Regularity for a Variational Inequality with a Pseudo differential Operator of Negative Order

R. Schumann

Abstract. We prove that the solution of a variational inequality on a submanifold in \mathbb{R}^n involving a pseudodifferential operator of order -1 is bounded.

Keywords: *Variational inequalities, regularity of solutions, pseudodifferential operators* AMS subject classification: 49 A 29, 47 G 05, 47 H 05

1. Introduction

Consider the variational inequality to find $u \in K$ such that $(v - u, Au) \ge (v - u, b)$ for all $v \in K$, where $b \in W^{\frac{1}{2},2}(S)$ is given, *K* denotes the positive cone of the Hilbert space $W^{-\frac{1}{2},2}(S)$ and *A* is an elliptic pseudodifferential operator of the negative order -1 on a closed manifold $S \subset \mathbb{R}^n$.

Variational inequalities are nonlinear problems even if the operator *A* is linear because *K* fails to be a linear subspace of $W^{-\frac{1}{2},2}(S)$. The usual setting is that *A* maps a Banach or Hilbert space X into its dual X^* . In many applications X is a Sobolev space and A denotes a linear elliptic differential operator of order m . By energetic considerations, for example, it is often easy to prove the (weak) solvability of the variational inequality. Concerning the regularity of weak solutions we find two different situations: For elliptic *equations* $Au = b$ the inclusion $b \in W^{k,2}$ implies, in general, the inclusion $u \in W^{k+m,2}$. In contrast to this case, problems for variational *inequalities* have limited regularity, i.e. even if *b* is smooth, their solutions *u* cannot overcome a certain threshold of smoothness. For instance, Shamir [14] gave an example where $u \notin W^{3,2}(\Omega) \cup W^{2,4}(\Omega)$ for $A = -\Delta + I$, $b \in W^{1,p}$ for all $p > 1$ and $K = \{u \in W^{1,2}(\Omega) : u \ge 0 \text{ on } \Gamma \subset \partial\Omega\}$ (cf. Lions [9: Section 8.2] and Rodrigues [12:' p. 279]). For variational inequalities with elliptic differential operators the regularity of solutions was investigated, e.g., by Kinderlehrer [6], Kinderlehrer and Stampacchia [8], and Uralzeva [2, 17). The case of systems of variational inequalities with one-sided obstacles was treated in the papers of Kinderlehrer [7] (systems in \mathbb{R}^2) and Schumann [13] (Lamé's system of elasticity in \mathbb{R}^N $(N \geq 2)$.

It seems however that problems concerning regularity of solutions of variational inequalities have not been considered if the operator *A* is a pseudodifferential operator

R. Schumann: Universität Leipzig, Institut für Mathematik, Augustuspl. 10, D - 04109 Leipzig

of negative order. This case can also be motivated by a physical example (see [10]). A-priori the solution *u* of the variational inequality only belongs to the Sobolev space $W^{-\frac{1}{2},2}(S)$ of negative order $-\frac{1}{2}$. Thus we are interested to prove more regularity for the solution. In Section 5 we shall prove the following result.

Theorem. Suppose $b \in W^{\gamma,r}(S)$ for some $\gamma \in (1,2)$ and $r > \frac{N}{\gamma-1}$. Then the *solution* $u \in K$ *of the variational inequality* (1) *below is essentially bounded, i.e.* $u \in$ $L_{\infty}(S)$.

We use the following notation. The norm in the Lebesgue space $L_p(U)$ where $U \subset \mathbb{R}^n$ denotes an open set is

$$
||u||_p = ||u||_{p,U} = \left(\int_U |u(x)|^p dx\right)^{1/p}
$$

and

$$
||u||_{\gamma,p} = (||u||_p^p + |u|_{\gamma,p}^p)^{1/p}
$$

denotes the norm in the Sobolev space $W^{\gamma,p}(U)$ with $\gamma \in (0,1)$ where the seminorm $|u|_{\gamma,p}$ is defined by

$$
|u|_{\gamma,p} = \left(\iint_{U \times U} |x-y|^{-N-\gamma p} |u(x)-u(y)|^p dx dy \right)^{1/p}
$$

The set of pseudodifferential operators of order *m* acting on *U* is denoted by $\Psi^{m}(U)$.

2. Problem and approximation (I)

We suppose that *S* is a smooth compact *N*-dimensional manifold $(N \ge 2)$ without boundary $(\partial S = \emptyset)$. Consider the following variational inequality: ential operators of order *m* acting on *U* is denoted by $\Psi^m(U)$.
 approximation (I)

a smooth compact *N*-dimensional manifold $(N \ge 2)$ without

onsider the following variational inequality:
 aat
 $(v-u, Au) \ge (v-u, b)$ f

Find $u \in K$ *such that*

$$
(v-u, Au) \ge (v-u, b) \quad \text{for all } v \in K \tag{1}
$$

where $b \in W^{\frac{1}{2},2}(S)$ is given and K is the positive cone of the Hilbert space $W^{-\frac{1}{2},2}(S)$,
i.e.
 $K = \left\{v \in W^{-\frac{1}{2},2}(S) : (v,\varphi) \ge 0 \text{ for all } \varphi \in \mathcal{D}(S) \text{ such that } \varphi \ge 0 \text{ on } S \right\}.$ (2)

$$
K=\Big\{v\in W^{-\frac{1}{2},2}(S): (v,\varphi)\geq 0 \,\,\text{for all}\,\varphi\in\mathcal{D}(S)\,\,\text{such that}\,\varphi\geq 0\,\,\text{on}\,\,S\Big\}.\qquad(2)
$$

Clearly *K* is a closed cone of the Sobolev space $X = W^{-\frac{1}{2},2}(S)$. We denote the norm in X by $\|\cdot\|_{-\frac{1}{2},2}$ and make the following hypotheses on the linear continuous operator Find $u \in K$ such that
 $(v-u, Au) \ge (v-u, b)$ for all

where $b \in W^{\frac{1}{2},2}(S)$ is given and K is the positive cone of

i.e.
 $K = \left\{v \in W^{-\frac{1}{2},2}(S) : (v,\varphi) \ge 0 \text{ for all } \varphi \in \mathcal{D}(S) \right\}$

Clearly K is a closed cone of the Sobolev

(H1) There exists a constant $c > 0$ such that $(v, Av) \ge c ||v||_{-\frac{1}{2},2}^2$ for all $v \in X$.

(H2) For sake of technical simplicity, we assume that a part Γ of S lies in the hyperplane $\mathbb{R}^N \subset \mathbb{R}^n$ $(n = N + 1)$. Furthermore we suppose that the principal symbol of the pseudodifferential operator $A \in \Psi^{-1}(S)$ on Γ is given by $\sigma_{-1}(A)(x', \xi') = |\xi'|^{-1}$ for $(x', 0) \in \Gamma$ (3) symbol of the pseudodifferential operator $A \in \Psi^{-1}(S)$ on Γ is given by for a Variational Inequality 359

hat a part Γ of S lies in the hy-

re we suppose that the principal
 $\Psi^{-1}(S)$ on Γ is given by

for $(x', 0) \in \Gamma$ (3)

(the general case can be handled

$$
\sigma_{-1}(A)(x',\xi') = |\xi'|^{-1} \quad \text{for } (x',0) \in \Gamma \tag{3}
$$

where $x' = (x_1, \ldots, x_N)$ and $\xi' = (\xi_1, \ldots, \xi_N)$ (the general case can be handled after a coordinate transform).

It follows from hypothesis (Hi) that the variational inequality (1) has a unique solution $u \in K$ (for a proof cf. Lions [9: Chapter 2.8.2/Theorem 8.1]). Hypothesis (H2) will be used in Sections 4 and 5 to prove regularity of the solution. *6 4* - (*x*₁, ..., *x_N*) and ζ - (ζ ₁, ..., ζ _N) (the general case can be handled a coordinate transform).
 m hypothesis (H1) that the variational inequality (1) has a unique solution proof cf. Lion

To prove regularity we first approximate the solution *u* of variational inequality (1) by solutions u^{δ} ($\delta > 0$) of the following family of variational inequalities:

Find $u^{\delta} \in K_1$ such that

$$
\delta(v-u^{\delta}\mid u^{\delta})+(v-u^{\delta},Au^{\delta})\geq (v-u^{\delta},b^{\delta}) \qquad \text{for all } v\in K_1
$$
 (4)

where

1.

 $\label{eq:2} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^n\frac{1}{j!}\sum_{j=1}^$

$$
K_1 = K \cap L_2(S) = \Big\{ v \in L_2(S) : v(x) \geq 0 \text{ a.e. on } S \Big\},\
$$

 $b^6 \in W^{\frac{1}{2},2}$ and $(\cdot | \cdot)$ denotes the inner product in $L_2(S)$.

We will show that the family $(u^{\delta})_{\delta>0}$ of solutions of variational inequalities (4) approximates the solution *u* of variational inequality (1).

Proposition 1. Let $b, b^6 \in W^{\frac{1}{2},2}(S)$. Then the following assertions are true.

- **1.** For any $\delta > 0$, there exists a unique solution $u^{\delta} \in K_1$ of inequality (4).
- 2. If $\sup_{\delta} ||b^{\delta}||_{\frac{1}{2},2} < +\infty$, then $\sup_{\delta} ||u^{\delta}||_{-\frac{1}{2},2} < +\infty$.

