-Phong condition(u, v) ,E' A(s, p, q, I 1 ,t2 ) which means. 

(If t2(Y)d) ( I(y)y) 'T <A
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for all cubes Q. For the range 1 , < p < q < +00, Perez [2) got M-': LP --+ 1 q.
 

(u. v) E A(s, p, q, t 1 , 1) for some t 1 > 1. This condition is almost necessary in the sense 
that A(s,p, q, 1,1) (i.e. (1.2)) is a necessary condition for this embedding and (M, v) E 
A(s,p,q,t i ,1) becomes equivalent to(u,v) E A(s,p,q,1,1) when a = vT E A, 
i.e.. (v,v)€ A(O,t,t,1,1) for some t > 1. For q < p, we will see (in Theorem 2.1) 
that M3 :L - L whenever (u, v) € A(s,p,q,t i , 1) for some t 1 > 1, with also the 
fact that A(s,p,q, 1,1) is a necessary condition for the embedding. Moreover (u, v) E 
A(s,p,q,t i ,l) becomes equivalent to (u, v) E A(s,p,q,l,1) whena = vT E A. 

The weight functions u and v for which I : LP Lq- with 1 <p < q < +00, have 
been characterized by Sawyer [5]. However, like in the case of.M3 , the corresponding 
necessary and s'ufficient condition is expressed in terms of 13 itself. Thus Perez [2] proved 
that 13 : EP -4 L q whenever (u,v) e A(s,p,q,t 1 ,t 2 )for some t 1 ,t2 > 1. Similarly for 
q <p we will get this last embedding from (u, v) E A(s,p,q,t1,t2). 

For a large class of weight functions u and v it is more and less easy to decide 
whether the Fefferman-Phong condition (u, v) E A(s,p,q,t i ,t 2 ) . holds (see Section 3). 
However the suitable Verbitski condition (u; v) E A(s,p, q, t 1, t2') we use, appears to be 
more difficult to be checked than (u, v) E A(s,p,q,i i ,t 2 ). Thus our second purpose is 
to precise some cases of equivalence of these two test conditions (see Theorem 4.1 and 
Prposition 4.2 in Section 4). Such a study can be useful for people doing applications 
and explicit computations. 

2. The first result 

Let t1, t 2 > 1 and let u, v be weight functions such that 

0< f(Y)Y <+00	and	0< f U 12 (y ) dy <+00 

for all cubes Q . Define the function b = 3,fl,p,U,V,91, g 2 by 

(x) = sup { IQI	f vT(y)d)	
(	f u2(y)dy) } 

	

Q3X	1Q1

For q <p we write	 . 
(u,v) E A(s,p,q,tj,i2) 

if	 . 

	

r(X)U(X)dX <+00	with r = 

Really this condition is a variation onacondition introduced by Verbitsky [6] and which 
corresponds to (u, v) E A(s,p,q,1,1). Since (x) ^! 
(JJ'Q u t2 (y)dy)}, for each cube 	and  E Q,thenclearly (u, v) E A(s,p,q,i1,1)
implies the usual Fefferman-Phong condition (u, v) E A(s,'p, q, i, 1). As we will see 
below, the converse is in general false.	 . 

0 

Our first main result yields.to a sufficient (resp. necesary) condition which-ensures 
the embedding T: L —* L when q <p,. with T M3 or T = I,.
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Theorem 2.1. Let 1 <. p< +00, 0 < q <p and 0 < s <n (0 < s in the case of 
Is);

(A) Suppose M3 : L -	or I :	-* L. Then (u, v) e A(s,p,q,1,1). 

(B) Conversely, suppose (u, v) E A(s,p, q, t 1 , 1) for some t 1 > 1. Then M, L 
L. Similarly there is I :	-* L whenever (u, v) E A(s,p,q,t i) t 2 ) for some t i , t2 > 
1.

Part A was proved by Verbitski [6]. When a = v- P- 1
 E A and q <p, then (u,v) € 

A(s,p,q,1,1) is a necessary and sufficient condition for M,: LP - L (0 s < n). 
Indeed, for such a, by the reverse Holder inequality, the condition (u, v) E A(s, p, q, 1, 1) 
implies (u, v) € A(s,p,q,t i ,1) for some t 1 > 1. Similarly, when u,u € A and q < p, 
then I. : LP -* L (0< s <n) if and only if(u,v) E A(s,p,q, 1, 1). 

Although. for many weight functions it is easy to check the condition (u, v) € 
A(s,p,q,t i ,t2 ) (see Proposition 3.1), it is not trivial to decide whether (u, v) E A(s,p, q, 
t 1, t2) . This problem will be studied in Section 4, for the moment consider the case of 
power weight functions. 

Let w(x)=IxI' and v(x)=xj 	with a>0 and O</3<np. For l<p<q< 
+00, it is known (see also Section 3) that M3 : LP -+ L, as well as I, :	- L, if and
only ifs + . Also observe that w, = v- P-1 € A and (w, v) € A(s,p,q, 1, 1). 

