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Weighted Inequalities
for the Fractional Maximal Operator
and the Fractional Integral Operator

Y. Rakotondratsimba

Abstract. A sufficient condition is given on weight functions « and v on R™ for which the
fractional maximal operator M, (0 < s < n) defined by (M, f)(z) = supg,, |Q|"'-"l fQ | f(y)|dy

or the fractional integral operator I, (0 < s < n) defined by (I, f)(z) = fga |z — y|* " f(y)dy
is bounded from LP(R",vdz) into LY(R",udz) for 0 < ¢ < p with p > 1, where Q is a cube
and n a non-negative integer.
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1. Introduction

The fractional maximal operator M, of order s (0 < s < n) is defined by

(M, f)(z) = sup{IQI*"/QIf(y)ldy

@ a cube withQaz}.

Here nis a hon-negative integer, and throughout this paper @ will denote a cube with
sides parallel to the co-ordinate axes. The fractional integral operator I, (0<s<n)
is defined by

1) = [ J o).

Our purpose is to derive a sufficient condition on weight functions u and v on R", i.e.
non-negative locally integrable functions, for which T = M, or T = I, is bounded from
LY = LP(R", vdz) into LY(R", udz) when ¢ < pand 1 < p,q < +o0. Precisely, we give
a condition which ensures the existence of a constant C > 0.such that

(/ (Tf)q(z)u(z)d:c> <c(/ f’(z)v(z)dz:) (1.1)

for all f > 0. For simplicity, mequa.hty (1. 1) -will be often denoted by T': L? — L’
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Tnequality (1. 1) is fundamental in analysis since many classica.l operators can be
controlled by T It is well known [4] that (1.1) unphes o=v s =T e L, (R"™ dz) and

Q= (/ u(y)dy)%(/g?v = ‘(y)idy)l—%ﬁ*sA o (1.2)

for all cubes’ Q So by ‘the Lebesgue dxfferentlatlon theorem a necessary condition to
(1.1) implicitely assumed is ’l—, — é. . ;,Consequently, for M = My (i.e. the classical
Hardy-Littlewood maximal operator) the embedding M : LP — L% has a non-trivial
sense only for ¢ < p.

For 1 < p € ¢ < +00, Sawyer [4] proved that M, : L? — LZ if and only if there is
a constant S > 0 such that

A e e
' gsut [va = ] (a:)v(:r)d:z)%wt

for all cubes Q with XQ bemg the characteristic function of Q. For 1< q- <p< +oo
the author proved in [3] that M, : L? — L? if and only if

(L [(M— 3 hwxa (o )] o) iz) %

<S(/n[v = xZAka,] (z) v(z)dm)

for all cubes Qk a.nd a.ll /\k > 0 w1th S being mdependent on /\k and Qk The main
point here is the integration on the left restricted to UxQ and which implies that (1.4)

is not ‘a trivial condition for (1.1). Other cha.racterlzatlons for this embeddmg were
found by Verbitsky [6] and D.: Gu [1].

(1.4)

e

Although these characterizations of the embedding M, : L — L are ava.ilable,
it is not easy in general to'decide whether the' test condition (1.3) or (1.4) holds since
these conditions are expressed in term of M,. The necessary and sufficient condition
found in 6] or [1] is"also too difficult for any practical use. Such situations lead us to
mvestlga.te a sufficient condition for T : L?Z — L%, when ¢ < p, not too far to a. suitable
necessary condition and not ‘expressed in term of the operator T. For the range p <'q a
solution to this problem is known and due to Pérez [2]. One of the contribution of this
paper is to bring a similar result when ¢ < p.

The condition (u,v) €. A(s, P g, t1,t2) (ti,t3 > 1) found, is inspired from the
necessary condition introduced by Verbitsky [6], and can be viewed as a substitute of
the Fefferman-Phong condition:(u,v),€ A(s,p, ¢,t1,t2) which means .

! 'J? 1. Lot l_y(l_F) . _A
|Q| At l(lél/ "(y)dy) (ﬁév‘?—‘x‘(:{)'@) . <A
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for all cubes Q. For the range I < p < ¢ < +00, Pérez [2] got M L? — L% whenever
(u,v) € A(s,p,q,t1,1) for some t; > 1. This condition is almost necessary in the sense
that A(s,p,q,1,1) (i.e. (1.2))isa necessary condition for this embedding and (u,v) €
A(s p,q,t1,1) becomes equivalent to (u, v) € A(s 7,4,1,1) when 0 = v~ 7= T € A,

(v, v) € A(0,t,t,1,1) for some t > 1. For ¢ < p, we will see (in Theorem 2.1)
that M, : LY — LI whenever (u,v) € A(s,p, q, 1, 1) for some t; > 1, with also the
fact that A(s P,q¢,1,1) is a necessary condition for the embedding. Moreover (u v) €
A(s P,¢,t1,1) becomes equivalent to (u,v) € A(s 1208 1, 1) when o =v v—Ll € Awo

The weight functions u and v for which I, : LP — L¢ with 1 <p< <gq < +oo have
been characterized by Sawyer [5]. However, llke in the case of . M,, the correspondmg
necessary and sufficient condition is expréssed in terms of I, itself. Thus Pérez (2] proved
that I, : 'L} —= LY whenever (u,v) € A(s, p,q,tl,tg) for some t1,t; > 1. Slmlla.rly for
g < p we will get this last embedding from (u,v) € A(s D, q,t1,t2). :

For a large class of weight functions u and v it is more and less easy to decide
whether the Fefferman-Phong condition (u,v) € A(s,p,q,t1,t2) holds (see Section 3).
However the suitable Verbitski-condition (u;v) € A(s D, ¢, t1,12) we use, appears to be
more difficult to be checked than (u,v) € A(s, p,q,t1,%2). Thus our second purpose is
to precise some .cases of equivalence of these two test conditions (see Theorem 4.1 and
Proposition 4.2 in Section 4). Such a study can be useful for people domg applications

and explicit computatlons
.

