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Abstract. We present a definition for monogenic functions of higher spin and establish the 
Fischer decomposition with respect to this notion. 
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0. Introduction 
Let Rm be the Clifford algebra over the Euclidean space Rm with basis lei } i < j<m and 
defining relations e ek + eke, = 28jk (1	j, k < m) where 8jk is	the Kronecker 
symbol. Then the Dirac operator 0 is given by O = e3 O2 (x = x,e,) and 
monogenic functions are R,,,-valued solutions of the equation o f(x ) = 0. Monogenic 
functions of this type may transform under the spin group. Spin(m) in two different 
ways. First note that Spin(m) is a subgroup of Rm consisting of elements of the form 
S = w1. . . w 2 whereby w3 E Rm (j = 1,...,2k) are unit vectors (i.e. w = —1). Next 
let a - a be the main anti-involution on R. determined by a  = b  and e = — e1. 
Then we may consider the two representations 

L(s)f(x) = sf(.xs)	and	H(s)f(x) = sf(xs)


transforming monogenic functions into monogenic functions. 

The first representation corresponds infact to fields with spin 1. Usually this 
representation is defined for spinor-valued functions; but spinor spaces may be seen as 
minimal left ideals of the real Clifford algebra Rm (or in fact the complexified Clifford 
algebra Cm which may be represented by spaces of the form Cml with I being a primitive 
idempotent). The above definitions carry over to the complex or hyperbolic situation 
and in particular to the Minkowski space, where fields with spin 1 correspond to the 
free electron field (see also [11). 

The second representation corresponds to fields with spin 1. Note hereby that special 
examples of monogenic functions transforming in this way are functions with values in 
the space Rm,k of real k-vectors. Monogenic functions like this may be interpreted as 
solutions to the Hodge system for harmonic forms. In particular, for k = 2 and m = 4 
(Minkowski space) these functions correspond to the electromagnetic field (see, e.g., 
[3)). 
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• But the above definition of monogenicity does not include functions with higher 
order spin. This is due to the fact that the Clifford algebra Rm only contains the basic 
representations of the spin group Spin(m) which are the representation i(s) : a -, s a on 
spinor spaces and the representation h(s): a - sa. on the spaces Rm, k of k-vectors. To 
construct models for irreducible representations of the spin group Spin(m) with higher 
order weights one may use multilinear functions on R" (or even on Rm) with values in 
Rm, called Clifford tensors. In our paper [4] we studied the algebra of Spin(m)-invariant 
operators on Clifford tensors while in [5] we introduced so called rnonogenic tensors thus 
leading to explicit models for all irreducible representations of the spin group Spin(m) 
(see also [2]). But due to the existence of an inner product on the Clifford algebra Rm, 
spaces of multilinear functions on Rm may also be mapped isomorphically on k-fold 
tensor products Rm ®.. ® Rm of Rm. Hence monogenic functions with higher order 
spin can be defined as function on R with values in Rm 0 . . .0 Rm. But there is even a 
better choice. The tensor product Rm ®. 0 Rm itself, as a vector space, is isomorphic 
to a Clifford algebra Rm. k over Rm.k. This is the idea we use in this paper. 

In Section 1 we give the definition of monogenic functions with values in Rm.k and 
we discuss the action of the spin group on them. In Section 2 we prove the Fischer 
decomposition for Rm. k -valued homogeneous polynomials corresponding to this notion 
of monogenicity (further examples of Fischer decompositions related to this one may be 
found in [6, 9]). 

Different approaches to Dirac operators of higher spin were presented in [2, 7, 8]. 
In our approach no specific choice of an irreducible representation space is needed. 

1. Definition of monogenic functions of higher spin 

Let {e,,t} 1<)<rn be an orthonormal basis of the space R', k generating the Clifford 
algebra Rm.k. Then for £ = 1,. . . , k we put ô = 

Definition 1. A function f : Rm -i Rink is called Inonogenic of higher spin if it 
satisfies the system of equations O f(x) = 0 (t = 1,. . . , k). 

Next, using the already abvailable Clifford algebra R we may introduce embedding 
maps R + Rm.k as follows. For  = 1,.. . ,m put (c,), = e,,t . This together 
with the property (ab)t (a) (b) determines the map (.). In particular, for each s E 
Spin(ih) we may consider the element st = (s)t, thus leading to k different realizations 
of the spin group Spiñ(m) inside Rm.k. 