For q <p we have the following negative result. 

Proposition 2.2. Let 1 <p < +00, 0 < q <p and let a, /3, v, w defined as above. 
Then M3 and I are not bounded from LP into L,,. 

Therefore (w, v) € A(s,p,q, 1, 1) is not equivalent to (w, v) € A(s,p,q, t i , t2). 

Although for power weights the embedding M3 : LP -i L with q <p is false' 
can modify these weights to get a positive and explicit example. 

Proposition 2.3. Let 1 <p < + 00,0< q <p,O < y <a < +00 and 0< /3< np. 
Define z(x) = xI" and u(x) = x I"x{II<l}( x) + I x Ix{II>l}(x) and suppose 

Then M, LP L and I., : 

For instance take p=2,q=1,n=3,a=3,/3=4,-y=l and v,u defined asin 
Proposition 2.3. Then M3 :	-* L as well as I :	- L for all s with	s < 1. 

3. The Feffernian-Phong condition (u,v)E A(s,p,q,t1,t2) 
The results in this section are not new (more and less known), but we write them for 
convenience and completness. 

The problem of finding explicit examples of weights u and v for which (u, v) € 
A(s,p,p, 1,1) was considered in [2]. For instance, let 0 S < 2 and 1 < p < + 00. 
If u = w € LI0 and v = (M3 w), then (u,v) € A(s, p, p, 1, 1). In order to describe
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more weight functions satisfying (u, v) E A(s, p, q, t1 , t2 ) we introduce the growth weight 
condition (C), for which w E C means there are c, C. > 0 such that 

r sup w(x) ^
C 

4 R<z<2R 

for all R > 0. Condition (C) is very general since the case of radial non-increasing 
or non-decreasing weight functions are included. Also, if w is essentially constant on 
annuli, i.e. w(y) :5 cw(x) for	lxi	2 1 y i, then w E C. 

For u,vT e C then to obtain (u, v) e A(s,p,q,t i ,t 2 ) it is . sufficient to check the 
similar condition for balls B(0, R) = {y E R  : ll < R} centered at the origin. 

	

Proposition 3.1. Let 1 < t 1 ,t 2 < +oc, and let 0	s < n, 1 < p < +00 and 
0 < q < +00 with 1 -	. Let u and v be weight function. with Ut2,V	E C.
Then

(u,v) E A(s,p,q,t i ,t2 )	(u,v) € Ao(s,p1q1ti1t2). 

This last condition means there is A > 0 such that 

L(1_i)
t2q "	p / 1 [

	ui2(y)dy)	^A R3[)(f	_ V P-1 ()d)	

JIzI<R 

for all R > 0. 

We emphasize that, in applications, the condition (u, v) E A0 (s,p) q,t i ,t 2 ) is more 
interesting than (u, v) E A(s,p,q,t i ,t 2 ), since we avoid here the brake due to the inte-
grations on arbitrary cubes non-centered at the origin. 

A first consequence of this result is 

Corollary 3.2. Let s, p, q and t 1 , 1 2 be as in Proposition31. Let u(x) = lxI' 
and v(x) = l x l", with 0 < a < +oo and 0 < /9 < np. Assume t2 <	for a <n 
and t 1 < n(p—I) for n < 3. Then (u,v) € A(s,p,q,t i ,t 2 ) if and only if	s + 

Note that here u, a = v P I € A. By Theorem 2.1 and Remark 2.4 in [2] we obtain 

Corollary 3.3. Let 1 <p.:5 q <+00 with -, and let a,/3 and u,v as , in 
Corollary 3.2. Then M L -	as well as I, LP 	L if and only if. fl- = s +
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4; The .-condition (u , v) E A(s,p,q,t 1 , t 2 ) . 
Now our purpose is to explicit a mean for checking the condition (u, v) E A(s, p, q, t1, t2). 
Let t1, t2 and u, v be as in the beginning of Section 2. Define the two cube functions 
V =	 , t2 and .4 = A.,,n,p,qu,v, tj ,2 by 

	

1 (1_ I )	 1 

	

V(Q)= IQI (± f t1(Y)dY)	
(If 

u2(y)dy) 
1Q1	 1Q1

and
.111	 1	.• 

4(Q) .IQI	(jjfcT'YIli)	(__fut2(y)dy) 

The function c1 defined at the beginning of Section 2 is given by . 

	

(x) = SUP{ V(Q): Q	 (4.1)

For q<p, let r>l with 1=1-1.Then 

	

.4(Q) = IQI V(Q) (fut2(y)dy)2,.	 (4.2) 

Clearly (u, v) E A(s, p, q, t 1 , i 2 ) if and only if there is A > 0 such that 

.4(Q) < A	for all cubes Q .	 (4.3) 

In other . words, (u, v) E A(s,p,q,i j , t2 ) if .4(Q) is uniformly bounded This fact is not 
sufficient to get (u, v) E A(s,n,p,q,t i ,t 2 ), for which more growth conditions pn.A and 
V are needed, as we will describe now. 

