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Ekman Equation 
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Abstract. The Ekman partial differential equation for the stream function of turbulent mass 
flow in shallow and small-sized surface waters are discussed. The Dirichlet problem-for the 
Ekman equation is shown to be well-posed in a weighted Sobolev space. Conditions for the 
existence of classical solutions are given. The dependence of regularity and asymptotics of the 
solution on the properties of the depth profile are studied. 
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1. Introduction 
In the present paper we are concerned with the Dirichiet problem for the partial differ-
ential equation

Lu - j (Vh, Vu) = kA(Vh , QW)	in Q (1) 

which models the wind-induced hydrodynamic flow in small and shallow surface waters. 
Here the bounded domain Q C R 2 describes the projection of the considered surface 
water on the plane R2, (,) denotes the Euclidean scalar product in R2 , u : Q - R 
the stream function, h: Q -* [0, +) the depth profile, W E lR 2 the wind vector, 

Q=(J ) 

a clockwise rotation by an angle of f and, finally, kA > 0 an empirical constant. 

In [17] equation (1) was derived in the given form and discussed under the Dirichlet 
condition

u=uo	on i9Q	 (2) 

and a finite difference scheme for the numerical solution was presented. However, typical 
depth profiles h vanish at least on parts of ôl, and up to now there has been no proof 
that problem (1) - (2) is well-posed for that case. The aim of the present paper is 
to prove existence and uniqueness of solutions to problem (1) - (2) and, furthermore, 
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to discuss regularity of the solution under possibly weak assumptions. To this end 
we transform equation (1) into divergence form and consider an associated variational 
problem	.

a(u,v) = b(v)	for all v	 (3) 
in a weighted Sobolev space H(Q). Using the Lax-Milgram lemma we obtain unique 
solvability of the Dirichiet problem (1) - (2). If, in addition, Vh is bounded this allows 
us to infer the existence of an element I E L2() such that the solution u of problem 
(3) satisfies

Lu=f.	 (4) 

Hence, we conclude that u E H(cl). We are able to strengthen this regularity result, 
if ci is a polygonal domain and the depth profile h fulfils h(x) g(x) dist(x, 8cl) with 
a function g satisfying g(x) ^! c > 0 for, all x. In this case we obtain u E H'+(Q). 

Further, the asymptotic behaviour of the solution in a neighbourhood of smooth parts 
of the boundary will be derived. 

2. Weak formulations, existence and uniqueness 
If we derived a weak formulation of problem (1) - (2) by multiplying equation (1) by 
a test function v and integrating by parts we would obtain a non-symmetric bilinear 
form. Moreover, without assuming rather undesirable conditions on the depth profile 
h it proves to be difficult to obtain existence and uniqueness of a weak solution that 
way. Weak coercivity (cf. [1]) can be obtained forh > ho > 0 by using a maximum 
principle (cf. [4)). The assumptions of the Lax-Milgram Lemma can be fitted under 
certain conditions for ci and h expressed in terms of embedding constants (cf. [131). 
Both results hold in H'(ci), and both require rather unrealistic restrictions on h. 

A proper variational formulation of problem (1) - (2) is obtained after multiplying 
equation (1) by h 2 . In fact, observing that 

h 2 Lu -.- 2h 3 (Vh, Vu) = div(h'2Vu) 

we can rewrite equation (1) in the form 

div(h 2 Vu) = kA h 2 (Vh,QW).	 (5)


We introduce the weighted Sobolev space 

H = Hh 2(ci) = C-(ci)	 ' (6)!

with completion taken with respect to the norm 

	

l v ii = 11v11h2	(j h 2 IVvi 2 dx)	 (7) 

'Observe that ii	makes 'H a Hilbert space with scalar product 

(u, V) = f . h ? (Vu,Vv)dx. ',	 . (8)
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For the boundary condition u 0 we assume that there exists an element fto E Hi(Q) such 
that

tr(üo,ô) = uo	and	fh_2IVtoI2dx <+00.	(9)

Now we introduce the difference w = u - ü0 and obtain for it the equation 

div(h 2 Vw) = /c A h 2 (Vh,QW) - div(h 2 Vüo)	(w E H)	(10) 
with homogeneous boundary conditions. Multiplication by v E H and integration by 
parts yields

f h2(Vw,Vv)dx= 
—j 

h 2 (e,vh)vdx - fo h 2 (Vüo, Vv) dx	(11)


where we denote £ = kAQW . We define 

a(w, v) . =
j h

2 (Vw, Vv) dx 

b(v) = - 
j 

h 2 (, Vh)v dx - f h 2 (Vüo, Vv)dx.. 