3. If $b^{\delta} \rightarrow b$ in $W^{\frac{1}{2},2}(S)$ as $\delta \rightarrow +0$, then $u^{\delta} \rightarrow u$ in $X = W^{-\frac{1}{2},2}(S)$ where *u* is the *unique solution of inequality (1).*

Proof. Assertion 1: K_1 is a closed, convex cone of $L_2(S)$. The linear continuous operator A defined by

$$
(v, Au) = \delta(v \mid u) + (v, Au) \quad \text{for all } u, v \in X \tag{5}
$$

is strongly coercive on $L_2(S)$ since $(u, Au) \ge \delta ||u||_2^2 + c ||u||_{-\frac{1}{2},2}^2$ for all $u \in L_2(S)$ (cf. (2)). Thus existence and uniqueness of the solution u^{δ} of variational inequality (4) follow immediately.

Assertion 2: We set $v = 0$ in (4) and get

$$
\delta \|u^{\delta}\|_{2}^{2} + (u^{\delta}, Au^{\delta}) \leq \|b^{\delta}\|_{\frac{1}{2},2} \|u^{\delta}\|_{-\frac{1}{2},2}.
$$

Thus, by (2) and Young's inequality

inequality
\n
$$
\delta \|u^{\delta}\|_{2}^{2} + \frac{c}{2} \|u^{\delta}\|_{-\frac{1}{2},2}^{2} \leq c_{1} \|b^{\delta}\|_{\frac{1}{2},2}^{2}.
$$
\nits a constant $C > 0$ such that

This means that there exists a constant *C >* 0 such that

$$
\delta \|u^{\delta}\|_{2}^{2} + \frac{c}{2} \|u^{\delta}\|_{-\frac{1}{2},2}^{2} \leq c_{1} \|b^{\delta}\|_{\frac{1}{2},2}^{2},
$$
\nwhere exists a constant $C > 0$ such that

\n
$$
\sup_{\delta} \|u^{\delta}\|_{-\frac{1}{2},2} \leq C \qquad \text{and} \qquad \sup_{\delta} \sqrt{\delta} \|u^{\delta}\|_{2} \leq C. \tag{6}
$$
\nNow, we suppose that $b^{\delta} \to b$ in $W^{\frac{1}{2},2}(S)$ and that (δ_{n}) is a sequence. For a similar point, only if Ω is a sequence.

Assertion 3: Now, we suppose that $b^{\delta} \to b$ in $W^{\frac{1}{2},2}(S)$ and that (δ_n) is a sequence converging to zero. For simplicity we write only δ instead of δ_n in what follows. Then we may conclude that, at least for a subsequence, $u^{\delta} - u_1 \in K$ in X and $\sqrt{\delta}u^{\delta} - w$ in *L*₂(*S*). By compact embedding, $\sqrt{\delta}u^{\delta} \to w$ in *X*. Since (u^{δ}) is bounded in *X* it follows that $\sqrt{\delta}u^{\delta} \to 0$ in *X* as $\delta \to +0$. Therefore $w = 0$ and $\sqrt{\delta}u^{\delta} \to 0$ in *L*₂(*S*). $\delta \|u^{\delta}\|_{2}^{2} + \frac{c}{2} \|u^{\delta}\|_{-\frac{1}{2},2}^{2} \leq c_{1} \|b^{\delta}\|_{\frac{1}{2},2}^{2}.$

This means that there exists a constant $C > 0$ such that
 $\sup_{\delta} \|u^{\delta}\|_{- \frac{1}{2},2} \leq C$ and $\sup_{\delta} \sqrt{\delta} \|u^{\delta}\|_{2} \leq C.$

Assertion 3: Now, we sup *x* e exists a constant $C > 0$ such that
 $\text{p} ||u^{\delta}||_{-\frac{1}{2},2} \leq C$ and $\text{sup } \sqrt{\delta} ||u^{\delta}||_2 \leq C$. (6)
 i, we suppose that $b^{\delta} \to b$ in $W^{\frac{1}{2},2}(S)$ and that (δ_n) is a sequence
 for simplicity we write only 3: Now, we suppose that $b^{\delta} \rightarrow b$ in $W^{\frac{1}{2},2}(S)$ and that (δ_n) is a sequence
zero. For simplicity we write only δ instead of δ_n in what follows. Then
de that, at least for a subsequence, $u^{\delta} \rightarrow u_1 \in K$ in X

(a) To prove $u = u_1$ we want to show that u_1 satisfies the inequality

$$
(v - u1, Au1) \ge (v - u1, b) \qquad \text{for all } v \in K_1. \tag{7}
$$

Then a density argument proves that u_1 is a solution of inequality (1) and the uniqueness of the solution gives $u = u_1$. Indeed, from (4) we get

$$
\delta(u^{\delta} \mid u^{\delta}) + (u^{\delta}, Au^{\delta}) \le (u^{\delta} - v, b^{\delta}) + \delta(v \mid u^{\delta}) + (v, Au^{\delta}). \tag{8}
$$

of the solution gives $u = u_1$. Indeed, from (4) we get
 $\delta(u^{\delta} \mid u^{\delta}) + (u^{\delta}, Au^{\delta}) \le (u^{\delta} - v, b^{\delta}) + \delta(v \mid u^{\delta}) + (v, Au^{\delta}).$ (8)

Since the positive bilinear form $v \mapsto (Av, v)$ is weakly sequentially lower semicontinuous

(cf. (cf. Zeidler [19: Vol. 3, p. 156]) it follows from $\delta \rightarrow +0$ that $f(x, v) = A(v, v)$ is weakly
 $f(x, 156)$ it follows from δ *-*
 $f(x, Au_1) \leq \liminf(u^{\delta}, Au^{\delta})$

$$
u_1 + u_2 = u_1, \quad u_2 = u_2, \quad u_3 = u_3
$$
\n
$$
u_1 + u_2 = u_1, \quad u_3 = u_2, \quad u_4 = u_3
$$
\n
$$
u_2 = u_1.
$$
\nIndeed, from (4) we get

\n
$$
u_3 = u_1.
$$
\nIndeed, from (4) we get

\n
$$
u_3 = u_1.
$$
\nIndeed, from (5) we get

\n
$$
u_1 + u_2 = u_2.
$$
\nSo, we have:

\n
$$
u_2 + u_3 = u_3.
$$
\nThus, we have:

\n
$$
u_3 = u_3.
$$
\nThus, we have:

\n
$$
u_1 + u_2 = u_3.
$$
\nThus, we have:

\n
$$
u_2 = u_1.
$$
\nThus, we have:

\n
$$
u_3 = u_3.
$$
\nThus, we have:

\n
$$
u_1 = u_1.
$$
\nThus, we have:

\n
$$
u_2 = u_1.
$$
\nThus, we have:

\n
$$
u_3 = u_1.
$$
\nThus, we have:

\n
$$
u_1 = u_1.
$$
\nThus, we have:

\n
$$
u_2 = u_1.
$$
\nThus, we have:

\n
$$
u_3 = u_1.
$$
\nThus, we have:

\n
$$
u_1 = u_1.
$$
\nThus, we have:

\n
$$
u_2 = u_1.
$$
\nThus, we have:

\n
$$
u_3 = u_1.
$$
\nThus, we have:

\n
$$
u_3 = u_2.
$$
\nThus, we have:

\n
$$
u_3 = u_3.
$$
\nThus, we have:

\n
$$
u_3 = u_3.
$$
\nThus, we have:

\n
$$
u_3 = u_3.
$$
\nThus, we have:

\n
$$
u_3 = u_3.
$$
\nThus, we have:

\n
$$
u_3 = u_3.
$$
\nThus, we have:

\n
$$
u_3 = u
$$

for all $v \in K_1$. Thus (7) is proved and we have $u = u_1$. A well-known argument concerning subsequences (cf. Zeidler. [19: Vol. 1, p. 480]) shows that the whole sequence (u^{δ_n}) is weakly convergent to *u*.