2. The first result

Let ti,t2 2 1 and let u, v be weight fuﬁc@ionsf sueh that . _
0« / v_r_'—Ll(y)dy < 400 and 0< / u'(y)dy < +o0
' Q ‘ ’ ' ' Q

for all cubes Q. Define the function ® = D, np,u,vty,t; DY

3(z) = sup { 101 (IQ}I / -',»-‘—L:(y‘).dg.)*(l_%)(%l A u'=<y)dy)'—’%

3

For ¢ < p we write L .
(uv ‘U) € A(s,p, q, tl ) t2)
if ' ST
/ ®"(z)u(z)dz < 400 w1th r=JA

R" P—q’
Really this condition is a variation on a condition introduced by Verbltsky [6] and Wthh
corresponds to (u, v) € A(s P, 1,1). Since ®(z) > {|Q|.. (I_T fQ y) dy)‘l(l

(T_[ fQ u'?(y) dy) -zr} for each’ cube @ and z € Q, then clearly (u,v) € A(s,p,q,tl,l)
implies the usual Fefferman-Phong condition (u,v) € A(s ot 1). As we will see
below, the converse lS in genera.l false R

Our first main- result yields to a suﬁicxent (resp necessary) condxtlon whlch ensures
the embedding T: L} — L% when ¢ < p, with T = M, or T = I,. :
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Theorem 2.1. Let 1< p< +00,0<g<pend0<s<n (0<s in the case of
L,):

(A) Suppose M, : LY — L% or I,: L? — L. Then (u,v) € Z(s,p,q, 1,1).

(B) Conversely, suppose (u,v) € X(s,p,q,t;,l) for some t; > 1. Then M, : L? —
L%. Similarly there 13 I, : LY — LY whenever (u,v) € A(s,p, q,t1,t2) for some ty,t; >

Part A was proved by Verbitski [6]. When ¢ = v~ 7T € Ay and g < p, then (u,v) €
A(s P, 4,1,1) is a necessary and sufficient condition for M, : L? — L¢ (0 < s < n).
Indeed, for such o, by the reverse Holder inequality, the condltlon (u,v) € A(s, 7,q,1,1)
implies (u,v) € Z(s,p,(j,tl,l) for some ¢; > 1. Similarly, when o,u € Ay and ¢ < p,
then I, : LY — LY (0 < s < n) if and only if (u,v) € A(s,p,q,1,1).

Although for many weight functions it is easy to check the condition (u,v) €
A(s,p,q,11,t2) (see Proposition 3.1), it is not trivial to decide whether (u,v) € X(s,p, q,

t1,t2). This problem will be studied in Section 4, for the moment consider the case of
power weight functions.

Let w(z) = |z|* ™ and v(z) = |z[* " witha>0and 0 < B <np. For 1 <p< g <
+00, it is known (see also Section 3) that M, : L? — L% as well as I, : L? — L% if and
only if % =s+4 %. Also observe that w,o = vTRT € Ay and (w,v) € A(s,p,gq,1,1).

For ¢ < p we have the following negative result.

Proposition 2.2, Letl <p< +00,0< qg<pandleta, 8, v, w defined as above.
Then M, and I, are not bounded from Lg' into LY.
Therefore (w,v) € Z(s,p,q, 1,1) is not equivalent to (w,v) € A(s,p, q,t1,t2).

Although for power weights the embedding M, : L? — LI with ¢ < p is false, we
can modlfy these weights to get a positive and exp11c1t exarnp]e

Prop051tlon23 Letl <p< +00,0<g<p0<y<a<+ooand0<f<np.
Define v(z) = |z8~" and u(z) = |2|® "X {1z1<1}(2) + |27 ""x{jz)31}(z) and suppose
%—%Ss<%—3ql. Then My : LY — L% and I, : L? — L.

For instance take p = 2, ¢ = l,bn =3,a=3,=4,v =1 and v, u defined as in
Proposition 2.3. Then M, : L? — L% as well as I, : L? — LY for all s with % <s< 1.

3. Th'e_ Feﬁ'érmén-PhQng 'conditidn (u,v) € A(s,p, (j, t,t,)

The results in this section are not new (more and less known), but we write them for
convenience and completness.

The problem of finding explicit examples of weights u and v for which (u,v) €
A(s,p,p,1,1) was considered in [2]. For instance, let 0 < s < '% and 1 < p < +4oo0.

Ifu=we L], and v = (M,,w), then (u,v) € A(s,p,p,1,1). In order to describe
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more weight functions satisfying (u,v) € A(s, p, q,t1,2) we introduce the growth weight
condition (C), for which w € C means there are c,C-> 0 such that

sup  w(z) < =—

w(y)dy
1R<|z|<2R R® lyl<cR

for all R > 0. Condition (C) is very general since the case of radial non-increasing
or non-decreasing weight functions are included. Also, if w is essentially constant on
annuli, i.e. w(y) < cw(z) for L’z'l < |z] £ 2]y, then w € C.