To be explicit, we assume the existence of a cube Qo	Qo[0 , R0 ], centered at the
origin and with sidelenght Ho >, 0, and for which the following hypotheses are satisfied: 

(H1) V(Q) <C 1 V(aQo)for all cubes Q C 6Qo with IQI* <Ho, where a 3. 

(H2) V(Q[0,R2 ]) <C2 V(Q[0,dR i 1) for all R 1 , R2 with H0 Ri R2, 
where d>1.	 . 

(H3) f[R] ui2(y) dy	C	fQ[O,ci Izi u t 2(y) dy for all X j with Ixi •; 2'R0 
(so Q[x i , Ro] c (3Qo))..:	.	. 

(H4) V(Q[x,t]) < C4 V (Q[0 , c1 l x i]) for all x  IR" and i >0 with RO < lxi and 2t < Ixl. 

(115 ) ..4(Q[0, R]) < for all R H0 . Rnr 

Here
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C1, C2 , C4 , A, rare non-negative constants depending on s; n, p, q, t 1 , t2 , ti; v 

C3 , e are non-negative constants depending on u, t 2 , n 

c 1 = c i (n) is a constant depending on n such that c i (n) > 1 

Hypothesis (H 1 ) is some kind of control of V(Q) for each cube Q the centre of which is 
near the origin and with a small size. Condition (H 2 ) means that R —+ V(Q[O, R]) is an 
almost decreasing function for fl > Ro . When Ui2 e C, then (H 3 ) is satisfied with E = 1 
since lxi IXQ I I for x E Qi = Q[x 1 , Rol. The estimate of V(Q), for each cube Q with a 
centre far from the origin and small size, is described by (H 4 ). A control of ..4(Q[O,R]) 
for large R is given by (H5 ).	. 

The second main result of this paper is as follows. 

Theorem 4.1. Let 0 < s < n, 1 < p < +oc, 0 < q <p and 1	t1, t2 < +.
Assume hypotheses (H 1 ) - ( H 5 ) are satisfied with 1 < E + rrt2 (r = 1_). Then the 
Fefferman-Phong condition (u, v) E A(s, p, q, t 1 , t 2 ) implies (u, v) E A(s, p, q ) t 1 , t2). 

Therefore with the hypotheses of this result, (u, v) E A(s,p,q,t 1 , 1) is equivalent to 
(u, v) E A(s,p, q, t 1 , 1) for q <p. And by Theorem 2. 1, M3 : LP —* Lq 

V	 U whenever (u, v) E 
A(s,p,q, t i , 1) for some t 1 > 1, and 13 : L — L whenever 	E A(s,p,q,t 1 ,t 2 ) for
some t 1, t2 >1. 

For weight functions satisfying the growth condition (C), the above hypotheses (H1) 
- (H 5 ) can be simplified when there is Rn, > 0 for which the following conditions are 
fulfilled (B(0, R) denotes the ball centered at the origin and with radius R > 0): 

(H) V(B(O,R)) <C1 V(B(0, all,)) for all R R0 , where a 

(H) V(B(0,R2 )) <C2 V(B(0,R 1 )) for all R1 and R2 with Rn, R1 R2. 

(H'5 ) A(B(O, R))	4-r for all R > Rn, where r > 0 and A > 0 are fixed. 

Proposition 3.1 and Theorem 4.1 lead to 

Proposition 4.2. Let s,p,q and i 1 ,t2 as in Theorem 4.1. Suppose u 12 , a1 = 
E (C) and assume hypotheses (H'1 ), (H) and (H) are satisfied. Then (u,v) E 

Ao(s,p,q,t i ,t 2 ) implies (u,v) E A(s,p,q,t i ,t 2 ). Thus (u,v) E Ao(s,p,q,t 1 ,1) becomes 
equivalent to (u, v) e Ao(.s,p,q)ti,1). 

Now we give the proofsdf our results. Theorem 2.1, Proposition 3.1 and Corollary 
3.2 will be proved in Section 5. The next, Section 6, is devoted to the proof of Proposition 
2.2. The propfs of Theoiem 4.1 and Proposition 4.2 will be presented in Section 7. The 
last, Section 8, will contain the proof of Proposition 2.3.
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5. Proofs of Theorem 2.1, Proposition 3.1 and Corollary 3.2 

We start by giving the 

Proof of Theorem 2.1. The fact that M3 : LP - L 9 implies (u, v) E A(s, p, q, 1, 1) 
was proved by Verbitsky [6] via a theorem of Pisier on factorization trough L°°. Since 
(M3 f) < C(13 f), then (U, v) E A(s,p,q, 1,1) is also a necessary condition for I, : 
L.