(b) We prove the *strong* convergence $u^{\delta} \to u$ in X. Let us use (8) with $v = u$ to get

$$
(u, Au) \le \liminf(u^{\delta}, Au^{\delta})
$$

\n
$$
\le \limsup(u^{\delta}, Au^{\delta})
$$

\n
$$
\le \limsup((u^{\delta}, Au^{\delta}) + \delta ||u^{\delta}||^{2})
$$

\n
$$
\le \limsup((u^{\delta} - u, b^{\delta}) + \delta(u | u^{\delta}) + (u, Au^{\delta}))
$$

\n
$$
= (u, Au)
$$

and therefore $(u^{\delta}, Au^{\delta}) \rightarrow (u, Au)$ as $\delta \rightarrow +0$. Then (2) implies

$$
c\|u^{\delta}-u\|_{-\frac{1}{2},2}^{2}\leq (u^{\delta}-u,Au^{\delta}-Au)\longrightarrow 0
$$

and Assertion 3 is proved \blacksquare

3. Approximation (II)

In Section 2 we replaced the variational inequality (1) acting in $X = W^{-\frac{1}{2},2}(S)$ by a family of approximate variational inequalities depending on $\delta > 0$ with cone $K_1 \subset L_2(S)$ (see (4)). Now we suppose that $\delta > 0$ is fixed and introduce a penalization of the negative part of the functions of $L_2(S)$. The aim is to get a variational inequality over the *whole* of $L_2(S)$. This variational inequality has a unique solution $u_{\epsilon} = u_{\epsilon}^{\delta}$ where $\epsilon > 0$ is the penalization parameter. (Since δ is fixed in this section we shall omit the supercript δ .) Later, in Sections 4 and 5 we are going to derive bounds on the solutions depending neither on ε nor on δ in order to get regularity results for the solution u of variational inequality (1). *S* variational inequality has a unique solution $u_{\epsilon} - u_{\epsilon}$ where $\varepsilon > 0$ is the parameter. (Since δ is fixed in this section we shall omit the supercript δ .)
tions 4 and 5 we are going to derive bounds on the

Suppose $\varepsilon > 0$. We construct the following approximation of the variational inequality (4):

Find $u_{\epsilon} \in L_2(S)$ *such that*

$$
\delta(v - u_{\varepsilon} \mid u_{\varepsilon}) + (v - u_{\varepsilon}, Au_{\varepsilon}) + F_{\varepsilon}(v) - F_{\varepsilon}(u_{\varepsilon}) \ge (v - u_{\varepsilon}, b_{\varepsilon}) \tag{10}
$$

for all $v \in L_2(S)$, where $b_{\varepsilon} \in W^{\frac{1}{2},2}(S)$ and the penalization functional F_{ε} is defined by

$$
F_{\epsilon}(v) = \frac{1}{2\varepsilon} \int_{S} |v^{-}|^{2} dS
$$

for all $v \in L_2(S)$, where $b_e \in W^{\frac{2}{3},2}(S)$ and the penalization functional F_e is defined by
 $F_e(v) = \frac{1}{2\varepsilon} \int_S |v^-|^2 dS$
 for $v \in L_2(S)$, denoting for any real function φ by φ^{\pm} the positive and negativ $F_e(v) = \frac{1}{2\varepsilon} \int_S |v^-|^2 dS$ *

<i>n*, denoting for any real function φ by φ^{\pm} the positive and negative parts of $y, i.e.$ $\varphi = \varphi^+ + \varphi^-$.

ith (10) we consider the following variational inequality:
 $L_2(S)$ such t

Parallel with (10) we consider the following variational inequality:

Find $u^{\delta} \in L_2(S)$ such that

$$
\delta(v - u^{\delta} \mid u^{\delta}) + (v - u^{\delta}, Au^{\delta}) + F(v) - F(u^{\delta}) \ge (v - u^{\delta}, b^{\delta})
$$
 (11)

for all $v \in L_2(S)$, where F is the indicatrix of the convex set K_1 , i.e. for $v \in L_2(S)$ we *have* $F(v) = 0$ *if* $v \in K_1$ *and* $F(v) = +\infty$ *otherwise.*

We get now the following statement.

Proposition 2. Let $\delta > 0$ be fixed and $b^{\delta}, b^{\epsilon} \in W^{\frac{1}{2},2}(S)$. Then the following *assertions are true.*

- 1. For any $\varepsilon > 0$ the variational inequality (10) has exactly one solution $u_{\varepsilon} \in L_2(S)$.
- 2. The variational inequality (11) has exactly one solution $u^{\delta} \in L_2(S)$.
- 3. If $M_0 = \sup_{\epsilon} ||b_{\epsilon}||_{\frac{1}{2},2} < +\infty$, then there exists a constant $M > 0$ independent of *S* such that $M = \sup_{\epsilon} (\|u_{\epsilon}\|_{-\frac{1}{2},2}^2 + \delta \|u_{\epsilon}\|_2^2 + F_{\epsilon}(u_{\epsilon})) < +\infty.$
- **4.** $b_{\varepsilon} \to b^{\delta}$ in $W^{\frac{1}{2},2}(S)$ as $\varepsilon \to +0$ implies $u_{\varepsilon} \to u^{\delta}$ in $L_2(S)$ and in $W^{-\frac{1}{2},2}(S)$.

Proof. Assertion 1 follows from the coercivity of the operator A defined by (5) and the fact that $F_e(v) \ge 0$ for all $v \in L_2(S)$ (cf. Lions [9: Chapter 2.8.5/Theorem 8.5]). Since (11) and (4) are equivalent Assertion 2 is obvious. To prove Assertion 3 we set $v = 0$ in (10). As $F_{\epsilon}(0) = 0$ we get $\delta ||u_{\epsilon}||_2^2 + (u_{\epsilon}, Au_{\epsilon}) + F_{\epsilon}(u_{\epsilon}) \le ||b_{\epsilon}||_{\frac{1}{2},2} ||u_{\epsilon}||_{-\frac{1}{2},2}$. $v = 0$ in (10). As $F_c(0) = 0$ we get

$$
\delta \|u_{\varepsilon}\|_{2}^{2}+(u_{\varepsilon},Au_{\varepsilon})+F_{\varepsilon}(u_{\varepsilon})\leq \|b_{\varepsilon}\|_{\frac{1}{2},2}\|u_{\varepsilon}\|_{-\frac{1}{2},2}.
$$

Therefore

$$
||\mathcal{E}_\epsilon||_2^2 + (u_\epsilon, Au_\epsilon) + F_\epsilon(u_\epsilon) \le ||b_\epsilon||_{\frac{1}{2},2} ||u_\epsilon||_{-\frac{1}{2},2}.
$$

\n
$$
\delta ||u_\epsilon||_2^2 + \frac{c}{2} ||u_\epsilon||_{-\frac{1}{2},2}^2 + F_\epsilon(u_\epsilon) \le c_1 ||b_\epsilon||_{\frac{1}{2},2}^2
$$
\n
$$
(12)
$$

\n3.

which gives Assertion 3.

 $\delta ||u_{\epsilon}||_2^2 + \frac{c}{2} ||u_{\epsilon}||_{-\frac{1}{2},2}^2 + F_{\epsilon}(u_{\epsilon}) \leq c_1 ||b_{\epsilon}||_2^2$
ch gives Assertion 3.
To prove Assertion 4 suppose $\varepsilon = \varepsilon_n \to +0$. If $||b_{\epsilon} - b^{\delta}||_{\frac{1}{2},2}$
that at least for a subsequence $u_{\epsilon} \to u_1$ in $L_2(S$ $\rightarrow 0$ we get from estimate (12) that at least for a subsequence $u_{\epsilon} \rightharpoonup u_1$ in $L_2(S)$. Thus $u_{\epsilon} \rightharpoonup u_1$ in X. We need to prove that $u_1 = u^{\delta}$. From the variational inequality (10) it follows that l gives Assertion 3.

b prove Assertion 4 suppose $\epsilon = \epsilon_n \rightarrow +0$. If $||b_{\epsilon} - b^{\delta}||_{\frac{1}{2},2} \rightarrow 0$ we get from estimate

that at least for a subsequence $u_{\epsilon} \rightarrow u_1$ in $L_2(S)$. Thus $u_{\epsilon} \rightarrow u_1$ in X. We need

ove that $||_2^2 + \frac{c}{2} ||u_{\epsilon}||_{-\frac{1}{2},2}^2 + F_{\epsilon}(u_{\epsilon}) \leq c_1 ||b_{\epsilon}||_{\frac{1}{2},2}^2$ (12)

ppose $\varepsilon = \varepsilon_n \to +0$. If $||b_{\epsilon} - b^{\delta}||_{\frac{1}{2},2} \to 0$ we get from estimate

sequence $u_{\epsilon} \to u_1$ in $L_2(S)$. Thus $u_{\epsilon} \to u_1$ in X. We need

$$
\delta \|u_{\varepsilon}\|_{2}^{2} + (u_{\varepsilon}, Au_{\varepsilon}) \leq \delta(v \mid u_{\varepsilon}) + (v, Au_{\varepsilon}) + F_{\varepsilon}(v) - F_{\varepsilon}(u_{\varepsilon}) + (u_{\varepsilon} - v, b_{\varepsilon}) \tag{13}
$$

for all $v \in L_2(S)$. By virtue of Barbu and Precupanu [3: Theorem 2.3/p. 107] we have

$$
F_{\epsilon}(\varphi) = \frac{1}{2\epsilon} ||\varphi - J_{\epsilon}\varphi||_2^2 + F(J_{\epsilon}\varphi)
$$
 (14)

where $J_{\epsilon} = (I + \epsilon \partial F)^{-1}$ denotes the resolvent of ∂F . Then $\sup_{\epsilon} F_{\epsilon}(u_{\epsilon}) < +\infty$ implies $||u_{\epsilon} - J_{\epsilon}u_{\epsilon}|| \rightarrow 0$ if $\varepsilon \rightarrow +0$. Therefore we have $J_{\epsilon}u_{\epsilon} \rightarrow u_1$ in $L_2(S)$ and, since the convex funtion F is weakly sequentially lower semincontinuous (see [3: p. 102]),