For u, v~ 7T € C then to obtain (u,v) € A(s,p,q,t1,%2) it is sufficient to check the
similar condition for balls B(0,R) = {y € R™: |y| < R} centered at the origin.

Proposition 3.1. Let 1 < t;,t, < 400, and let 0 < s < n,1 < p < +oo and

0 < g < +oo with 2 i 3 < % Let u and v be weight functions with u'?, v~ - T € C.
Then :

(u:v) € A(s’p)qatl’t2) — (u’v) € AO(s’p’qatlst2)~

This last condition means there is A > 0 such that

- ;(1_1') V A
stn(i-y)( 1 - AR ¢ £
R ﬁ/ vT T (y)dy F/ u'?(y) dy <A
|z|<R |z|<R .

for all R > 0.

We emphasize that, in applications, the condition (u,v) € Ao(s,p,q,t1,¢2) is more
interesting than (u,v) € A(s,p,q,t1,%2), since we avoid here the brake due to the inte-
grations on arbitrary cubes non-centered at the origin.

A first consequence of this result is N

‘Corollary 3.2. Let s, p, ¢ and t1, t2 be as in Proposition™3.1. Let u(:c) |z|*—" ‘
and v(z) = |z|#7", with0 < a < +0 and 0 < B < np. Assume t2 < 2- fora<n

and ty < 21 for n < B. Then (,0) € AGs P, t1,t2) if and only fﬂ =s+ e,
Note that here u,o = V7T € A . By Theorem 2.1 and Rema.rk 2.4in (2] we obta.m

Corollary 3.3. Let 1 < p < ¢ < +oo with }l—,— % < %, and let a,f and u,v as in
Corollary 3.2. Then M, : L} — LY as well as I, : L? — LI if and only if-g =s+ %
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4. The-condition (u,v) € A(s;p,q,t,t;)

Now our purpose is to explicit a mean for checking the condition (u,v) € ;f(s Py g, t1,t2).
Let t,,t2 and u,v be as in the beginning of Section 2. Define the two cube functions
V= vs TP, 8, T and -A AJ n,p,q,u,v,8 (2 by

V(@)= IQI'(IQI/ "(y)dy) &,(1-(%)(%'44#2@).(1‘1/)#

and ( )
=t N\ =
nte3 t A R t2 "
A@ =101+ (i1 [ o) dy) (g Lwwa)™
The function ¢ defined at the beginning of Section 2 is given by . I
3(z) = sup{wcz) Q> x} | (4.1)
Forq<p,letr>'lvwith%:%—;{Then A |
A@ =11 v@) (g7 wrwrar) e

Clearly (u,v) € A(s, p, q, .tlA, tp) if a.nd only if ihere is A > 0 such tHét
A(Q) <A for all cubes Q. A (4 3)

In other words, (u,v).€ A(s, p, q,tl,tg) if .A( ) is umformly bounded ThlS fact is, not

sufficient to get (u,v) € A(s n,p,q,t,t2), for which more growth condltlons on.A and
V are needed, as we will describe now.

To be explicit, we assume the existence of a cube Qo = Qo [0, Ro), centered at the
origin and with sidelenght Ry >0, and for which the following hypotheses are satisfied:

(Hy) v(Q) < < C1V(aQo) for a.ll cubes Q c 6Q0 with |Q|n < Ro where a>3.

(Hz) V(Q[O Rg]) < CQV(Q[O dR]]) fOl‘ a.ll R],RQ with Ro < Rl < Rz,
-.: whered > 1. ‘.

(H3) fcz[xl Ro) ¥ u?(y)dy < 03(1—01)"‘ fQ[o cxlzll] ut (y)dy for all z; with |x1| > 2R0'
" (so Q[z1, Ro] C (3Q0)). .

(Hs4) V(Q[z,t]) < CsV(Q[0,c|z]]) for all z € R™ and ¢t > 0 with Ry < |z] and 2t < |z|.
(Hs) A(Q[0, R]) < #+ for all R > R,.

Here
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C1,C2,C4, A, 7 are non-negative constants depending on s; n, p, g, t1, ta, U, v’
C3, € are non-negative constants depending on u, t5, n
¢1 = c1(n) is a constant depending onn such that ¢;(n) > 1.

Hypothesis (H, ) is some kind of control of V(Q) for each cube @ the centre of Wh]Ch is
near the origin and with a small size. Condition (H2) means that R — V(Q[0, R)) is an
almost decreasing function for R > Ro. When u'? € C, then (H3) is satisfied with € = 1
since |z| % |zq, | for z € Q) = Q[z;, Ro]. The estimate of V(Q), for each cube Q with a
centre far from the origin and small size, is described by (H4) A control of A(Q[O R])
for large R.is given by (Hs). .

The second main result of this paper is as follows.