Hence, the variational problem 

Find a function w H such that for all v E H there holds 
a(w,v)=b(v).	 (12)


is set up. As a matter of course we can state the following 
Lemma 1. The bilinear form a( . ,.) is symmetric, bounded and coercive on Hx H, 

both constants being equal to 1, i.e. 
a(w,v)	lI w IlIl v Il	and	a(w,w)	wii.	 (13)


In fact, the second relation holds as all equality. Further, we have the following 
Lemma 2. The terms 

j
h_2(e,vh)vdx	and	jh_2(Vto, Vv) dx 

both define linear continuous functionals on H. 
Proof. Let v E C000(1) C H. Then 

Jn h 2vVhdx = - j vV(h)dx = j h'Vvdx. 

Hence, by the Holder inequality 

fh_2vVhdx < (j hVvdx) (jldx) =IIvII2mes(Q).

Consequently, the first term in the statement of Lemma 2 is a well defined linear operator

for v in the dense subspace C000 (1) of H and its norm is bounded by IIv"mes ( f ) = 
k A I WI mes(1l). Hence, there exists a unique extension of this operator onto the whole 
space H which satisfies the same bound. To f(Vüo, Vv)h 2 dx we apply once more 
the HOlder inequality which yields 

in h2 1( Vüo, Vv )I dx	Il v il IIüoII 
and the lemma is proved I



332	K. Frjschmuth and J. Rossmann 

Remark 1. In the last inequality the norm Il uoll is finite due to (9), although the 
inclusion ü 0 E H does not necessarily hold. 

Lemmas 1 and 2 together with the Lax-Milgram Lemma provide a proof of 

Theorem 1. The variational problem (12) possesses a unique solution w E H. An 
upper bound on the norm of the solution is defined by the given wind force kAIWI, the 
measure of the domain and the boundary condition, namely 

w Il	k Al W l\/mes( cl ) + Iluoll	 (14) 

with ü 0 from (9) holds. 

For h < h0 < +00 we have H c H'(Q), and we are able to deduce the existence 
of a solution u = iio + to to equation (1) in the Sobolev space H'(l). Moreover, under 
reasonable restrictions on lVhl and for a suitable class of domains Q, the finiteness of 
the norm 1 jull implies stronger regularity. 

3. Regularity of the solution 

We denote by r = r(x) the distance of the point x to the boundary aci and by p a real 
function on C(1l) satisfying the conditions 

(i) c i r(x) 5 p(x) 5 C2 r(x) 

(ii) D) p(x)I <cr(x)I'I+' 

for x E Q, where C1, c2 and c, are positive constants independent of x. Such function p 
always exists (see, e.g., [18: Chapter 6/Section 2]) and is called regularized distance of 
x to Oft If Ol is smooth, we can set p = r. 

The goal of this section is to prove regularity assertions for the solution of problem 
(1) - (2) in the case when the depth profile h has the representation 

h(x) = g(x)p(x)	 (15) 

where 0 is an arbitrary non-negative real number and g is a real function on COO(Q) 
satisfying the inequality

g(x)^!go>O	in ft 

We restrict ourselves to the case when 11 is a domain of polygonal type, i.e. the boundary 
oci of ci is piecewise smooth and in a neighbourhood of each corner the domain ci is 
diffeomorphic to a plane wedge 

K={x = (x i, x 2 )ER2 : _ 0 <arg(x i +ix2 )<+ 0
1
	(16) 

where 0 < Oo < 7r. From (15) and the conditions on p it follows that 

D''(h 	V )l < c,,, r
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for every multi-index a, where cc are constants independent of x E Q. We define the 
space V4() as the closure of C(1) with respect to the norm

1/2 

UII%fI() 
= (j	IQI <,r2+) iDui 2 dx) 

It is evident that the norm in H is equivalent to the norm 

1/2 

H u ll = UP
 r 2f lVul 2dx)	.	 (17) 

Moreover, from the Hardy inequality it follows that the last norm is equivalent to the 
norm

/ p	 \1/2 

lull	(.1 = 	
(r22 1u1 2 + r 2 IVu12)dx) 

in C(). Consequently, H coincides with the space V.(1?). 