$$
4u_{\epsilon}) \leq \delta(v \mid u_{\epsilon}) + (v, Au_{\epsilon}) + F_{\epsilon}(v) - F_{\epsilon}(u_{\epsilon}) + (u_{\epsilon} - v, b_{\epsilon}) \qquad (13)
$$
\n
$$
y \text{ virtue of Barbu and Precupanu [3: Theorem 2.3/p. 107] we have}
$$
\n
$$
F_{\epsilon}(\varphi) = \frac{1}{2\epsilon} ||\varphi - J_{\epsilon}\varphi||_{2}^{2} + F(J_{\epsilon}\varphi) \qquad (14)
$$
\n
$$
F)^{-1} \text{ denotes the resolvent of } \partial F. \text{ Then } \sup_{\epsilon} F_{\epsilon}(u_{\epsilon}) < +\infty \text{ implies}
$$
\n
$$
\epsilon \to +0. \text{ Therefore we have } J_{\epsilon}u_{\epsilon} \to u_{1} \text{ in } L_{2}(S) \text{ and, since the
$$
\n
$$
\text{weakly sequentially lower semincontinuous (see [3: p. 102]),}
$$
\n
$$
F(u_{1}) \leq \liminf_{\epsilon} F(J_{\epsilon}u_{\epsilon})
$$
\n
$$
\leq \liminf_{\epsilon} \left(-\frac{1}{2\epsilon} ||u_{\epsilon} - J_{\epsilon}u_{\epsilon}||^{2} + F_{\epsilon}(u_{\epsilon}) \right) \qquad (15)
$$
\n
$$
\leq \liminf_{\epsilon} F_{\epsilon}(u_{\epsilon}). \qquad (S) \text{ and } u_{\epsilon} \to u_{\epsilon} \text{ in } X \text{ we set from (13)}
$$

Since $u_{\epsilon} \rightharpoonup u_1$ in $L_2(S)$ and $u_{\epsilon} \rightharpoonup u_1$ in X we get from (13)

 $\frac{1}{2}$.

$$
J_{\epsilon} = (I + \epsilon \partial F)^{-1}
$$
 denotes the resolvent of ∂F . Then $\sup_{\epsilon} F_{\epsilon}(u_{\epsilon}) < +\infty$ implies
\n $J_{\epsilon}u_{\epsilon} \parallel \rightarrow 0$ if $\epsilon \rightarrow +0$. Therefore we have $J_{\epsilon}u_{\epsilon} \rightarrow u_{1}$ in $L_{2}(S)$ and, since the
\n κ function F is weakly sequentially lower semincontinuous (see [3: p. 102]),
\n $F(u_{1}) \le \liminf F(J_{\epsilon}u_{\epsilon})$
\n $\le \liminf \left(-\frac{1}{2\varepsilon}||u_{\epsilon} - J_{\epsilon}u_{\epsilon}||^{2} + F_{\epsilon}(u_{\epsilon})\right)$ (15)
\n $\le \liminf F_{\epsilon}(u_{\epsilon}).$
\n $u_{\epsilon} \rightarrow u_{1}$ in $L_{2}(S)$ and $u_{\epsilon} \rightarrow u_{1}$ in X we get from (13)
\n $\delta ||u_{1}||^{2} + (u_{1}, Au_{1})$
\n $\le \liminf (\delta ||u_{\epsilon}||_{2}^{2} + (u_{\epsilon}, Au_{\epsilon}))$
\n $\le \limsup (\delta ||u_{\epsilon}||_{2}^{2} + (u_{\epsilon}, Au_{\epsilon}))$
\n $\le \limsup \{\delta(v | u_{\epsilon}) + (v, Au_{\epsilon}) + F_{\epsilon}(v) - F_{\epsilon}(u_{\epsilon}) + (u_{\epsilon} - v, b_{\epsilon})\}$
\n $\le F(v) - \liminf F_{\epsilon}(u_{\epsilon}) + \delta(v | u_{1}) + (v, Au_{1}) + (u_{1} - v, b)$
\n $\le F(v) - F(u_{1}) + \delta(v | u_{1}) + (v, Au_{1}) + (u_{1} - v, b)$

for all $v \in L_2(S)$, i.e. u_1 is a solution of variational inequality (11). Observe that $F_e(v) \rightarrow F(v)$ for all $v \in L_2(S)$ (see Barbu and Precupanu [3: p. 107]). Uniqueness implies $u_1 = u^{\delta}$

4. Regularity

In this section we derive L_p -bounds for the solution $u_{\epsilon} = u_{\epsilon}^{\delta}$ of the variational inequality (10) that are *independent of* ε *and* δ *.* (Here again, we shall omit the supercript δ .) We are going to consider u_{ϵ} on the hyperplane part Γ of S defined in hypothesis (H2). The solution $u_{\epsilon} \in L_2(S)$ satifies the inequality **Solution** Regularity for a Variational Inequality
 S63
 Solution
 Solut

$$
\delta(v - u_{\epsilon} \mid u_{\epsilon}) + (v - u_{\epsilon}, Au_{\epsilon}) + F_{\epsilon}(v) - F_{\epsilon}(u_{\epsilon}) \ge (v - u_{\epsilon}, b_{\epsilon}) \tag{17}
$$

for all $v \in L_2(S)$. We multiply inequality (17) by the test function $v = u_{\epsilon} + t\eta$, where \mathbb{R}^2 $0 \neq t \in \mathbb{R}$ and $\eta \in C_0^{\infty}(S)$ satisfies the condition supp $\eta \subset\subset \Gamma$. Thus

Let
$$
u_{\epsilon}
$$
 the *independent* of ϵ and v_{ϵ} . (Here again, we shall omit the supercript δ .) We find to consider u_{ϵ} on the hyperplane part Γ of S defined in hypothesis (H2). The $u_{\epsilon} \in L_2(S)$ satisfies the inequality

\n
$$
\delta(v - u_{\epsilon} \mid u_{\epsilon}) + (v - u_{\epsilon}, Au_{\epsilon}) + F_{\epsilon}(v) - F_{\epsilon}(u_{\epsilon}) \geq (v - u_{\epsilon}, b_{\epsilon})
$$
 (17)

\n
$$
v \in L_2(S)
$$
. We multiply inequality (17) by the test function $v = u_{\epsilon} + t\eta$, where $\epsilon \in \mathbb{R}$ and $\eta \in C_0^{\infty}(S)$ satisfies the condition $\text{supp } \eta \subset \subset \Gamma$. Thus

\n
$$
\delta(\eta \mid u_{\epsilon}) + (\eta, Au_{\epsilon}) + \frac{1}{t} \left(F_{\epsilon}(u_{\epsilon} + t\eta) - F_{\epsilon}(u_{\epsilon}) \right) \left\{ \frac{2}{\leq} \right\} (\eta, b_{\epsilon}) \quad \text{for } t \left\{ \frac{2}{\leq} \right\} 0.
$$

\n
$$
\lim_{t \to 0} \frac{1}{t} \left(F_{\epsilon}(u_{\epsilon} + t\eta) - F_{\epsilon}(u_{\epsilon}) \right) = \epsilon^{-1} \int_{\Gamma} \eta u_{\epsilon}^{-} dS
$$

\nwe that

\n
$$
\delta \int_{S} \eta u_{\epsilon} dS + \int_{S} \eta Au_{\epsilon} dS + \epsilon^{-1} \int_{S} \eta u_{\epsilon}^{-} dS = \int_{S} \eta b_{\epsilon} dS
$$
 (18)

\n
$$
\eta \in C_0^{\infty}(S)
$$
 and by approximation for all $\eta \in L_2(S)$ with $\text{supp } \eta \subset \subset \Gamma$. Since η becomes arbitrarily, we get

From

$$
\lim_{t\to 0}\frac{1}{t}\big(F_{\varepsilon}(u_{\varepsilon}+t\eta)-F_{\varepsilon}(u_{\varepsilon})\big)=\varepsilon^{-1}\int_{\Gamma}\eta u_{\varepsilon}^{-}dS
$$

it follows that

$$
\lim_{\epsilon \to 0} \frac{1}{\epsilon} (F_{\epsilon}(u_{\epsilon} + t\eta) - F_{\epsilon}(u_{\epsilon})) = \epsilon^{-1} \int_{\Gamma} \eta u_{\epsilon}^{-} dS
$$
\n
$$
\delta \int_{S} \eta u_{\epsilon} dS + \int_{S} \eta A u_{\epsilon} dS + \epsilon^{-1} \int_{S} \eta u_{\epsilon}^{-} dS = \int_{S} \eta b_{\epsilon} dS \qquad (18)
$$
\n
$$
S) \text{ and by approximation for all } \eta \in L_{2}(S) \text{ with } \text{supp}\,\eta \subset\subset \Gamma. \text{ Since } \eta \text{ arbitrarily we get}
$$
\n
$$
\delta u_{\epsilon} + A u_{\epsilon} + \epsilon^{-1} u_{\epsilon}^{-} = b_{\epsilon} \qquad \text{in } L_{2}^{loc}(\Gamma). \qquad (19)
$$
\n
$$
\text{ation and preliminary regularity). In the following we are going to use of pseudodifferential operators. We choose an open subset } U \subset\subset \Gamma \text{ and}
$$

for all $\eta \in C_0^{\infty}(S)$ and by approximation for all $\eta \in L_2(S)$ with supp $\eta \subset\subset \Gamma$. Since η can be chosen arbitrarily we get

$$
\delta u_{\epsilon} + A u_{\epsilon} + \epsilon^{-1} u_{\epsilon}^{-} = b_{\epsilon} \quad \text{in} \quad L_2^{loc}(\Gamma). \tag{19}
$$