Theorem 4.1. Let 0 < s <n, 1 <p< +00,0< g<pandl <t),t, < +oo.
Assume hypotheses (H,) - (Hs) are.satisfied with 1 < € + rrty (r = 7Z-). Then the
Feﬂ'erman-Phong condition (u)v) € A(sl p,q, 4 ) t?) ‘mphes (U, ‘U) € ;{(slpa q, t 7t2)~

Therefore with the hypotheses of this result, (u,v) € X(s,p, g,t1,1) is equivalent to
(u,v) € A(s,p,q,t1,1) for ¢ < p. And by Theorem 2.1, M, : L? — L whenever (u,v) €

A(s,p,q,t1,1) for some t; > 1, and I, : L? — L% whenever (u,v) € A(s,p,q,t1,t2) for
some ty, % > 1. '

For weight functions satisfying the growth condition (C), the above hypotheses (H,)
- (Hs) can be simplified when there is Ry > 0 for which the followmg conditions are
fulfilled (B(0, R) denotes the ball centered at the origin and with radius R > 0):

(H}) V(B(0, R)) < C1V(B(0,aRy)) for all R < Ry, where a > 3.
(Hj) V(B(0, Ry)) < CoV(B(0, R,)) for all R, and R, with Ro < R, < Rj.
(Hj) A(B(0,R)) < R,,, for all R 2 Ro where 1 >0and A >0 are ﬁxed

Prbpoéition 3.1 and 'Theorem 4.1 lced to

Proposntlon 4.2. Let s,p,q and t,,t; as in Theorem 4.1. Suppose u'z ot =
v € (C) and assume hypotheses (H}), (H3) and (H5) are satisfied. Then (u,v) €
Ao(s,p,q,t1,12) xmphes (u ) € A(s pig,t1,t2). Thus (u,v) € Ao(s,p,q,t1,1) becomes
equivalent to (u,v) € Ao(s p,q,t1,1).

Now we give the proofs'of our results. Theorem 2.1, Proposition 3.1 and Corollary
3.2 will be proved in Section 5. The next, Section 6, is devoted to the proof of Proposition
2.2. The proofs of Theorem 4.1 and Proposition 4.2 will be presented in Section 7. The
last, Sectlon 8, will contam the proof of Proposition 2.3.
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5. Proofs of Theorem 2.1, Proposition 3.1 and Corollary 3.2

We start by giving the

Proof of Theorem 2.1. The fact that M, : L} — L% implies (u,v) € ;f(s 7,q,1,1)
was proved by Verbitsky [6] via a theorem of Pisier on factonzatxon trough LP*°. Since

(M,f) < C(I,f), then (u,v) € A(s P,4,1,1) is also a necessary condition for I, : L? —
Le.

To prove Part B, suppose (u,v) € .Z(s P,q,t1,t2) for some ¢; > 1 and ¢, > 1.

Precisely, we take ¢t = 1 in the case of M, and t; > 1 in the case of I,. Wlth g<pand
r= —EL the Holder inequality yields

s

(/ n(Tf)"(x)u(z)dx)% <(/[ "(Tf)”(r)ﬁ(r)dr)%( L @) 6D

where & = u®~?. Then u'? € L}, .(R", dz) since for all cubes Q

ﬁfqah(y)dy
[lQl CIA %(y)dy)”_’?rwaf(?u"(y)dy) r;;]_,zp
g (éﬂ/c?“"(y)dy) _
[IQI (IQI / b () dy).,—‘,r] »

' ‘ . _ - X .
where p' = ;;Ll, and so IQI;(ICIQI fQ _Ll(y)dy)‘_ll?(ﬁfq "(y)dy)"” < 1, ie
(¥,v) € A(s,p,p,t1,t2). Owing to the Pérez theorems [2: Theorems 2.1 a.nd 2.11]
this last condition implies T : L? — L? i.e. there is C > 0 such that

(/L;H(Tf)p(x)ﬂ(x)dz)% < C(/IR fp(z)v(:z)d:z:)% (5.2)

for all f > 0. By (5.1), (5.2) and condition (u,v) € X(s,p,q,tl,tg) weget T: LP — L3 11

Proof of Proposition 3.1. Clearly (u,v) € A(s,p,q,t1,t2) implies (u,v) € Ao(s;
P;q,t1,t2). Indeed, for each ball B = B(0, R) it is sufficient to take the smallest cube
Q containing B for which B C Q C B(0,cR) with ¢ = ¢(n) depending only on n.

Conversely, suppose (u,v) € Ao(s,p,q,t1,t2) for some A > 0 and let Q = Q[zo, R]
be a cube centered at zo and with sidelength R > 0. If |zo| < 2R, then Q C B(0,cR)
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for a fixed ¢ = ¢(n) > 0, and with ¢ = v~ 5T we have

w@= a3 (g [vra) (g o)

< c(ery*li-3]

| | & (1)
(5 o 0) ™ (G L7 08)

where C = C(s,n,p,q,t1,t2) > 0. If 2R < |zo/, then |z| = |z¢| for all z € Q. So using
u'? g € C, then '

-

1 / ¢ C / ¢
— | o' (y)dy £ —— o' (y)d
101 Jo” WU S o Loy’ DU

1 C
- u'? d - t2
|Q|/Q | (y) Yy S (Clxol)" /B(olqzol)u (y) dy

with ¢,C > 0 not depending on R > 0 and |zo|. Since < 2, then

1
P

A(Q) < C'(clzo)y*" 14 3]

1

- & (-3) ‘ &
(@ Lo 09) (G ™ 0%) ™

Thus A(Q) < Csupgsq A(B(0,R)) < CA for all cubes QR

Proof of Corollary 3.2.  Note that [(a — n)t; + n] > 0 since t; < -2 for a < n.
Then for all R > 0

/ u'?(y) dy =/ |y|llemtatnl=ngy ~ Rl(a—n)tatn] (5.3)
lvl<R lyl<R ,

The condition 0 < 8 < pn implies 0 = v~ 57 € L! _and

loc
[ oway= [ wl5EFelray xRl (5.4)
lyl<Rr lyl<R

Similarly [n + ¢, %Eg] > 0, since ¢; < né{—}; for n < B3, and so

/ o' (y)dy = / |yl [" :_:%+"]—"dy =~ R[“ :_:%+"],
lyl<R lyl<R

By these computations

A(B(0, R)) = Ag np.grumin ta(B(O, R)) = R

where,\:s+n(%—l)+%[n-ﬂ]+%(a—n)=s—§+%=0, and then (u,v) €

P
AO(S»P, (Ivtl:t2) i1
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6. Proof of Proposition 2.2

The proof of this result is based on the following two lemmas.