In the following we will prove that the variational solution of the boundary value 
problem (1) - (2) belongs to the space H 1 (). We consider at first the boundary 
value problem

Au - 2h(Vh,Vu) = (,Vh)	in Q 
u=O	on 

with homogeneous Dirichiet condition which leads to the variational problem 

a(u , v) = jh_2 . (,Vh) . vdx	for all v E H.	 (19) 

Obviously, every solution u E H of this variational problem is a weak solution of the 
differential equation (18). Since h'Vh and (,Vh) are smooth in Q, we have the 
inclusion u E H(Q).	

0 

We observe now what happens, if we apply a diffeomorphism x' = c(x) to equation 
(18). First note that the space V4 is invariant under diffeomorhisms. Indeed, let 

r(x1 ) = inflx' - y )l = inf lk(x) - 
y'Eac^' YEKI 

be the distance of the point x' = k(x) to the boundary ô' of the domain ' = 
Then it follows from the differentiability of k that r K (x') cr(x) and, analogously, 
r(x) <c r,c (x'), where c is a positive constant. Hence tc induces an isomorphism V4() - 
V(cl'). The operator which arises from the Laplace operator A via coordinate change 
x —* x' is a second order differential operator with smooth coefficients in Q, while the 
k-image of the operator u — 2 h' (Vh, Vu) is a differential operator of first order with 
coefficients of the form a(x') h	- (a E C°°(cl)). 

For the investigation of the smoothness of u up to the boundary we need the fol-
lowing lemma.
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Lemma 3. Let K be the plane wedge (16) and let 

	

L 
=	

a(x)	+	a(x)_	 (20) 

be an elliptic differential operator in K with coefficients a13 E C00(k) and a 3 E C°°(K) 
such that in K

	

a , ,(x) - a , (0) < e	and	I D a aj	cr" 

for every multi-index a = ( 0 1, 02) with I cel	1-2 (1 E {2,3 .... }) and e a sufficiently 

small positive real number. Furthermore, let u E Vt4, 2 (K) fl H,2 (K) be a solution o 

of the boundary value problem

	

Lu=f	in K ^ 

	

u=0	on OK 

where f E V±- 2 — ,(K). Then tz E V± 1 _ 1 (K) and 

I u IIvt	(K) <c (ui 11V 1-21-I'--' (K + llll V —	(K))	 (21) 
-0+  

with a constant c independent of u. 

Proof. We denote by Lo(x,D) the principal part of the operator L. Since u e 
Vt4 1 _ 2 ( K ), we have Lu - Lo(0,D)u E V± 1 _ 1 ( K ) . Consequently, u is a solution of 
the problem

	

Lo(x,D)u=F	in K 

	

u=0	on OK 

where F = f - (L - Lo(x,D))u E V± 1 _ 1 ( K ) . Let {U1,} > 1 be a countable covering 
of K such that dist (U, OK) = diam U,, =: d. Furthermore, let ib, (v > 1) be smooth 
functions satisfying the conditions 

supp	C U,	 = 1 in K,	lDI cd.	(22) 

If x E UR , then x' = -	=: U' 	= 1. We define the function u1,

by the equation

u(x') = ',(dx')u(dx') = )(x)u(x). 

Obviously, u, is equal to zero on the boundary of U, and the support of n is contained 
in U. Using classical estimates for solutions of elliptic equations in the domain U,, we 
get .	. 