4.1 (Localization and preliminary regularity). In the following we are going to use local properties of pseudodifferential operators. We choose an open subset $U \subset\subset \Gamma$ and an arbitrary but fixed test function $\varphi \in C_0^{\infty}(U)$ with $\varphi \ge 0$. Setting $g_{\epsilon} = \varphi u_{\epsilon}$, relation (19) gives $\delta g_{\epsilon} + \varphi A u_{\epsilon} + \varepsilon^{-1} g_{\epsilon} = \varphi b_{\epsilon} =: \tilde{b}_{\epsilon}$. (20) (19) gives

$$
\delta g_{\varepsilon} + \varphi A u_{\varepsilon} + \varepsilon^{-1} g_{\varepsilon}^- = \varphi b_{\varepsilon} =: \tilde{b}_{\varepsilon}.
$$
 (20)

Remark that $\mathrm{supp\,} \widetilde{b}_\epsilon\subset U.$ Furthermore we choose a function $\mu\in C_0^\infty(U)$ such that $\mu \equiv 1$ on an open set $W \subset\subset U$ with $K_{\varphi} = \text{supp}\varphi \subset W$. Then relation (20) may be written in the form Surface of the set function $\varphi \in C_0^{\infty}(U)$ with $\varphi \ge 0$. Setting $g_{\varepsilon} = \varphi u_{\varepsilon}$, relation
ives
 $\delta g_{\varepsilon} + \varphi A u_{\varepsilon} + \varepsilon^{-1} g_{\varepsilon} = \varphi b_{\varepsilon} =: \widetilde{b}_{\varepsilon}$. (20)
rk that supp $\widetilde{b}_{\varepsilon} \subset U$. Furthermore w

$$
\delta g_{\epsilon} + (\varphi A \mu) u_{\epsilon} + \varepsilon^{-1} g_{\epsilon}^{-} = \widetilde{b}_{\epsilon} - \varphi A (1 - \mu) u_{\epsilon} = \widetilde{b}_{\epsilon} + R_{1} u_{\epsilon} = \widetilde{b}_{\epsilon} + \mu R_{1} u_{\epsilon}
$$
(21)

where $R_1 = -\varphi A(1-\mu)$ is a so-called regularizing ψ do: $R_1 \in \Psi^{-\infty}(S)$ (see Dieudonné [4: Vol. 7, Prop. 23.26.11/p. 212]). Therefore $R_1 : W^{-\frac{1}{2},2}(S) \longrightarrow W^{m,2}(U) \subset W^{m,2}(S)$ is a continuous operator for all $m \in \mathbb{N}$.

Next we make use of the principal symbol $\sigma_{-1}(A)$ defined in hypothesis (H2). Let us agree to write $x \in \mathbb{R}^N$ and $\xi \in \mathbb{R}^N$ in the following instead of x' and ξ' , respectively. Since the principal symbols of both $\varphi A\mu$ and $\mu A\varphi$ are the same: $\sigma_{-1}(\varphi A\mu)(x,\xi) =$ $\sigma_{-1}(\mu A\varphi)(x,\xi) = \varphi(x)|\xi|^{-1}$, we only get a perturbation of order -2 exchanging φ and μ in the term $(\varphi A\mu)$ of (21): $\varphi A\mu = \mu A\varphi + P_{-2}$ where $P_{-2} \in \Psi^{-2}(U)$ is a proper ψ do of order —2. Thus

$$
\delta g_{\epsilon} + (\mu A \varphi) u_{\epsilon} + \varepsilon^{-1} g_{\epsilon}^{-} = \widetilde{b}_{\epsilon} + \mu R_{1} u_{\epsilon} + P_{-2} g_{\epsilon} =: f_{\epsilon}.
$$
 (22)

of (21): $\varphi A\mu = \mu A\varphi + P_{-2}$ where $P_{-2} \in \Psi^{-2}(U)$ is a proper ψ do
 $+ (\mu A\varphi)u_{\epsilon} + \epsilon^{-1}g_{\epsilon} = \tilde{b}_{\epsilon} + \mu R_1 u_{\epsilon} + P_{-2}g_{\epsilon} =: f_{\epsilon}.$ (22)

perties of proper ψ do's, we see that $P_{-2}: W^{-\frac{1}{2},2}(U) \longrightarrow W^{\frac{3}{2},2}(U$ By the mapping properties of proper ψ do's, we see that P_{-2} : $W^{-\frac{1}{2},2}(U) \longrightarrow W^{\frac{3}{2},2}(U)$ is a continuous linear mapping. Introducing a third cut-off function μ_1 such that $\mu_1 \equiv 1$ on supp μ we can re-write (22) as $\varphi A\mu = \mu A\varphi + P_{-2}$ where $P_{-2} \in \Psi^{-2}(U)$ is a proper ψ do
 $)u_{\epsilon} + \epsilon^{-1} g_{\epsilon} = \tilde{b}_{\epsilon} + \mu R_1 u_{\epsilon} + P_{-2} g_{\epsilon} =: f_{\epsilon}.$ (22)

of proper ψ do's, we see that $P_{-2}: W^{-\frac{1}{2},2}(U) \longrightarrow W^{\frac{3}{2},2}(U)$

og. Introducing a th

$$
\delta g_{\varepsilon} + (\mu A \mu_1) g_{\varepsilon} + \varepsilon^{-1} g_{\varepsilon} = f_{\varepsilon}.
$$
 (23)

The principal symbol of $\mu A \mu_1$ on Γ is $\sigma_{-1}(\mu A \mu_1) = \mu(x) |\xi|^{-1}$.

Let us fix $\epsilon > 0$ and study the individual function g_{ϵ} for a moment.

Lemma 1. Let us assume $b_{\epsilon} \in W_{loc}^{1,p}(\Gamma)$ for all $p < +\infty$. Then $g_{\epsilon} = \varphi u_{\epsilon}^{\delta} \in W^{1,p}(U)$ *for all* $\varepsilon, \delta > 0$ *and* $p < +\infty$.

Proof. The solution u_{ϵ} of inequality (17) belongs to $L_2(S)$. Therefore $f_{\epsilon} \in W^{1,2}(U)$. From Treves [15: Theorem 2.1/p. 16] we get $(\mu A\mu_1)g_{\epsilon} \in W^{1,2}(U)$ and relation (23) gives the inclusion $f(\mu A \mu_1)g_{\epsilon} + \epsilon^{-1}g_{\epsilon} = f_{\epsilon}.$ (23)
 on Γ is $\sigma_{-1}(\mu A \mu_1) = \mu(x)|\xi|^{-1}.$
 he individual function g_{ϵ} for a moment.
 $\epsilon \in W_{loc}^{1,p}(\Gamma)$ *for all* $p < +\infty$. *Then* $g_{\epsilon} = \varphi u_{\epsilon}^{\delta} \in W^{1,p}(U)$

equality (17) b

$$
\delta g_{\epsilon} + \varepsilon^{-1} g_{\epsilon}^- \in W^{1,2}(U) \tag{24}
$$

Therefore δg_{ϵ}^+ and $(\delta + \epsilon^{-1})g_{\epsilon}^-$ both belong to $W^{1,2}(U)$, and $g_{\epsilon} \in W^{1,2}(U)$ for each fixed pair $\delta, \epsilon > 0$. From the embedding theorem it follows that $g_{\epsilon} \in L_{p_1}(U)$ with $p_1 = \frac{2N}{N-2}$ for $N \geq 3$ and $p_1 < +\infty$ arbitrary for $N = 2$. From the same argument we derive the inclusion f_{ϵ} , $(\mu A\mu_1)g_{\epsilon} \in W^{1,p_1}(U)$ and finally $g_{\epsilon} \in W^{1,p_1}(S) \subset L_{p_2}(U)$ with $p_2 = \frac{2N}{N-4}$ for $N \geq 5$ and $p_2 < +\infty$ arbitrary for $N \leq 4$. Repeating the argument we conclude that for each $\varepsilon, \delta > 0$ ∞ .
 ∞ of inequality (17) belongs to $L_2(S)$. Therefore $f_{\epsilon} \in W^{1,2}(U)$.

m 2.1/p. 16] we get $(\mu A\mu_1)g_{\epsilon} \in W^{1,2}(U)$ and relation (23)
 $\delta g_{\epsilon} + \epsilon^{-1} g_{\epsilon}^- \in W^{1,2}(U)$ (24)

¹) g_{ϵ}^- both belong to $W^{1,$

$$
g_{\varepsilon} = \varphi u_{\varepsilon}^{\delta} \in W^{1,p}(U) \qquad \text{for all} \ \ p < +\infty. \tag{25}
$$

Then it follows from the embedding theorem that $g_{\epsilon} \in C^{\beta}(U)$ for all $\beta \in (0,1)$