Lemma 6.1. Let 1 < p < Fo00, t1,t; > 1, and u,v weight functions. Then

P(z) = Panpuvit itz (z) = sup {V(Q)| Q is @ cube with Q > z}
~ ¥(z) = sup {V(Q[z, R))}.
R>0 .

Here and in the'seqﬁellof the paper Qz, R] denotes the cube centered at z and with
sidelenght R > 0, and ® = ¥ means ¢;$ < ¥ < ¢, ® for fixed constants ¢;, c; > 0.

Lemma 6.2. Let g < p and p > 1, w(z) = |z]*~" end v(z) ="|z|8~" with a > 0,
0< B <npand E =s + e Let d =9, P11 be defined as in Section 2. Then

&(z) ~ |z with _5;(s_n)+_+‘[n+;ﬂ](1_£)<0,
: P p—1 P

By Theorem 2.1/(A), to prove that M, does not send L? into LY (and consequently

I, does not map L? into LY), it is sufficient to sce that (w v) ¢ A(s D4, 1, 1) And this
1s the case since

/ ®7( a:)w(a:)d:c—/ IJ:I" "'"da:—+oo
with r = —QL ’

Prove of Lemma 6.1. Obviously \IJ < C®. Converscly, let Q be a cube and
z € Q. There is ¢ = ¢(n) > 1 such that Q C Q[z,cR] with R = |Q|=. Then

P A (1) [0\
(@ / v}»_-x(y)dy) (ﬁ / u’<y)f?y).. .

, A 0-3) ‘ \ 75
< cer (g [, CFee) (e o u‘=(y)dy)

for a constant C > 0 which does not depend on the cube Q. Therefore ®<CY¥ and
consequently & =~ ¥ i : :

V@ =lalf

Proof of Lemma 6.2. We ﬁrst observe that € is non- negatwe Indeed, the condi-
tion é =s + and ¢ < p imply - -

Cema® n- 8] '_l L B
—e=(s n)+,p.+[n-}-p__ ](1 p’) s+ — =

= (3 + 3_‘— é) +
q p

(1 1) g (1 1)
al-—-)=al.-~--]<0.
p q ) P q

Since ¢ ~ ¥ (by Lemma 6.1), it is sufficient to estimate

= ocisi<an [Rs’fn (/Q[z,R] e dy) l </<e,[:'§éli”(y)dy) 1_%]
Rs-n( /Q o w(y) dy) ’ ( /Q '[:,R] U(y)dy) }

U,(z) = sup
0<2R<|z|
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because ¥ ~ ¥, + ¥,. Note that w and ¢ = v~ 7T are doubling weight functions (since
w,0 € Acs) Now let R > 0 and consider |z| < 2R. By (5.3) and (5.4)

/ w(y) dy ~ / w(y)dy ~ R®
Q[z,R] lyl<cR . . X

[ o [ oy~ riEt
Qlz,R] - lyl<cR: :

where ¢ = ¢(n) > 1. For 2R < |z| we use the fact that |y| = |z| for all y € Q[z, R] to

get
R n
/ w(y)dy = (—) 2|
Qlz.R) ||

. R n f n-p
. / o(y) dy ~ (ﬁ) 2|55
Q[z,R] : z :

Finally, by these last equ1va.lences and —¢ =5 + - é < 0 then

¥,(z) =~ sup {R’+F_P] = |x|"
. 0<|z|<2R

Yo(z) = sup [( )|z|’+__£]_‘zv|x|‘.‘ o
o<2rglz L\ [2]

as we claimed B

7. Proofs of Theorem 4.1 and Proposition 4.2

In this section, first we do some preliminaries, then we state a basic lemma. By this
last we deduce the proof of Theorem 4.1, and finally we give.the proof of this lemma.
Prelimiraries. Let Qo = Q[0, Ro| be the cube centered at the origin and with

sidelenght Ry = |Q0| . We decompose the space R™ as a union of cubes Qxi whose
interiors are pairwise d1s301nts a.nd which have a common size R =-Ry. More prec1sely,

we write : :
=JE (7.0)
kEN . ' .
with
Ey=Qo

E1=3Q\ Qo= |J Qu

leT,

= (2k +1)Qo \ (2k - 1)Qo U Qrt (k>2)

CET,
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Moreover, there is a constant N = N(r) > 1 such that the cardinality #ZI; of I; satisfies

#Iy < NE 1 (7.1)
For each cube Qi = Q[zxi, Ro] (centered at z4; and with sidelenght Ry > 0) then
B(zkt1, 4 Ro) C Qut C B(zki, 21 Ro) C 2Qki = Q[zx1,2R,) (7.2)

for a constant c2 = c2(n) > 1. Here B(.’B,t) = {y e R |J: - y| < t} denotes the ball
centered at z and with radius ¢ > 0. On the other hand

o QucCi3Q (le1y). (7.3)
Note also that '
|z] = |zl = kRy  (2<k €N), (7.4)
moreover (2R,) < |zx| and 3Ry < |z|.
We assume the Fefferman-Phong condition (u,v) € A(s,p,q,t1,t2) holds for a
constant A > 0. With the assumptions (H;) - (Hs) our purpose is to get {(u,v) €