To prove Part B, suppose (u,v) E A(s,p,0 1 ,t 2 ) for some t 1 > 1 and t 2 ^! 1. 
Precisely, we take t 2 = 1 in the case of M3 and t2 > 1 in the case of I. With q <p and 
r =	the Holder inequality yields 

	

JR (Tf)(x)u(x) dx)	(j (Tf)(x)(x) dx) (jR r()U() dx)	(5.1) 

where i =	Then jjt 2 E L oc (lR I ,dx) since for all cubes Q 
i 

J 
f 

IQIQ 
t2(y)dy 

<[v(1 
i

P- 
_i_ 

1 

	

IQI	
()d)	 (If u2(y)dy 2P

)1 -	-I v  

(
1 

[u2(y)dy\ 

1Q1  I

	

. ( 
1 f _iL	 I 

=	- / v 
P JQ	
()d) 

j 

where p' = and so < 1, i.e. 
(ii,v) E A(s,p,p,t 1 ,i 2 ). Owing to the Perez theorems [2: Theorems 2.1 and 2.11] 
this last condition implies T : LP - L, i.e. there is C > 0 such that 

(JR
(Tf)P (x)iY(x) dx) <c(j fP(x)v(x)dx)'	(5.2) 

for all f>0. By(5.i),(5.2) and condition (u,v)EA(s,p,q,t i ,i 2 )we get T: L —LI 
Proof of Proposition 3.1. Clearly (u, v) e A(s, p, q, ti i 2 ) implies (u, v) e Ao(s, 

p,q,t i ,t 2 ). Indeed, for each ball B = B(0, R) it is sufficient to take the smallest cube 
Q containing B for which B c Q c B(0,cR) with c = c(n) depending only on n. 

Conversely, suppose (u, V) E Ao(s,p,q, t i , t 2 ) for some A > 0 and let Q = Q[xo,R] 
be a cube centered at x 0 and with sidelength R > 0. If Ixo 1 < 2R, then Q C B(0, cR)
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for a fixed c=c(n)>0, and with avirwehave 

_	 / 1 J u i 2(y	 C 29	1	
atl	

' 

A(Q) - IQI e	 )d)	
(jj	

(Y)dY)1( -) 

[ ! I C(cR)  q p

2q	1 
( (cRm )JB(Q cR)	

()d)	
( (cR) L(OCR t1()d)1 1 

where C = C(s,n,p,q,t i ,t 2 ) > 0. If 2R < I xol, then IxI	Ixol for all x E Q . So using 
ut2,&1 E C, then 

'I. 
I	t1(y)y < 

IQI J	 — Q

C
L0CIZO)1(Y)dY (cIxoI) 

it 
- 

/ 
U 12 (y) dy < 

IQI JQ	 - L(OCIZO)
 U'2 (y .) dy 

(cIxoI)

with c,C> 0 not depending on R >0 and I xol . Since —	, then 

3+fl[1-_1] A(Q) ^ C'(cIxoI)	q 

/	1 
x	 P i V -' 

( c I xo I) L<10 _(y) d) 
1	P 

(( C	) Li<c i x oi

 
12 (y) d) ' 

Thus A(Q) 5 C supk> O .4(B(0, R)) CA for all cubes Q I 

	

Proof of Corollary 3.2. Note that [(a — n)i2 + n] > 0 since t 2 <	 .- for a < ii.
Then for all R > 0 

J
u(y)dy 

= J1Y	

(5.3)!

 l<R 

The condition 0 <8 <pn implies a = v- 
P- 1

 E L 0 and 

a(y)d	 [i.z.+nl_n	R"J.	 (5.4) II	-)	J	dy 
1,Yl<R	filyI<R 

Similarly [n + ti f) > 0, since ii <nF- for n <3, and so 

11Yl<R 
a(y)dy 

= f IyI[)"Idy 

By these computations 

A(B(o,R)) = As,n,p,q,u,v,t i ,t 2 (B(O,R))	R" 

where A = s +	-+ [n - 61 + (a n) = .s - + = 0, and then (u, v) E 
Ao(s,p,q,t 1) t2) I



318	V. Rakotondratsimba 

6. Proof of Proposition 2.2 

The proof of this result is based on the following two lemmas. 
Lemma 6.1. Let 1 <p < +, t 1, t 2 ^: 1, and u,v weight functions. Then 

(x) =	 = sup { V(Q)I Q is a cube with Q x} 
'1/(x) = sup {V(Q[x,R])}. 

R>o 
Here and in the sequel of the paper Q[x, R] denotes the cube centered at x and with 

sidelenght R> 0, and	'F means c 1 4	I1 c 2 I for fixed constants C1, C2 > 0. 
Lemma 6.2. Let q <p and p > 1, w(x) = I xI' and v(x) = IxI	with a ) > 0, 

0 </ < rip and	s + 2 . Let 1' = '1 s,n,p,w,v,1,1 be defined as in Section 2. Then 

(x) IxI_ e with - e (s - n) + + 
I 

+ -. fi] (i - 
P' ) < 0. 