4.2 (L_p-regularity). We intend first to apply a ψ do *P* with principal symbol $|\xi|$ to equality (23). Then we multiply it by the test function $\langle g_{\epsilon} \rangle^{p-1} = |g_{\epsilon}|^{p-2} g_{\epsilon}$. In order to avoid additional regularizing terms containing $\varepsilon^{-1}g_e^-$ we need some preparation. For this define *• (Pv)(x)* = *J ex(e)leId* **4.2** (L_p -regularity). We intend first to apply a ψ do *P* with principal symbol equality (23). Then we multiply it by the test function $\langle g_{\epsilon} \rangle^{p-1} = |g_{\epsilon}|^{p-2} g_{\epsilon}$. In to avoid additional regularizing terms con

$$
(Pv)(x) = \int_{\mathbb{R}^N} e^{ix\xi} \chi(\xi) |\xi| \hat{v}(\xi) \frac{d\xi}{(2\pi)^N}
$$

$$
\chi(\xi) = \begin{cases} 0 & \text{if } |\xi| < 1 \\ 1 & \text{if } |\xi| \ge 2. \end{cases}
$$

Now we put $\int Pv \cdot w \, dx$ into a form adapted for considerations of the positive and negative part of the functions involved. Taking real functions $v, w \in C_0^{\infty}(\mathbb{R}^N)$ the

theorem of Fubini gives

Regularity for a Variational Inequality 365
\nof Fubini gives
\n
$$
(Pv, w) = \int_{\mathbf{R}^N} \left(\int_{\mathbf{R}^N} e^{iz\xi} \chi(\xi) |\xi| \hat{v}(\xi) \frac{d\xi}{(2\pi)^N} \right) w(x) dx
$$
\n
$$
= \int_{\mathbf{R}^N} \chi(\xi) |\xi| \hat{v}(\xi) \frac{d\xi}{\hat{w}(\xi)} \frac{d\xi}{(2\pi)^N}
$$
\n
$$
= \int_{\mathbf{R}^N} |\xi| \hat{v}(\xi) \overline{\hat{w}(\xi)} \frac{d\xi}{(2\pi)^N} + \int_{\mathbf{R}^N} (\chi(\xi) - 1) |\xi| \hat{v}(\xi) \overline{\hat{w}(\xi)} \frac{d\xi}{(2\pi)^N}
$$
\n
$$
=: I_1 + I_2.
$$
\n(26)

The operator *R2* defined by

$$
=: I_1 + I_2.
$$

for R_2 defined by

$$
(R_2 v)(x) = \int_{\mathbb{R}^N} e^{ix\xi} (\chi(\xi) - 1) |\xi| \hat{v}(\xi) \frac{d\xi}{(2\pi)^N}
$$
 for $v \in C_0^{\infty}(\mathbb{R}^N)$

is regularizing: $R_2 \in \Psi^{-\infty}(\mathbb{R}^N)$, since the amplitude $\chi(\xi) - 1$ vanishes outside the ball *B2 (0)* (cf. Dieudonné [4: Remark 23.19.5(iii)/p.149]). Applying Parseval's equality to I_1 we get *I*_{R^{N} XXXI}*I*_M
*I*₃: $R_2 \in \Psi^{-\infty}(\mathbb{R}^N)$, since the
ieudonné [4: Remark 23.19.5]
*I*₁ = $a \iint_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^{-N-1}$ </sub> $\langle \hat{v}(\xi) \frac{d\xi}{(2\pi)^N}$ for $v \in C_0^{\infty}(\mathbb{R}^N)$
 (iii)/p.149]). Applying Parseval's equality to
 $(v(x) - v(y))(w(x) - w(y)) dx dy$ (27)

Wloka [18: p. 97] and Hörmander [5: Vol.

$$
I_1 = a \iint_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^{-N-1} \big(v(x) - v(y) \big) \big(w(x) - w(y) \big) dx dy \qquad (27)
$$

where $a = a(N) > 0$ is a constant (see Wloka [18: p. 97] and Hörmander [5: Vol. 1/p. 241]). We stress that both integrals I_1 and I_2 depend on v and w . We have $(R_2v, w) = I_2$ and define an operator J_1 by $|x - y|^{-N-1} (v(x) - v(y)) (w(x) - w(y)) dx dy$ (27)

constant (see Wloka [18: p. 97] and Hörmander [5: Vol.

both integrals I_1 and I_2 depend on v and w. We have

operator J_1 by
 $|x - y|^{-N-1} (v(x) - v(y)) (w(x) - w(y)) dx dy$
 $(v \times \mathbb{R}^N)|x - y|^{-N-$

$$
(J_1v, w) = I_1 = a \iint_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^{-N-1} (v(x) - v(y))(w(x) - w(y)) dx dy
$$

for all $v, w \in C_0^{\infty}(\mathbb{R}^N)$ to get

$$
(J_1v, w) = (Pv, w) - (R_2v, w). \tag{28}
$$

We now prove L_p -regularity of the solution u of the variational inequality (1).

Theorem 1. Let
$$
2 \le p < +\infty
$$
 and $b \in W^{\frac{1}{2},2}(S) \cap W_{loc}^{1,p}(\Gamma)$. Then $u \in L_p^{loc}(\Gamma)$.

Remark 1. For $2 \leq p \leq +\infty$, the inclusion $b \in W^{1,p}(S)$ implies the inclusion $u \in L_p(S)$ if after a coordinate transform the operator *A* has the principal symbol (3) in each coordinate patch of a partition of unity on S.

Proof of Theorem 1. To prove the theorem we consider the approximate problems and derive uniform bounds for the solutions $u_{\epsilon} = u_{\epsilon}^{\delta}$ of inequality (10) and u^{δ} of u^{δ} . inequality (4).

(a) For simplicity we set $b^{\delta} = b \in W^{\frac{1}{2},2}(S) \cap W^{1,p}_{loc}(\Gamma)$. By approximation, we may assume that the family (b_{ϵ}) belongs to $W^{\frac{1}{2},2}(S) \cap W_{loc}^{1,q}(\Gamma)$ for all $q < +\infty$ and,

furthermore, $b_{\varepsilon} \to b^{\delta}$ in $W^{\frac{1}{2},2}(S)$ and in $W^{1,p}_{loc}(\Gamma)$ as $\varepsilon \to +0$. In particular, for any open set $O \subset \subset \Gamma$ $W^{\frac{1}{2},2}(S)$ and in $W^{1,p}_{loc}(\Gamma)$ as $\varepsilon \to +0$. In particular, for any

sup $||b_{\varepsilon}||_{1,p,O} \leq M = M(O) < +\infty$. (29)

that $g_{\varepsilon} \in W^{1,q}(U)$ for all $q < +\infty$. Therefore also $g_{\varepsilon} \in$

$$
\sup_{\epsilon} \|b_{\epsilon}\|_{1,p,O} \le M = M(O) < +\infty.
$$
 (29)

It follows from Lemma 1 that $g_{\varepsilon} \in W^{1,q}(U)$ for all $q < +\infty$. Therefore also $g_{\varepsilon}^- \in$ $W^{1,q}(U)$ for all $q < +\infty$. Suppose $q > N$, arbitrary. Then $W^{1,q}(U)$ is a Banach algebra (see Adams [1: p. 115]) and it follows that $\langle g_{\varepsilon}\rangle^{p-1} = |g_{\varepsilon}|^{p-2}g_{\varepsilon} \in W^{1,q}(U)$ for each $q \ge 2$. It is our goal to show that (29) implies S) and in $W_{loc}^{1,p}(\Gamma)$ as $\varepsilon \to +0$. In particular, for any
 $\lVert g \rVert_{1,p,O} \leq M = M(O) < +\infty$. (29)
 $g_{\varepsilon} \in W^{1,q}(U)$ for all $q < +\infty$. Therefore also $g_{\varepsilon}^- \in$

se $q > N$, arbitrary. Then $W^{1,q}(U)$ is a Banach algebra

f $b_{\epsilon}||_{1,p,O} \leq M = M(O) < +\infty.$ (29)
 $g_{\epsilon} \in W^{1,q}(U)$ for all $q < +\infty$. Therefore also $g_{\epsilon}^- \in$
 $\csc q > N$, arbitrary. Then $W^{1,q}(U)$ is a Banach algebra

it follows that $(g_{\epsilon})^{p-1} = |g_{\epsilon}|^{p-2}g_{\epsilon} \in W^{1,q}(U)$ for each

aat

$$
\sup \|g_{\varepsilon}\|_p \le M_1 < +\infty \tag{30}
$$

where the constant M_1 is independent of δ . This gives the local boundedness of $u_{\epsilon} \in$ $L_p(\Gamma)$. In fact, we may choose φ such that $\varphi \equiv 1$ on any open set $V \subset\subset U$ and estimation (30) implies $q \geq 2$. It is our goal to show that (29) implies
 $\sup_{\mathbf{e}} ||g_{\mathbf{e}}||_p \leq M_1 < +\infty$

where the constant M_1 is independent of δ . This gives the local bounded
 $L_p(\Gamma)$. In fact, we may choose φ such that $\varphi \equiv$

$$
\sup_{\varepsilon} \|u_{\varepsilon}\|_{p,V} \le M_1 < +\infty. \tag{31}
$$

(b) We apply operator J_1 to equality (23) and multiply it by $h_{\epsilon} = (g_{\epsilon})^{p-1}$ to get

$$
\delta(J_1g_{\epsilon},h_{\epsilon})+\big(J_1(\mu A\mu_1)g_{\epsilon},h_{\epsilon}\big)+\varepsilon^{-1}(J_1g_{\epsilon}^-,h_{\epsilon})=(J_1f_{\epsilon},h_{\epsilon}),
$$