On functions 1: Rin R.k we may now consider the so called spin -representa-
tion

Lk(s)f: f(x) - s 1 "skf(ä.$) 
and we have the following 

Theorem 1. For any function f :	...+ R.,, which is monogenzc of higher spin, 

the function Lk(S ) f is still monogenic of higher order spin. 

Proof. It is sufficient to note that for £ 56 n and s t E Spin(m), the element s 
commutes with the n-th Dirac operator a. and that the elements si ( = 1,. . . ,m) are 
mutually commutative I
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To make the link with functions with values in tensor products of Rm, note that 
the operators O are anti-commutative. Hence if we introduce new Clifford algebra 
elements E1 ,. .. , Ek, the operators D = ck Et are mutually commutative and any 
function f : Rm - Rm.k satisfying the equations 8. f = 0 (1 = 1,. . . , k) still satisfies 
the equations D f = 0 ( = 1,... , k). 

Note also that the algebra generated by the basis elements e,,tEt (j = 1 . . . in, £ = 
1,... k) is isomorphic to the k-fold tensor product Rm ® OR,,, of the Clifford algebra 
Rm. Hence by considering the functions f with values in a somewhat larger Clifford 
algebra Rm.k+/, one can incorporate tensor-valued as well as Rm.k-valued functions. 

2. The Fischer decomposition 

We first introduce the Spin(m)-invariant Fischer inner product for homogeneous poly-
nomials R with values in Rm.k. On Rm. k we consider the main anti-involution a - a 
determined by ë = -e, t (t 1,... , k) arid ab = ba. Then the Fischer inner product 
is given by

(R(x), S(1 )) = L(a)S()	(i. E Rm). 

It is readily seen that this inner product is invariant under Lk, i.e. 

(Lk(s)R, Lk(s)S) = (Rn , S) 

for all s E Spin(m). 

Next consider for x E R" = Rm, i the corresponding vector variables (a), = 
= xj etj which are anti-commuting Rm.k-valued functions satisfying (x) = = 

- x (j = 1,... k; £ = 1,... in). Then we may consider the space of polynomials 
R of the form

(ERm), 

R, , _ 1 being homogeneous of degree n '- 1, and we have the following 

Theorem 2 (Simple Fischer decomposition). Any homogeneous polynomial R 
admits a unique orthogonal decomposition of the form 

R(x) = P(x) + >.j Rj_i(x) 

whereby Pn is a homogeneous monogenic polynomial of higher. spin, i.e.	= 0. 

Proof. The theorem follows from the fact that the Fischer inner product is positive 
definite so that Rn may always be decomposed as an orthogonal sum R(x) = P(z) + 
>j, R_ i (x), and from the orthogonality and the definition of the Fischer inner 
product it follows that P is monogenici 

To arrive at ' a complete Fischer"decomposition we consider the spaces P(nj) of ho-
mogeneous polynomials of degree n and type j to be defined recursively as follows 
P(n,o) is the space of all homogeneous polynomials of degree n while P(n,j) is the sub-
space of P(nj.. i ) of polynomials of the form R,_1(x) with R,_ 1 E P(n_.I,j—l). 
We now come to
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Theorem 3 (Complete Fischer decomposition). Any polynomial R(,) E P(n,,) 
admits a unique orthogonal decomposition of the form R(,,) = P(,) + R(,i) with 
R(1) E l(n,j1) and whereby P(n, j) E 7(n,j) is (j + 1)-monogenic of higher spin, i.e. 
Ox "Ox	P(n)0. 

—I

Proof. The proof is similar to that of the previous theorem taking into account 
that the j-monogenicity condition is satisfied by any homogeneous polynomial of degree 
k which is Fischer orthogonal to the space	I 

By. recursive application of this theorem it follows that any homogeneous polynomial 
Rn of degree n admits a unique orthogonal decomposition of the form 

R = 

whereby P() E P(n,j) is left (j + 1)monogenic of higher spin. This in fact establishes 
the canonical form of the Fischer decomposition. One can now look for characterizations 
of polynomials of the form P(,) E P(n,j) which are left (j + 1)-monogenic. They can 
be characterized in terms of solutions of special systems of equations similar to the 
monogenicity condition. 
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