X(svpv‘htlst?)a
&7 (z)u(z)dz = &7 (z)u(z)dr < +oo (7.5
/ ( keé/o (z)u() )

(r = S ) where ® = &, 1 p,u,v,1,,1, 15 defined as in (4.1). Consequently it is sufficient

:::::

to estimate each quantity ®"(z)u(z)dz by using the following
Qrt ) g

Basic Lemma. Assume the hypotheses of Theorem 4.1 are satisfied. Then there is
a constant C > 0 such that

/ ®"(z)u(z)dz < CAT (7.6)

o

/ &"(z)u(z) dzx VS CA" (leLy) | - (7.7)

/ - 8"(2)u(z) dz < CA'————k alg+-2)+] ackeny (18
Quxt

where € > 0 and 7 > 0 are the constants in hypotheses (H3) and (H5)

Now we prove inequality (7.5). Indeed, since 1 < € + tor7 or 0 < L GRS 1) + rr,
then, by this Basic Lemma and property (7.1), we obtain

[ee@a= > [ e

keN, leT, Y Qu

T kol (o))

RinT
k=2,1€I,

—{1+n[ﬁ+(l-;‘2—)+rr—l]}

<(1+N)CA" +CA”

<(1+N)CA" +CA'N

<S(1+N)CA™ |1+ =——

RS"., Zk {1+n[—(: ])+rr]

< 4o00.
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Thus inequality (7.5) is proved.
Proof of the Basic Lemma. Estimate (7.6): The proof is reduced to get

V(@ < el ([ wray) (79)
Qo
for all cubes Q with Q N Qo # @ where C > 0 is a fixed constant. Indeed (7.9) yields
&(z) < CAQo| +(1-%) (/ u's(y) dy)
Qo

for each £ € Q¢ and consequently, by the Holder inequality,

/Q @ (u(e) de < (CayIQo=(-#) ( /Q ) dy)_% /Q u(z)de
<(cay,

To obtain (7.9) take an arbitrary cube @ with @N@Qo # 0. If |Q| < |Qol, then Q@ C 3Qy,
so by (H;) and the Fefferman-Phong condition

1
rig

V(@) < CrV(aQs) < Cuala@ol ) ([ uny) i)

Qo

(remind that a>3)

< CyA1Qo 2 (-%) (/

Qo

re

u"(y)dy)

If |Qo] < |Q], then Qo C 3Q, so by the Fefferman-Phong condition

.

rtag

V@) < 6@ < caa 18 ([ ueyan)
< cA|Qo~+(1-%) </Q.,Uh(y)dy>_ﬁ?-

Estimate (7.7): As above, the proof is reduced to

1
vt

V@ < canal 08 ([ o) (7.10)

Qo

for all cubes @ with Q NQu # 0. Clearly (7.10) implies

®(z) < CA|3Qo|~+(-%) (/SQO W) dy)‘d:.
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for each z € @i and since Q11 C 3Qo (see (7.3)), then by this last inequality

<

/ ) @r(z);(x)@ < (ICA)’|3é0|.“"‘%) ( /3 ;o.;‘;(;)d?;) —% ( ]Q Hlu(z);d-z.‘).
<(CA). C '

To prove (7.10) take a cube Q with' QN Qy; #0. For 5|Q|» < |Qo|* then Q C 6Q,, so
by (H,) and the Fefferman-Phong condition

reg

V(Q) < C1V(6Q0) < CLAI6Qo] (1 %) (/
. (6
< CIAI3Q0|5("%) (/3

Next consider |Qo|= < 5|Q]=. Since 3Qo N 16Q # 0 and [3Qo|7 K [16Q|~, there is
¢ = ¢(n) > 3 such that 3Qo C ¢Q. The Fefferman-Phong condition ylelds the conclusmn
since.

u"(y)dy)

o

=

u‘?(y)dy) '

Qo

V@) < V(eQ) < ekl H(-5 (/Q "(y)dy)%

1

< dA3Qo (%) (/w“u'z(y)dy)_”_’.

Estimate (7.8): Since & = ¥ = sup,, V(Q[ t]) (see Lemma 6.1) then to get (7.8)
it is sufficient to obtain

/Q ) \Il-;'(a:)u(:al:.).dx <c AR; k_,nA[é%(l.ié)“T], G
and
‘ ¥(e)u(@)de < car gl +(-3)+rr] (7.12)
Qut R

with .
U,(z) = sup V(Q[z,1]) and Ty(z) = sup V(Q[z,t]).
0<2t<]|z|

o<lz|<2t
Here C > 0 is a fixed constant, k € N\{0,1} and | € I~
The key for proving (7.11) is

V(Qlz, 1]) < CsV(QI0, clzxil]) for 0<2t <lz| and z€Qu  (7.13)

where ¢} = ¢j(n) > 1, Cs = Cs(s,n,p;u,v,t;,t2) > 0,and k > 2." To get inequality
(7.13) observe that Ry < 3Ro < |z| for all z € Qi = Q[z 1, Ro) with 0 < 2t < |z|. Since
|z| % |zki| (see (7.4)), we can choose a constant ¢} = cj(n) > ¢; such that |z| < c|zx].