where the constant
$$
M_1
$$
 is independent of δ . This gives the local boundedness of $u_{\epsilon} \in L_p(\Gamma)$. In fact, we may choose φ such that $\varphi \equiv 1$ on any open set $V \subset\subset U$ and
\n
$$
\sup_{\epsilon} ||u_{\epsilon}||_{p,V} \leq M_1 < +\infty.
$$
\n(31)
\n(b) We apply operator J_1 to equality (23) and multiply it by $h_{\epsilon} = (g_{\epsilon})^{p-1}$ to get
\n
$$
\delta(J_1g_{\epsilon}, h_{\epsilon}) + (J_1(\mu A\mu_1)g_{\epsilon}, h_{\epsilon}) + \varepsilon^{-1}(J_1g_{\epsilon}^-, h_{\epsilon}) = (J_1f_{\epsilon}, h_{\epsilon}),
$$
\nthat is
\n
$$
L_1 + L_2 + L_3 := \delta a \iint |x - y|^{-N-1} (g_{\epsilon}(x) - g_{\epsilon}(y)) (h_{\epsilon}(x) - h_{\epsilon}(y)) dx dy
$$
\n
$$
+ (P(\mu A\mu_1)g_{\epsilon}, h_{\epsilon})
$$
\n(32)
\n
$$
+ \varepsilon^{-1} a \iint |x - y|^{-N-1} (g_{\epsilon}(x) - g_{\epsilon}(y)) (h_{\epsilon}(x) - h_{\epsilon}(y)) dx dy
$$
\n
$$
= ((P - R_2)f_{\epsilon}, h_{\epsilon}) + (R_2(\mu A\mu_1)g_{\epsilon}, h_{\epsilon}).
$$
\nNow we have to consider the terms L_1, L_2 and L_3 of (32) separately. The function
\n
$$
\mapsto |t|^{p-2}t
$$
 is uniformly monotone for $p \geq 2$:
\n
$$
(|s|^{p-2}s - |t|^{p-2}t)(s - t) \geq c|s - t|^p
$$
 for all $s, t \in \mathbb{R}$
\n(33)
\nwhere $c > 0$ is a constant (cf. Zeider [19: Vol. 2/p. 503]). Then

Now we have to consider the terms L_1, L_2 and L_3 of (32) separately. The function $t \mapsto |t|^{p-2}t$ is uniformly monotone for $p \geq 2$: b consider the terms L_1, L_2 and L_3 of
iformly monotone for $p \ge 2$:
 $(|s|^{p-2}s - |t|^{p-2}t)(s-t) \ge c|s-t|^p$

$$
(|s|^{p-2}s - |t|^{p-2}t)(s-t) \ge c|s-t|^p \quad \text{for all} \quad s, t \in \mathbb{R}
$$
 (33)

where $c > 0$ is a constant (cf. Zeidler [19: Vol. $2/p$. 503]). Then

$$
|t|^{p-2}t \text{ is uniformly monotone for } p \ge 2:
$$
\n
$$
(|s|^{p-2}s - |t|^{p-2}t)(s-t) \ge c|s-t|^p \quad \text{for all } s, t \in \mathbb{R}
$$
\n
$$
|s|^{p-2}s - |t|^{p-2}t|(s-t) \ge c|s-t|^p \quad \text{for all } s, t \in \mathbb{R}
$$
\n
$$
|s|^{p-2}s - |t|^{p-2}t|s - |t|^{p-2}|
$$

The third term L_3 in (32) is the penalization term. Oberserving that

$$
(|s|^{p-2}s-|t|^{p-2}t)(s^{-}-t^{-})\geq (|s^{-}|^{p-2}s^{-}-|t^{-}|^{p-2}t^{-})(s^{-}-t^{-})
$$

 $\ddot{}$

it follows from *(33)* that

 $\omega_{\rm{max}}$.

Regularity for a Variational Inequal

\nso from (33) that

\n
$$
L_3 = \varepsilon^{-1} a \iint |x - y|^{-N-1} \left(g_\varepsilon^-(x) - g_\varepsilon^-(y) \right) \left(h_\varepsilon(x) - h_\varepsilon(y) \right) dx dy
$$
\n
$$
\geq \varepsilon^{-1} ca \iint |x - y|^{-N-1} |g_\varepsilon^-(x) - g_\varepsilon^-(y)|^p dx dy
$$
\n
$$
= \varepsilon^{-1} ca |g_\varepsilon^-|^p_{\frac{1}{p},p}.
$$

The second term of $L_2 = (P(\mu A \mu_1)g_{\epsilon}, h_{\epsilon})$ of (32) contains the composition of $P \in$ $\Psi^1(U)$ and the proper ψ do $\mu A \mu_1 \in \Psi^{-1}(U)$. The principal symbol of $P(\mu A \mu_1) \in \Psi^0(U)$ is $\sigma_0(P(\mu A\mu_1))(x,\xi) = \chi(\xi)\mu(x)$. Thus there exists a ψ do $P_{-1} \in \Psi^{-1}(U)$ such that

$$
\geq \varepsilon^{-1}ca \iint |x - y|^{-N-1} |g_{\varepsilon}^{-}(x) - g_{\varepsilon}^{-}(y)|^{p} dxdy
$$
\n
$$
= \varepsilon^{-1}ca |g_{\varepsilon}^{-}|^{p}_{\frac{1}{2},p}
$$
\nsecond term of $L_{2} = (P(\mu A\mu_{1})g_{\varepsilon}, h_{\varepsilon})$ of (32) contains the composition of $P \in$) and the proper ψ do $\mu A\mu_{1} \in \Psi^{-1}(U)$. The principal symbol of $P(\mu A\mu_{1}) \in \Psi^{0}(U)$
\n $P(\mu A\mu_{1})(x,\xi) = \chi(\xi)\mu(x)$. Thus there exists a ψ do $P_{-1} \in \Psi^{-1}(U)$ such that\n
$$
\int (P\mu A\mu_{1})(v) \cdot w dx
$$
\n
$$
= \iint \left(\iint e^{i(x-y)\xi} \chi(\xi)\mu(y)v(y) dy \frac{d\xi}{(2\pi)^{N}} \right) w(x) dx + \int P_{-1}v \cdot w dx
$$
\n
$$
= \iint \left(e^{iz\xi} \chi(\xi)\hat{v}(\xi) \frac{d\xi}{(2\pi)^{N}} \right) w(x) dx + (P_{-1}v, w).
$$
\n(34)\n
$$
= \iint \left(e^{iz\xi} \hat{v}(\xi) \frac{d\xi}{(2\pi)^{N}} \right) w(x) dx
$$
\n
$$
+ \iint \left(\int_{\mathbb{R}^{N}} e^{iz\xi} (\chi(\xi) - 1)\hat{v}(\xi) \frac{d\xi}{(2\pi)^{N}} \right) w(x) dx + (P_{-1}v, w).
$$
\n
$$
= \int v w dx + (R_{3}v, w) + (P_{-1}v, w)
$$

for all $v, w \in C_0^{\infty}(W)$ where $\widetilde{\iint}$ denotes an oscillatory integral and R_3 is regularizing by the argument already used for *R² .* Then, by approximation,

$$
L_2 = \int_{\Gamma} |g_{\varepsilon}|^p dx + (R_3 g_{\varepsilon}, h_{\varepsilon}) + (P_{-1} g_{\varepsilon}, h_{\varepsilon}).
$$

By Holder's inequality, equations *(32)* and *(34)* together give

$$
L_{2} = \int_{\Gamma} |g_{\epsilon}|^{p} dx + (R_{3}g_{\epsilon}, h_{\epsilon}) + (P_{-1}g_{\epsilon}, h_{\epsilon}).
$$

lder's inequality, equations (32) and (34) together give

$$
\delta ca|g_{\epsilon}|_{\frac{1}{p},p}^{p} + ||g_{\epsilon}||_{p}^{p} + \varepsilon^{-1} ca|g_{\epsilon}^{-}|_{\frac{1}{p},p}^{p}
$$

$$
\leq (||(P - R_{2})f_{\epsilon}||_{p} + ||R_{2}(\mu A\mu_{1})g_{\epsilon}||_{p} + ||R_{3}g_{\epsilon}||_{p} + ||P_{-1}g_{\epsilon}||_{p})||g_{\epsilon}||_{p}^{p-1}
$$

$$
\leq C (||\varphi b_{\epsilon}||_{1,p,W} + ||(P - R_{2})R_{1}u_{\epsilon}||_{p,W} + ||P_{-2}g_{\epsilon}||_{1,p,W}
$$

$$
+ ||R_{2}(\mu A\mu_{1})g_{\epsilon}||_{p,W} + ||R_{3}g_{\epsilon}||_{p,W} + ||P_{-1}g_{\epsilon}||_{p,W})||g_{\epsilon}||_{p}^{p-1}
$$

$$
K_{\varphi} = \sup \varphi \subset W \subset \subset U. \text{ Young's inequality and Proposition 2 imply}
$$

$$
\Big|_{\frac{1}{p},p}^{p} + ||g_{\epsilon}||_{p}^{p} + \varepsilon^{-1}|g_{\epsilon}^{-}|_{\frac{1}{p},p}^{p}
$$

$$
\leq C (||b_{\epsilon}||_{1,p,W}^{p} + ||u_{\epsilon}||_{-\frac{1}{2},2,S}^{p} + ||P_{-2}g_{\epsilon}||_{1,p,W}^{p} + ||g_{\epsilon}||_{-\frac{1}{2},2}^{p} + ||P_{-1}g_{\epsilon}||_{p,W}^{p})
$$

$$
\leq C (1 + ||P_{-2}g_{\epsilon}||_{1,p,W}^{p} + ||P_{-1}g_{\epsilon}||_{p,W}^{p})
$$

since $K_{\varphi} = \text{supp}\,\varphi \subset W \subset\subset U$. Young's inequality and Proposition 2 imply