By Theorem 2.1/(A), to prove that M5 does not send LP into (and consequently 
13 does not map LP into Li ), it is sufficient to see that (w, v) V A(s,p,q, 1, 1). And this 
is the case since

Jf 
r(X)() dx 

=	I xI) dx = +00 

with r =
p—q 

Prove of Lemma 6.1. Obviously 'F < C. Conversely, let Q be a cube and 
x E Q. There is c = c(n) > 1 such that Q C Q[x,cR] with R = IQI . Then 

V((2) IQI(jJv_T(Y)dY 	
(if 

Ut2YdY)2 

-	C(cR)'(cn 
IQ[z,cR] 

vv1.(Y)dY)	
(c	IQ[.cR] 

ut2(Y)dy) 

for a constant C > 0 which does not depend on the cube Q. Therefore I C'F and 
consequently cI	1/I 

Proof of Lemma 6.2. We first observe that E . is non-negative. Indeed, the condi-
tion = s + 2 and q <p imply . 

a r	n—B I	1\a /3 
—E=(s—fl)+—+ !l +	(1--,) =s+--- .

p.	p — i \	pj	p •p 
/ a 3\  

G 

1\(' 1" 
=.(S±---J+a (.--J<0. 

q P1 	qj	\p qj 
Since I' 'F (by Lemma 6.1), it is sufficient to estimate 

sup; 
R3(IQ[z,R]
 w()d)(f : 

O<IzI<2R  

'F 2 (x) = sup ^R'(f	w(Y)dy)(f	a(Y)dY)] 
O<2R<IxI	Q[z,R]	 Q[x,R)
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because 'P 'P i + 'P 2 . Note that w and or = v_ i' _I_ -' are doubling weight functions (since 
w,a E A) Now let R> 0 and consider Ix  2R. By (5.3) and (5.4) 

fw(y) dy 
J1YJ<cR

w(y) d,i
  

(y)dy 
J1Y1<cR: 

a(y)dyR"p- 
IQ(z,R]  

where c	c(n) > 1. For 2R < lxi we use the fact that li	lxi for all y E Q[x,R] to 
get

IR" 
IQ[x,R] 

w(y)dy	lxla 
lxi) 

JQ[Z'R1 
a(y)dy	 x	p-I 

lxi) 
Finally, by these last equivalences and —e = s + - <0 then 

	

(x)	sup	 lxl 
O<IzI<2R 

	

'P2(X)	sup [() 'i'+- ]	xJ 
O<2R<Izl	lxi 

as we claimed U 

7. Proofs of Theorem 4.1 and Proposition 4.2 

In this section, first we do some preliminaries, then we state a basic lemma. By this 
last we deduce the proof of Theorem 4. 1, and finally we give, the proof of this lemma. 

Prelimiraries. Let Qo = Q[0,Ro] be the cube centered at the origin and with 
sidelenght .R = iQoI. We decompose the space R" as a union of cubes Qkl whose 
interiors are pairwise disjoints and which have a common size R =-&. More precisely, 
we write	 .

R"= UEk	 (7.0) 
kEN 

with
E0=Q0 

Ei= 3Qo \ Qo = U Oil 
IEI, 

Ek = (2k +1)Qo \ (2k - 1)Qo = ,U Qkz	(k > 2) 
-	IEIk
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Moreover, there is a constant N = N(n) 1 such that the cardinality #Ik of Tk satisfies 
#Ik Nk"'.	 (7.1) 

For each cube Qki = Q[x kl , Rol (centered at X kl and with sidelenght R0 > 0) then 
B(xk,, 4R0 ) C Qi: C B( x kj, c24&) C 2Q, = Q[xkj,2&]	(7.2) 

for a constant C2 = C2(n) ^! 1. Here B(x,t) = {y E IR'2 Ix - I < t} denotes the ball 
centered at x and with radius t > 0. On the other hand 

	

Qii C 3Qo	(1 E Ii ).	 (7.3)
Note also that

lxi	lxkll	kR0	(2 < /c E N),	 (7.4) 
moreover (2R) < j X k 1 j and Ro lxi. 

We assume the Fefferman-Phong condition (u, v) E A(s,p,q,t i ,t 2 ) holds for a 
constant A > 0. With the assumptions (H 1 ) - (H 5 ) our purpose is to get (u, v) E 
A(s,p,q ) t i ,t2 ), or 

	

f
T((X)X =	f	r(X)U(X)X <+00	 (7.5) 

kEN,IEIk	' 

(r =	where 1 = 1sn , p , u , vi I, t 2 is defined as in (4.1). Consequently it is sufficient
to estimate each quantity f, 4"(x)u(x)dx by using the following 

Basic Lemma. Assume the hypotheses of Theorem 4.1 are satisfied. Then there is 
a constant C > 0 such that 

	

IQ 0 

T(x)u(x) dx <CAT	 (7.6) 

	

J
y (x )u(x) f	CK (1 Eli )	 (7.7)

QI,

	

f
c1 T(x)u(x)dx CA	rk_fl+(1_)+H	(2< k E N)	(7.8) 

where e > 0 and r > 0 are the constants in hypotheses (113 ) and (115). 
Now we prove inequality (7.5). Indeed, since 1 < e + t2rr or 0 <-tL  + rr, 

then, by this Basic Lemma and property (7.1), we obtain 

f1R,	= 	IckEN,lElk kI

+00 

pnr >
k=2, (El,.