Then by (Ha) we have V(Q[z,t]) < CsV(QI0, a1 z]]) < CsV(Q[0, ¢} |zail).
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To deduce inequality (7.11) from (7.13), first clearly ¥(z) < CsV(Q[O0, ci|zii]]) for
all z € Q1. Next we obtain

/Q W@ule)de < G5 [V(Qlo,c’llmll)]r /Q u(e)ds

(by the last incquality)

< CgR;'(l_%) [v(Q[O,c',kal”)]r(/

Qxt

L
‘2

u'?(z) dz)

(by the Holder inequality if t3>1)

< cﬁch;'(‘"G)<ﬂ) g

|z kil
x [V(Q[O:CHIHH)] (/ ’ u"(x)dz) ’
Q[o,ci |zu]
(by (H3)) '
ot or( o\l 0]
= 4eioi( i)

x [(calzun?("%)wcz[o,c;vmu)( Lo ™) " |

= 4ol ég(ﬁ)“[%+(l_%)] [4(eo.cean)]

£
(by the definition of A=A, np.qu v.ey.1p)

o et 0-2)p a4 e
sactar ()™ [pa]

|zt

(by (Hs))
L 1 Ro nlg+(1-%)+r]
- c!ct;cr Ar ( ) )
(3 3 5) Rgrr Izkll

1

2

t2
nrr

R}

< (eschCT €g) AT k(54 (-25)477]

(by (7.4))
where ¢5 = ¢s(n) and ¢} = cj(s,n, 7, t,12).
3 3

For the inequality (7.12), it will be sufficient to prove that an analogy of (7.13)
remains true for all z and ¢ with |z| < 2¢ and z € Qx (k >.2). The keys are

(i) Ro < cx(n)lzui| < ca(n)t
(i) Qlz,t] C Q[0, ca(n)t] with:cy = cq4(n) > 1.

Indeed V(Q[z,t]) < esV(Q[0, es(n)t)) for a constant c5 =' cs(s,n,cq) because Q[z,t] C
Q[0 cst]. Further V(Q[z,t]) < csC2V(QI0, (dey)|zki]]) by (Hz) and since Ry < ¢;|zi| <
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cat. So ¥a(z) < csC2V(Q[0, (dey)|zri]]) for all z € Qi and consequently the sequel for
the estimate (7.12) will become as (7.13).

Assertion (i) is true since ¢; = ¢)(n) > 1 and
1
Ry < §|zk1| < alzu| € cslz| < 2¢3t < max{2¢3,4 + e2}t = cqt.
Remind that |z| = |zxi| by (7.4) and here ¢; = c2(n) > 1 is the constant described in
(7.2) and c3 = c3(n) > 1. For Assertion (ii), take an y € Q[z,t]. Then

t t t t
vl < ly -zl + |2l S c25 + 2] S [4+ o] 5 < max{2es,4 + e2} 5 = caz-
Thus, again by (7.2), we get Q[z,t] C B(0,cs) C Q[0,cqt]
Proof of Proposition 4.2. The proof is essentially reduced to get the assumptions
in Theorem 4.1, from hypotheses (H{), (H}) and (H}) and from the growth condition
ut? o = »"7T €.

" Hypothesis (H}) implies (Hs) since

A
( )nr RnT

A(Q[0, R]) < a1 A(B(0,¢2 %)) < a2 A(B(0,c2R)) <

for all R > Ry. Here c; = c2(n) > 1 is the constant defined by (7.2), and a,, a; are
constants depending on s,n,p,q,t; and t;. Observe that |z| = |z,]| for |z:] > 2R and
£ € Q[z1,Ro). This equivalence, with u2 € C, implies (H3) with ¢ = 1. Next let z, ¢
with Ry < |z| and 0 < 2¢ < |z]. Since 0", u'? € C, then

V(Qle.1) < as(‘ l) V(QI0, aslzql]) < asV(QI0, alzl])

and hence (H,) holds. Hypothesis (H}) implies (Hz) since for all Ry, R with Ro
Rl S Rg:

IA

V(Q[0, Rz)) < a4 V(B(0,c282)) < a5 V(B(0,c2Rz))
< 0501V(B(0 R])) < GGCIV(Q[O 2R1])

Finally to get (H,), take a cube Q@ = Q[zq,R] C 6Qo with R < Ro. Then Q
B(zg,c2(n)®). Note that |zg| < 3c;Ro. For |zg| < 262% then B(zq,c2®)
B(0, 3¢, -;3) and hence

(i) V(@) < arV(B(0,3c: ).
For |zg| > 2cz§ then |y| ~ |zq| for all y € Q. Since u*?,0* € C then

(i) V(Q) < asV(B(0, asl|zql))-

If 3c; & < Ry, then by (H}), V(B(0,3c2 %)) < C,V(B(o aRo)). In the case Ro < 3c2 &
we use hypothesis (H}) to obtain V(B(0,3c2% B)) < C1V(B(0,aRy)). Estimate (ii) can

be obtained in the same manner by using (H}) or (H3). Therefore the hypothesis (H,)
holds i :

N m
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8. Proof of Proposition 2.3

We will prove this result in four steps:

(8.1) The weight functions u and ¢ = v~ 7T satisfy the growth condition (C)

(8.2) They also belong to the Muckenhoupt class Ago

(8.3) (u,v) € A(s,p,q,1,1)

(8.4) Hypotheses (H}), (H;) and (H}) are satisfied .
By Theorem 4.1, then (8.3) and (8.4) imply (u,v) € A(s,n,p, q,1, 1). By (8.2) and the
reverse Holder inequality, the condition (u,v) € A(s,n,p,q,t1,t;) is satisfied for some
t; > 1 and t; > 1. Consequently we get M, : L2 — L% and I, : L? — L¢ in virtue of

Theorem 2.1. Therefore the proof of Proposition 2.3 will be achieved with the help of
the following two lemmas.