	

(K)	cd 2 llu v ll q : (u)	 - -0+-i	 -	(23) 
<cd2 (uu Lo o D) u vII I2(K)+ 

11_ 
-2(K)
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with a constant c independent of u and u. Since for Jal > 1 

la,(d,x') - a1,,(0)I < e	and	ID(a1j (d,,x') - a(0)I < cd 

from (23) it follows that 

11 U lI V'	(K)	cd2 (Il Lo(dx', D) U"112
Hl2(U + lIuVllHl(U)) 

<c (Il Lo( x , D) ( v u )ll,,2	+ IlIII '5+ -I i2()) 

< -	IV2	(K) +	pEJ IIPllt	(K)) -5+I-t 

where I,, denotes a set of integer numbers such that >EJ = 1 on U. We can 
assume that there exists a number N such that every of the sets I, consists of not more 
than N elements and every i is contained in not more than N of the sets I,,. Using 
equivalence of the norm in V(K) with the norm 

/+

u ll = 	II	Ullv(K)1/2 

we get the estimate (21). This proves the lemma I 

Since the differential operator in (18) has the form given in the foregoing lemma, as 
a consequence of this lemma the following theorem holds. 

Theorem 2. Let u E H be a solution of the variational problem (19) and function h 
has the representation (15) with a function g E C0o (i) satisfying the inequality Ig(x)l 
go >0. Then u E V±(l) for I EN. In particular, 'u EH'()). 

Proof. If suppu fl ôl = 0, then the assertion is trivial. Suppose that suppu is 
contained in a neighbourhood of any boundary point. (Otherwise, we apply a suitable 
diffeomorphism. As we have seen before Lemma 3, any diffeomorphism transforms the 
differential equation (18) into the equation Lu = 1, where I E V± I_, and L has 
the form (20). For sufficiently small supp u it can be assumed that the conditions on 
the coefficients of L in Lemma 3 are satisfied.) Then with no loss of generality, we 
may assume that the domain ci coincides with a half-plane or a plane wedge in this 
neighbourhood. In both cases we can apply Lemma 3 and obtain u E V±fl+j_l(1). For 
functions with arbitrary support this assertion holds by means of a suitable partition 
of unity on Q. Using the fact that the space V±fl+j_I(l) is continuously imbeddèd into 
H l ( Q) for 1 > 1 + (cf. (16: Theorem 11), we get u E H'(fl). The proof is 
complete I 

We consider now the boundary value problem (1) - (2) with inhomogeneous Dirichlet 
condition. Under condition (15) assumption (9) can be characterized as follows. 

Lemma 4. Let u0 be an arbitrary function on ac. Then there exists a function 
a E H' () with properties (9) if and only if
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a) u0 is a constant in the case /3 > 

b) u O E H4(aQ) if 0< 3< . 

Proof. Let W() be the closure of the set of all functions u E C(l) such that 

1/2 
II U IW S () = (II u II 2() + j	11r2 0 ID'uI 2 dx)	<+	 (24) 

with respect to norm (24). Then the function ü 0 in (9) belongs to W. (cl). In case 
b) the trace of each function from W(1) belongs to the space H'3 (a) (cf. [15: 
Lemmas 1.1 and 1.2]). 

We consider the case 3 ^ . Let ho be a function from W() and {u}> 1 C 
C°°() fl W(Q) a sequence converging to ü 0 in W(?). Since fn r 2 IVuI 2 dx < 

we have VuIan = 0 and therefore h ,Ian = c = const. From the Hardy inequality 
it follows that

J
r— 2 ,6- 2 h - c I 2 dw < cf r— 2 

0	 0 

with a constant c independent of ü and c,. This implies I c,,	cu,wi	Anal-
ogously we obtain ICn - CmI	CIjtLn - tL mIIW	Hence the limit of the sequence

{c}> 1 exists and coincides with the trace of ü0 on aQ I 

Remark 2. In both cases /3 > 1 and 0 < 1 of Lemma 4 the function u 0 can be 
extended to a function ü 0 E W. fl + 1 _ 1 ( 1l ), where I > 1 is an arbitrary integer (cf. [15: 
Lemma 1.2]). Since WLfl1_ I (1) C H(1l) for I ? /3 + 1 (see [16: Theorem 3]), we 
have ü 0 E H'(c?). 