+00 
(1 + N)CAT +

	

	 k_{1+0[(1_)+TT_1I } 
RflT 

k=2 
+00 

	

(1 + N)CAT [i +	k_{1+0[	_1)+rr] 
R;nr

<+00.
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Thus inequality (7.5) is proved. 

Proof of the Basic Lemma. Estimate (7.6): The proof is reduced to get 

\ - 

	

V(Q) CAIQ0I()) (Jui2(y)dY)	 (7.9) 

for all cubes Q with Q fl Q	0 where C > 0 is a fixed constant. Indeed (7.9) yields 

--I— 
(x) <CAIQoI \'	(f ui2(y)dy) 

for each x E Qo and consequently, by the Holder inequality, 

UQ 0

	I
/	r(X)4X)jX	 I i\

	ut(y)dy)	 u(x)dx 
IJQ 0 	/	 Qo 

(CA)-. 

To obtain (7.9) take an arbitrary cube Q with QflQ0 5A 0. If IQ  :5 IQol, then Q C 3Qo, 
so by (11 1 ) and the Fefferman-Phong condition

1 
V(Q) <C 1 V(aQo) <C i AIaQoI' 2/ 

1_.' 

(Lo
u t 2( Y )dy) 

'12 

(remind that a>3) 

<CiAIQoIi()) (jQ0 ut2(y)dy) 

If IQoI !^_ IQI, then Qo C 3Q, so by the Fefferman-Phong condition 

V(Q) :^ cV(3Q) <AI3QI4()) 
(13Q

u(y)
 

d) 

<cAQo )()_) 
(I1

) t2 

Q" 
U

Estimate (7.7): As above, the proof is reduced to

- 

	

V(Q) CAI3QoI(1) 
(J3Q0 

ut2(y) d)	 (7.10) 

for all cubes Q with Q fl Qii360. Clearly (7.10) implies

--i— 
0 I	,.I	I (x) CAI3Q	) —i (_L\ (

13Q O 
U '2 (y) d) 

Izr
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for each x E Qii and since Qii C 3Qo (see (7.3)), then by this last inequality 

fr(X)U(X (CA)rI3QOI) (f3Q O uf2()d )(f
Q 

u(x)dx
Qis 	 i, 

(CA)r. 

To prove (7.10) take a cube Q withQ fl Qi	O. For 5 1Q1, < IQoI then Q C 6Qo, so
by (H 1 ) and the Fefferman-Phong condition 

V(Q) C 1 V(6Q 0 ) < ClAI6QoI(1) 
(1( , Qo)

ut2(Y)dY)
 

C1AI3Q0I(') 
(13 Q O

ut )

 

Next consider IQo,	51Q.. Since 3Qo fl 16Q 54 0 and I3QoIk	116Q1*, there is 
c = c(n) > 3 such that 3Qo C cQ. The Fefferman-Phong condition yields the conclusion 
since

V(Q) <c'V(cQ) <c'AIcQ(') (f 
c'AI3Qor(') 

(f3 Q O,

ut2(y)dy2. 

	

 
Estimate (7.8): Since	'F = 5U,>0 V(Qf . , t]) (see Lem' ma 6.1) then to get (7.8) 

it is sufficient to obtain

'F(x)u(x)dx <CA r k (1)+H	 (7.11) JQA:I  
and Jk I 'I'(x)u(x)dx <cAr Jk_n[(1_ H	 (7.12) flnrr 

Q 	 0 

with
'F i (x) = sup V(Q[x,t])	and	'I'2(x) = sup V(Q[x,t]). 

0 < 2t <I x I	 0<trI<2t 

Here C > 0 is a fixed constant, k EN\{0, 11 and 1 Elk. 

The key for proving (7.11) is 

V(Q[x,t]) <CsV(Q[0,cix k i]) for 0< 2i <lx i and x  QkI (7.13) 

where c = c(ri) > 1, C5 = C5 (s,n,p,u,v,t i ,1 2 ) > 0, and k > 2. To get inequality 
(7.13) observe that I? < R0 < I x I for all x E Qkl = Q[xk,, R0 ] with 0 < 2t < l x i . Since 
lxi	ixk:I (see (7.4)), we can choose a constant c'1 = c(n) ^! ci such that lxi	clxk,i. 
Then by (H4 ) we have V(Q[x,t]) < C4 V (Q[0 , c ii x i]) C5V(QE0,cixk,i]).
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To deduce inequality (7.11) from (7.13) first clearly )I)i(x)	Cs V (Q[O , c I x k1I j ) for!
all x E Qkl . Next we obtain 