Lemma 8.1. Suppose 0 < v < & < +o0 and Rg > 1. Let u(z) = |z|° " X{jz1<ro) +
[Z]" ™" X {1z1>Ro}- Then the following assertions are true:

R* if0<R<
(A) f|z]<R"($) dz =~ { RY ,‘; R<> Ro— fo

(B) The weight function u satisfies the growth condition (C).

(C) The weight function u satisfies the Muckenhoupt condition A, for allt > 1 with
0<y<a<nt.

Lemma 8.2. Let 0 <y <, 0< A, 0<s<n,1<p<+c0and0<q<p. Let

o(z) = |z|*™" and u(z) = |:c|°‘“x“,|530) + 12|17 "X {z|> R0} with Ro > 1. Define the
function V =V, ;41,1 as in Section 2 and suppose

A(l—l)+z<(n—s)§/\(1-l)+g.
p q p p

V(R)~ R**%> and A(R)~ R**% if R<R,

Then

V(R)~ R**% and A(R)~R°*% if R> Ry

since p= A(1 — %) + (s —n). Consequently

A(R) < cmax {Rg+%,Rg+%}

withp+%<p+%<0$p+%<p+%.

Lemma 8.1 yields immediately (8.1) and (8.2); and Lemma 8.2 ensures (8.3) and
(8.4). Indeed, we are in the case of A = n+ ';—:-?, and the main condition in Lemma 8.2

B_¢ 8_12 —s_ 8 -1 _B81
becomesp p$s<p qwherep—s p,a.ndsoOSs P-i-pa.nds p+q<0'
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Proof of Lemma 8.1. Part (A): If 0 < R < Ry, then

/ u(y)dy = / ly|*~" dy ~ R®-
lvyI<R _ lyl<R
“and, for Rz‘Ro, '

/ u(y)dy = / yl"="dy + / Iyl "dy
ly|<R lyI<Ro Ro<|y|<R

o o Ra _ R‘Y
~ RS+ R"— R = R" + (RQ —R{,’):R”’(1+°T—°—)z
~ R"’..
" Part (B): If Ry < 1R < 2R, then by part (A)
sup- u(z)= sup Jz|"7T"=R""<L cin/ u(y)dy.”
LR<|z|<2R LR<|z|<2R R Jiz1<r
And for %R <2R< Ry
sup u(z)= sup |z|*"xR""= L u(y) dy.

L R<|z|<2R L R<Jz|<2R - R" Jiy<r
For %R <Ry <2R

w(@)X (3 ralzi<zr) = 12177 X (1 R<Iz1 <o} (2) + [21"" "X {Ro<|z1<2R} (2)

< ¢(a,v,n) [A(R)X{%R<lz|<Ro} + B(R)X{Ro<|z|<2R)
where
Re™™ fa<n’ R;™" ifvy<n

RY™™ ifn<4.

A(R) = { and  B(R) = {

R™" ifn<a

Remember that %Ro < R < 2Ry or R~ Ry. We estimate A(R) and B(R) by using
part (A). For 3Ry < R < R then

1 1 o
R MR " — ly|* " dy = —n/ u(y) dy
’ R™ Jiy\<r 7 R Jizcr
1

1
RI™"~R" ™= R]”"— / ly|* " dy ~ = / u(y) dy
o ° R . R Jin<r

a.fldforRoSRSZRo

1 |
Ly T A Y RO
lyI<R

e A L

= om
R" Jiy<r
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Part (C): Take 1 < t < +oo with 0 < v < a < nt, and set

m@ =1e( [ u(y)dy)%( L dy)_l_% |

for all cubes Q. Since u,'u_tJ—_1 € C (see Part (B)), then as in Proposition. 3.1 the
estimate of M(Q) is reduced to that of :

MR =2 (/kan u) dy) % (~/Iy|<R u-‘_l—l(y‘) dy)f_%

for all R > 0. If R < Ry, then

My(R) = R‘"R%R!"*Ti?lll'-l-].z R-nHeHn-2-g42 _
And for R > Ry we have
Mo(R) = R"REIRI-T=I0-2] = 1.

Therefore M(Q) < C for all cubes @ and a fixed constant C > 0l

Proof of Lemma 8.2. By the main hypothesis (with p = A(1 — %) + (s — n)) we
have

1
0§p+g=(s—n)+z\(1—~>+
p p

QR WIR

1
0’>p+z:(s—n)+A(1——)+
q p

If 0 < R < Ry then, by Lemma 8.1,

L1

V(R) ~ RO~ (1-3)+5 _ pet
and
1_1
A(R) = V(R) ( / u(y)dy) ~ pet3veli-i] - pevs
lyI<R
Similarly for R > R, we get
V(R) ~ RE-MHA(1-3)+3 _ pe+i

and

al~

"~ reritali-] 2 perd

ARy =v(R)( /Imu(y)dy)

Since
(43
0Sp+3<p+— . and p+l<p+1<0,
p q p q

e 1
it follows that A(R) < ¢(s,n, p, q) max {R:;+ ‘ ,Rg+’ }n
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