Let u be a solution of problem (1) - (2) and let ho E W! 1 _ 1 (cl) for 1 e N be an 
extension of u 0 . Then Afio - 2h' (Vh,Vüo) E V3 1 _ 1 (1) for 1 E N and w = u - 
is a solution of the equation 

Lw - 2 h (Vh, Vw) (, Vh) - ho + 2 h' (Vh, Vu 0 )	(25) 

with homogeneous Dirichlet condition. Since the right side of this equation belongs to 
the space V..	for 1 e N we can apply Lemma 3 and obtain u E H'. 

4. Asymptotics of the solution in a neighbourhood 
of smooth parts of the boundary 

Let u E H be a solution of the boundary value problem (18), and let x and	be

smooth cut-off functions which are equal to one in a neighbourhood U of any point 

E t3Q arid equal to zero outside of a neighbourhood U' D U such that xII' = X. We 
suppose again that the function h has the representation (15), where g E C°°(Q) with 
g(x) g > 0. For simplicity, we further assume that aQ coincides with the x2-axis 
in the neighbourhood U'.
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The function tu can be considered as a solution of the problem 

	

L(t,bu) - 2h (Vh, V ( tbu )) = F	in Q	
(26) 

	

bu=O	on aS2 ^ 
where

F =	, Vh) + 2(Vt, Vu) + u	- 2h' (Vh, Vt,b)u. 

We prove at first a regularity assertion for the derivative of O u in x2-direction. 
Lemma 5. If u E H = V' # (Q) is a solution of problem (18), then the inclusion 

E V.(ci) 

holds. 

Proof. Let v be an arbitrary function in ci and 6 0 0 an arbitrary real number. 
Then we define the function V6 by the equality 

vo(x i , x2) = _1 ((v( x 1 , x2 + 5) - v(x i , 

For sufficiently small 5, the function ( OU)6 satisfies the equations 

h 2 L(t,1u)ö —2h 3 (Vh,V(u) 0 ) = h 2 F6 +2h2((h'Vh)6,V(u)) in ci (27) 

(u) = 0	 on Q. (28)


Hence Lemma 1 yields 

ll( bu )ollH < c h 2 F6 + 2h 2 ((h 1 vh) 6 , V(t4'u)) MH.	 (29) 

where H denotes the dual space of H. We show that the right side of this inequality 
can be majorized by the sum of the norm of F in V', (Q) and the norm of u in V(ci). 
For every smooth function v with supp v C U' we have 

II v61Iv 0 8 (0) = f r— 2 v61 2 dx 
-	Jci 

= i x2 
110 

—(X I, X2 +tS)dtdx 

Consequently, we obtain 

in 
h 2 F0 v dx 

= Vn 
F (h 2 v)_ö dx 

< c Il F llv o o (Il v llv o n ) + llv_olIv(o)) 

c ll F lIv. 0 llvllv(n)
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and, therefore, 11 h2 F5 1 1 ,,	c II F IIv o (n) < +. Furthermore, 

2h 2 ((hvh)6 , V(bu))	<2h_2 ((hvh)5 , V(u))

1/2 

(ja
r22 r2 ' V(u)I 2 dx

 

< 

Thus, we get the desired estimate for the right side of (29). The constant in this estimate 
is independent of 6. By the Fatou lemma we further have 

= Iiiri(u) 6	<urn Iu)s II ox2	V'(n)	 V'(c1)	6.o 

Hence (29) yields the assertion of our lemma I 

Theorem 3. Suppose that the function h has the representation 

h(x) = 9(x i ,x2 ) . fl 

in the neighbourhood U' of x°, where g E C() with g(x)I ^! go > 0. Then the 
solution u E H of the boundary value problem (18) admits the decomposition 

fl+ 1 

xu = xi 9(0, X 2)	+ u(1) 
13+1 

where	E 2	 V—' 2,3 —	 2 '6—j(Q).if,6 > and u	E 	(c?) if f3 < . Here £	kA W2 is 
the first component of the vector £ and e is an arbitrary small positive number. 

Proof. Rewriting (26) we have 

o (_-20  
- xl

, ) 

where
G = F— O

2 (u) +2g (Vg,V(u)). 