JQ k1	

(x)u(x)dx <c4v(Q[ocIx kl I])J

(by the last inequality)

r 

CS R '	[v(Q[OcIxklIJ)} (f u2(x)dx)'2 
Qk' 

(by the Hölder inequality if t2>1) 

('-) ( Ro	2'2

 XkjI 

X [V(Q[O,C)IlXktll)1r(J 
Q(O,cIrs,I] 

(by (H3)) 

I	 / & 
— c3C32 C

5
___ 
IXklI

Ir 
[("I

i(	i
	
(f

Q[O,e I lXkll) xk,I)' ' 1 V(Q[O, c IXklIi)  	
U12 

	

n[c+(i_)]	 r 
= cC2C(1___j)	 {A(Q[01c;IxklI])] 

(by the definition of	 '2) 

-L	
n[ - +(I	I )]*	 ] r A 

—

	

	\ IklI)	 (c IXklI)nT 

(by (H5))

	

12	12 

nrr 

i	R =(CC2CflAr(1_?J) 

(CscCC;)AT__k_fhi(I_)+TnI 

(by (74)) 

where c5 = c,5 (n) and c = c(s,n,r,ti,t2). 

For the inequality (7.12), it will be sufficient to prove that an analogy of (7.13) 
remains true for all x and i with jxj <2t and x € Qt, (k ^!.2). The keys are 

(i) R < c l(n )l x k,I	C4(fl)t 

(ii) Q[x, tj C Q[O, c4 (ri)i] withc4 = c4 (n) > 1. 
Indeed V(Q[x,i])	c5 V(Q[O,c4 (n)t]) for a constant c5 =cs(s,n,c4 ) because Q[x,t] C
Q[O,c4 t]. Further V(Q[x,t]) c5 C2 V(Q[O,(dc l )Ix k ,I]) by (H2 ) and since R0 5 c lI x k g I <—
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c4 t. So I) 2 (x) <cS C2 V(Q[O,(dcl)IxkIII) for all x E QkI and consequently the sequel for 
the estimate (7.12) will become as (7.13). 

Assertion (i) is true since c 1	Cl (n) > 1 and 

R0 < 
1 

1 X kI 1 :5 c iI x :I	c3 x 1 <2c3 t <max{2c3 ,4 + c2It = c4t. 

Remind that IxI	IXklI by (7.4) and here c2 = c2 (n) ^: 1 is the constant described in 
(7.2) and C3 = c3 (n) > 1. For Assertion (ii), take an y e Q[x,t]. Then 

II	- xi + xl <C2 + lxi [4+ c2 1 ^ max {2c3,4 + c2} = c4 

Thus, again by (7.2), we get QE x , tI C B(O,c4 ) C Q[O,c4tII 

Proof of Proposition 4.2. The proof is essentially reduced to get the assumptions 
in Theorem 4.1, from hypotheses (Hi), (H) and (H) and from the growth condition 

=v '-' EC. 
Hypothesis (H) implies (H 5 ) since 

A(Q[O,Rj) a i A(B(O,c2 ))

	

	 < a2	A 
a2A(B(O,c2R)) - (c2)nT 

for all R > R0 . Here c2 = c2 (n) > 1 is the constant defined by (7.2), and a 1 , a2 are 
constants depending on s,n,p,q,ti and i2 . Observe that lxi xii for lxii > 2R0 and 
x E Q[xi,Rol. This equivalence, with U12 E C, implies (H 3 ) with e = 1. Next let x, t 
with R0 <l x i and O<2t<Ixi. Since Utl,Ut2 EC, then 

V (QEx , tj )	a3 (--)" V(Q[O,a4lXQII)  a3V(Q[O,a4ixi]) 
jxi 

and hence (H4 ) holds. Hypothesis (H) implies (H 2 ) since for all R1 , R2 with R0 
R1 :^ R2:

V(Q[O,R2]) <a4V(B(O,c2')) a5V(B(O,c2R2)) 

a5 C1 V(B(O,Ri )) a6CiV(Q[0,2R1]). 

Finally to get (11 1 ), take a cube Q = Q[xq,R] C 6Qo with R R0 . Then Q E 
B(xQ,c2(n)). Note that ixQi < 3c2 Ro. For IX Q I < 2c2 then B(xQ,c2) C 
B(O,3c2 ) and hence 

(i) V(Q) <a7V(B(O,3c2)). 

For i xQI> 2c2 then jyj i xQl for all yEQ. Since ut2,ahl EC then 

(ii) V(Q)	a8V(B(0,a9ixQl)). 

If 3c	1?o, then by (H), V(B(O,3c2 )) C1 V(B(O,aRo)). In the case	3c2 
we use hypothesis (H) to obtain V(B(O,3c2 )) C1 V(B(O,aRo)). Estimate (ii) can 
be obtained in the same manner by using (H) or (H). Therefore the hypothesis (H1) 
holds I
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8. Proof of Proposition 2.3 

We will prove this result in four steps: 

(8.1) The weight functions u and a = v- P 1 1 satisfy the growth condition (C) 
(8.2) They also belong to the Muckenhoupt class A 
(8.3) (u, v) E A(s, p, q, 1,1) 
(8.4) Hypotheses (H), (H) and (H) are satisfied 

By Theorem 4. 1, then (8.3) and (8.4) imply (u,v)E A(s, n, p, q, 1, 1). By (8.2) and the 
reverse Holder inequality, the condition (u, v) E A(s,n,p,q, t i , t 2 ) is satisfied for some 
t i > 1 and t 2 > 1. Consequently we get M3 : LP - L and 13 : L -i L in virtue of 
Theorem 2.1. Therefore the proof of Proposition 2.3 will be achieved with the help of 
the following two lemmas. 

Lemma 8.1. Suppose 0 <7 a < +00 and R0 ^! 1. Let u(x) = IXI	X{Izl<R} + 
I x1'{>J O } . Then the following assertions are true: 

IRa ifo.<R<& (A) fIZl<Ru(x)dx	R	if R> R0. 

(B) The weight function u satisfies the growth condition (C). 

(C) The weight function u satisfies the Muckenhoupt condition A t for all t > 1 with 
0 <7	< nt. 

Lemma 8.2. LetO<-y<a,0<A,0<s<n, 1<p<+ooandO<q<p. Let 
U ( X ) =JXJI-n and u(x) = IXIa X{lzl<R0} + l x Ix{IzI>Ro } with .F? ^! 1. Define the 
function V =	as in Section 2 and suppose

 + 'Y <	S) !^ '\ ( 1- - +- 
'.'	p ) q	 P) P 

Then

	

V(R)	and A(R)	if R < R0 

	

V(R)	and A(R)	if R> I1 

since p = A(1 - ) + (s - n). Consequently 

A(R) c max {R,Rr} 

	

with p+ I <p+ <0 ^ p+	<p+ 

Lemma 8.1 yields immediately (8.1) and (8.2); and Lemma 8.2 ensures (8.3) and 
(8.4). Indeed, we are in the case of A = n + 4, and the main condition in Lemma 8.2
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Proof of Lemma 8.1. Part (A): If 0 < R R0 , then 

	

L<R	= Jy ii	dy 
II<R 

and, for R >R0, 

	

fl
u(y)dy = Illyy	 I y l dy + I	IyIdy 

I< R	 I<Ro	 JR0.(IyI<R 

Roy 

R	)• 

R. 

Part (B): If R0 < 1 R <2R, then by part (A) 

sup u(x) =	sup	 Rf-" <c-J--- f
	

u(y)dy. 
4R<IzI<2R	R<IxI<2R	 - R	IzI<R 

And for R<2R<Ro 

sup u(x)	sup	 R	
R"	

u(y)dy. 
R<IxI<2R	4R<IxI<2R	 IyI<R 

For R<'Ro<2R 

	

u (x )x{ I R<IxI<2R} = X l	x{1R<IxI<RQ}(X) + XIX{RO<IzI<2R}(X) 

, n) [A(R)x{!R<I<RO} + B(R)x{RO<IXI<2R}] 

where

	

if n<a	 {R	if fl<7. 
=	 -	and	B(R)= 

	

A(R) {Rc_n jf a<n	 R7	if y<n 

Remember that I RO < R < 2R0 or 	R. We estimate A(R) and B(R) by using 
part (A). For R0 R < R then 

I	 II	 u(y) dy
 fl y l< R	 fl.I<R 

1 1	yla_n dy	 u(y)dy 
R'Jy<j 

and for ho <R < 2R

	

I	R	R1 J u(y)dy 
R' •	

j	= 1 flyl<Ru(y) dy.
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Part (C): Take 1<zt< +co with	o< nt, and set 

M(Q) IQI (J u(y) d) (1 u- ' (Y) d) 

for all cubes Q. Since u,uiT e C (see Part (B)), then as in Proposition.3.1 the 
estimate of M(Q) is reduced to that of

1	 '-
Mo(R) = R	I	u(y)dy\ (flyl<RuT()dy

\Jlyl<R	I  
for all R>O. If R < R0 , then 

M,, (R) RRR(J(' H] =	 = 1. 

And for R> R0 we have

	

M 0 (R)	 = 1. 

Therefore M(Q) < C for all cubes Q and a fixed constant C > 0. 

Proof of Lemma 8.2. By the main hypothesis (with p = X(i —+ (s — n)) we 
have

0<P+=(s_n)+(1_)+ 

0>p+1=(s_n)+A(1_)+. 

If 0 < R < R0 then, by Lemma 8.1, 

V(R) R() 1 = 

and 11 
A(R) = V(R)(11,1<RU (y) dy) 	 +ck 	= 

Similarly for R> R0 we get 

V(R) R ( ' )	= 

and

U(y) 
(11.1<Rd)

	R[*I = 

Since
Op+ 

a  
— <p+ a . and
P	q	 p	q 

it follows that .4(R) c(s, n, p, q) max {R 1 , R} •
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