Hence
+00 

_____ - 2$ 

Ox1 -
	J e-2 G(, x2) dx + x C(x 2 ).	 (30) 

ri 

We write G in the form

' G(x) = '(x)e 1 139(0,x2 )x 	+ Go (x)
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where
Go (x) = O(x) (e 1 /3 (9(x i ,x 2 ) - 9(0, X2))	 + (t,Vg)x) 

+2(V/', Vu) +ub —2/3x 50-0 u 

- 2g (Vg, V)u — 22(u) + 2g	(Vg, Vu). 

Since i4'u E V(l) and E!±2 e V(1l), the function G0 belongs to the space V(l). 
Hence for arbitrary e > 0 the Hardy inequality yields 

fn x —i+2max(efl	+oo —) 

f	2Go(e,x2)dj
2

dx l
ri 

	

^ Cf	2m(efl) I x2 Go(x i , x2)I2dx 

Cf x2IGo(xi,x2)I2dx. Ii 

Therefore, the function	G0(, x 2 ) belongs to the space V,? ( l), where ,c  
if /3> 1 and ,c —20 -+ e if /3 < 1 . Let a 1 and a2 be the functions defined by 

	

a i (x 2 )= max {: (e, x2) =1 }	and a2 (x 2 )= Max {: (,x2)0}. 

Then

X 1 Jfie' (e, x 2) t1 9(0,x2)d 

/ a i (z 2 )	a2(z3) 

= fit1 x9(0,x2)	J	d + f	X2)	d 
ZI	 al(z2) 

= L i 119(0,X2) ( - x + c 1 (x2)) 

for all x2 satisfying the condition 74'( 0 , x2) = 1. Multiplying (30) by x we obtain 

X 
au 

= x (t 1 go(0,x 2 )x + c2 (x2 )x) + R Ox1 

where R E Vç0(1). It is evident that C2 E L2(Ol flu), since x- R — L g(0, x2)x Eax,0	 2$	0 V_(fl). This implies X c2( x2) x l E V__ 1 (l). Consequently, 

au 
X — = xti g(0,x2 )x + R1
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where R 1 E V°(c) . Using Lemma 5 from this we can conclude that 

E V,(cz). 

0+1 
Since xu - x' g(O,x2) ki- = 0 on oci, the Hardy inequality implies 

II	 II 

xu -	g(0, x2)	< c IIV(xu - xe i 9(0, x2)_-_II fi+iII	-	 fl+1II 
IIV_ 1 (I)	II	 IIV(t) 

0+1 
Thus, xu - xi 9(0,x2)	j- e V,(Q). This proves the theorem U 

5. Appendix: The Ekman model 

In an attempt to keep the paper self-contained we are going to outline the derivation 
of the partial differential equation (1) from continuum physics. However, for details 
compare [5, 17] and the papers cited there. 

As our starting point we take the general 3-D turbulent Navier-Stokes equations 


	

v t + vVv = G — Vp — 2wx v+div(AVv)	 (31) 

in the 3-dimensional domain

xR: x E  and (x)>z> _h(x)l.	( 32) 

Here we denoted v - the (3 dimensional) velocity field, G = (0, 0, _9)T - the gravitation 
field, w - the spin of Earth rotation, p - the pressure, C - the (a priori unknown) free 
surface and A = diag(AH, AH, A V ) - the tensor of turbulent impulse transition. In this 
section we use the symbols v, V and div regardless of whether they are applied in the 
3-dimensional or in the plane case. In the 3D case z is identified with x3. 

Using Einstein's convention, equation (31) may be rewritten as 

5 (Aki5v )	(i = 1,2,3)ap =G,—	2Et,kWjVk+5 
	5X3J 

with x 3 = z, A ll = A22 = A jq, A33 = AV , A, = 0 for i 54 j, and e the Riccati tensor. 
Equation (31) is completed by the incompressibility condition 

divv=0.	 (33) 

Here and in (31) the density is assumed constant and equal to 1. As boundary conditions 
we assume on 5ci31

v(x,—h(x))=0	 (34)
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(the so called "no slip" condition at the ground) and 

3v,
= icIW I W1	(i = 1, 2).	 (35) az 

Here W = (W1 , W2 ) is the wind vector (usually taken at a height of z = + 10 (in 
meters)) and kA > 0 is an empirical constant describing the shear stress induced by the 
wind. Equation (35) expresses the continuity of the normal impulse flux through the 
interface between air and water (cf. [10)). 

Now, following [5, 11, 171, several assumptions are introduced which lead to a scalar 
linear elliptic partial differential equation in the 2-dimensional domain Q. We look 
for stationary solutions with small accelerations, and further consider only water bodies 
with a very small depth to length ratio. Thus we neglect v, vVv, w x  and AH as being 
small in comparison with the remaining terms. Following [5, 11, 17] we also assume AV 
to depend only on x and not on z. Hence, we obtain from the third component of (31) 

02v  
p(x,z)=g(—z)	arid	-	

(i=1,2).	(36) 
i3z - AV x 

Now, by integrating twice and substituting (34) and (35) into the second equation of 
(36), we obtain an explicit expression for v 1 and v2 dependent on V and z. Integrating 
once more, and denoting for x E Q the velocity of mass transport by 

e(z) 

V(x) = ( V1,V2)T
	with Vi (x)= f v(z)dz (i=1,2)

	
(37) -h(x) 

we arrive after elementary calculations at 

V = --( + h)2 1 W 1 W - -( + h)3Ve. 

Finally, we assume << h and obtain 

V — 
- -! -ihW - 
 2Av	3Av 

or, equivalently,
-	, 3Av 

vç--vv yr -----i- 
2gh	gh 

Note that due to (33) the two-dimensional field V is again divergence free, i.e. 

divV=0 in Q 

As a constitutive assumption in [5] the empirical formula

(38)

(39) 

AV = AVI W I h	 (40)
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was recommended. Assuming this we obtain

kW 
2gh	 h2 V

	 (41) 

with kB = 3A?,,/g. 
We observe that the velocity of mass transport V is a positive combination of 

directions of wind and of steepest descent of the surface level. We could have introduced 
equation (41) as a phenomenological assumption for wind-driven flow processes instead 
deriving it from (31) - (35), but this approach explains the form of the coefficient 
functions. 

Now equation (1) turns out to be the integrability condition for the first order 
partial differential equation (41). In order to make this conspicuous we observe that for 
sufficiently smooth functions the operator D = div QV vanishes. Hence, multiplying 
(41) by Q and taking the divergence, we obtain for JWJ being constant on ci 

—kBdiV —
( fl2) = 2gh2(,QWY	 (42) 

We introduce the) stieain function u by 

V=QVu.	 .	 (43) 

Now, with kA = 3—, and because of Q2 = —I, equation (42) reduces to equation (1). 
From (43) we obtain for the boundary values u0 the interpretation 

uO(x) = J q(s) ds	 (44) 

where the integration is carried out along the boundary aci and q is the mass flow 
through the boundary. 

Remark 3. We are not interested here in local velocities v = v(x, z), however they 
can be derived from (34) - (36) (v i and v2) and from (33) (for v3 ) by integration over 
[—h(x),z] (cf. [5, 11, 17]). 

The variational formulation (12) of problem (1) - (2) was first used for a Finite 
Element solution in [7, 9, 121. For the discretization of (12) a conforming Finite Element 
Method based on (3) was used to calculate the stream functions u and velocity fields .V 
for the Greifswalder Bodden and the Riga Bay of the Baltic Sea. 

It is worthwhile to mention that the discretization of equation (5) instead of equa-
tion (1) allows us to work with positive definite symmetric matrices, while the Finite 
Difference Method applied in [17) yields non-symmetric systems of equations. Hence, 
the numerical calculations require only half the memory and time compared with [17). 
Refined versions of the numerical method have been developped in [3, 6]. 

Recently, inverse problems have been concidered in [6, 8, 19]. For details of the 
numerical solutions and for applications we refer to [8, 12]. The Neumann problem and 
bounds for the discretization error will be considered in a forthcoming paper.
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