+
$$
||A_2(\mu A \mu_1)g_{\epsilon}||_p, w + ||A_3g_{\epsilon}||_p, w + ||f_{-1}g_{\epsilon}||_p, w) ||g_{\epsilon}||_p
$$

\nace $K_{\varphi} = \text{supp}\varphi \subset W \subset\subset U$. Young's inequality and Proposition 2 imply
\n
$$
\delta |g_{\epsilon}|_{\frac{p}{p},p}^p + ||g_{\epsilon}||_p^p + \varepsilon^{-1} |g_{\epsilon}||_{\frac{p}{p},p}^p
$$
\n
$$
\leq C \Big(||b_{\epsilon}||_{1,p,W}^p + ||u_{\epsilon}||_{-\frac{1}{2},2,S}^p + ||P_{-2}g_{\epsilon}||_{1,p,W}^p + ||g_{\epsilon}||_{-\frac{1}{2},2}^p + ||P_{-1}g_{\epsilon}||_{p,W}^p \Big) \tag{35}
$$
\n
$$
\leq C \Big(1 + ||P_{-2}g_{\epsilon}||_{1,p,W}^p + ||P_{-1}g_{\epsilon}||_{p,W}^p \Big)
$$

since R_1 and R_2 are regularizing.

(c) We are going to apply a bootstrap argument. Using the embedding theorem and the fact that P_{-1} : $W_{\text{comp}}^{-\frac{1}{2},2}(U) \longrightarrow W_{\text{loc}}^{\frac{1}{2},2}(U)$ and P_{-2} : $W_{\text{comp}}^{-\frac{1}{2},2}(U) \longrightarrow W_{\text{loc}}^{\frac{3}{2},2}(U)$ are continuous linear mappings we get $\begin{aligned} \text{regularizing.} \quad\text{to apply a bootstrap argument. Using the embedding} \quad\text{if } W_{\text{conp}}^{-\frac{1}{2},2}(U) \longrightarrow W_{loc}^{\frac{1}{2},2}(U) \text{ and } P_{-2}: W_{\text{conp}}^{-\frac{1}{2},2}(U) \longrightarrow \text{displaying types we get} \quad\text{if }|P_{-1}g_{\varepsilon}\|_{q_1,W} \leq c_1 \|P_{-1}g_{\varepsilon}\|_{\frac{1}{2},2,W} \leq c_2 \|g_{\varepsilon}\|_{-\frac{1}{2},2} \quad\text{if }|P_{-2}g_{\varepsilon}\|_{1,q$ Using the embedding
 $P_{-2} : W_{comp}^{-\frac{1}{2},2}(U) \longrightarrow V$
 $c_2 ||g_e||_{-\frac{1}{2},2}$
 $c_2 ||g_e||_{-\frac{1}{2},2}$

We stress that these c

$$
||P_{-1}g_{\varepsilon}||_{q_1,W} \leq c_1 ||P_{-1}g_{\varepsilon}||_{\frac{1}{2},2,W} \leq c_2 ||g_{\varepsilon}||_{-\frac{1}{2},2}
$$
\n(36)

$$
||P_{-1}g_{\epsilon}||_{q_1,W} \le c_1 ||P_{-1}g_{\epsilon}||_{\frac{1}{2},2,W} \le c_2 ||g_{\epsilon}||_{-\frac{1}{2},2}
$$
\n
$$
||P_{-2}g_{\epsilon}||_{1,q_1,W} \le c_1 ||P_{-2}g_{\epsilon}||_{\frac{3}{2},2,W} \le c_2 ||g_{\epsilon}||_{-\frac{1}{2},2}
$$
\n(37)

for some constants $c_1 > 0$ and $c_2 > 0$, where $q_1 = \frac{2N}{N-1}$. We stress that these constants depend upon *W* and K_{φ} , but neither on ε nor on δ . It follows from (35) with $p = q_1$ that gell $g_{\epsilon} \|g_1, W \le c_1 \|P_{-1} g_{\epsilon}\|_{\frac{1}{2},2, W} \le c_2 \|g_{\epsilon}\|_{-\frac{1}{2},2}$ (36)
 $\|g_1, g_1, W \le c_1 \|P_{-2} g_{\epsilon}\|_{\frac{3}{2},2, W} \le c_2 \|g_{\epsilon}\|_{-\frac{1}{2},2}$ (37)

and $c_2 > 0$, where $q_1 = \frac{2N}{N-1}$. We stress that these constants

but n $P_{-2}g_{\varepsilon}||_1,$
 > 0 and
 K_{φ} , but
 $\sup_{\varepsilon} {\delta |g_{\varepsilon}|^2,}$
 $||g_{\alpha}| < +\infty$

$$
\sup_{\epsilon} \left(\delta |g_{\epsilon}|^q_{\frac{1}{q_1},q_1} + ||g_{\epsilon}||^q_{q_1} + \epsilon^{-1} |g_{\epsilon}|^q_{\frac{1}{q_1},q_1} \right) < +\infty. \tag{38}
$$

This implies $\sup_{\epsilon} ||g_{\epsilon}||_{q_1} < +\infty$. As in the first step we get

$$
\sup_{\epsilon} \{ \| P_{-2} g_{\epsilon} \|_{2,q_1,W} + \| P_{-1} g_{\epsilon} \|_{1,q_1,W} \} < +\infty.
$$

With $q_2 = \frac{2N}{N-3}$ the embedding theorem implies

$$
q_2 = \frac{2N}{N-3}
$$
 the embedding theorem implies

$$
||P_{-2}g_{\varepsilon}||_{1,q_2,W} \le c_3 ||P_{-2}g_{\varepsilon}||_{2,q_1,U} \quad \text{and} \quad ||P_{-1}g_{\varepsilon}||_{q_2,W} \le c_3 ||P_{-1}g_{\varepsilon}||_{1,q_1,W}
$$

and we get from (35) with $p = q_2$

This implies
$$
\sup_{\epsilon} \|g_{\epsilon}\|_{q_1} < +\infty
$$
. As in the first step we get
\n
$$
\sup_{\epsilon} \{ \|P_{-2}g_{\epsilon}\|_{2,q_1,W} + \|P_{-1}g_{\epsilon}\|_{1,q_1,W} \} < +\infty.
$$
\nWith $q_2 = \frac{2N}{N-3}$ the embedding theorem implies
\n
$$
\|P_{-2}g_{\epsilon}\|_{1,q_2,W} \le c_3 \|P_{-2}g_{\epsilon}\|_{2,q_1,U} \quad \text{and} \quad \|P_{-1}g_{\epsilon}\|_{q_2,W} \le c_3 \|P_{-1}g_{\epsilon}\|_{q_2,W} \le c_3 \|P_{-1}g_{\epsilon}\|_{q_2}.
$$
\nand we get from (35) with $p = q_2$
\n
$$
\sup_{\epsilon,\delta} \left(\delta |g_{\epsilon}|_{\frac{1}{q_2},q_2}^{q_2} + \|g_{\epsilon}\|_{q_2}^{q_2} + \epsilon^{-1} |g_{\epsilon}^{-}|_{\frac{1}{q_2},q_2}^{q_2} \right) < +\infty.
$$
\nWe can repeat this procedure as far as $q_j \le p$. In the last step we get

e embedding theorem implies
\n
$$
w \leq c_3 \|P_{-2}g_{\varepsilon}\|_{2,q_1,U} \quad \text{and} \quad \|P_{-1}g_{\varepsilon}\|_{q_2,W} \leq c_3 \|P_{-1}g_{\varepsilon}\|_{1,q_1,W}
$$
\n5) with $p = q_2$
\n
$$
\sup_{\varepsilon,\delta} \left(\delta |g_{\varepsilon}| \frac{q_2}{q_2}, q_2 + \|g_{\varepsilon}\|_{q_2}^{q_2} + \varepsilon^{-1} |g_{\varepsilon}^{-}| \frac{q_2}{q_2}, q_2 \right) < +\infty.
$$

\nprocedure as far as $q_j \leq p$. In the last step we get
\n
$$
\sup_{\varepsilon} \left(\delta |g_{\varepsilon}| \frac{p}{p,p} + \|g_{\varepsilon}\|_{p}^{p} + \varepsilon^{-1} |g_{\varepsilon}^{-}| \frac{p}{p,p} \right) \leq M_1 < +\infty
$$
\n(39)
\nas used above show that the constant M_1 is independent of $\delta > 0$.
\ntions (30) and (31).

where the estimates used above show that the constant M_1 is independent of $\delta > 0$. This proves estimations (30) and (31) .

We can repeat this procedure as far as $q_j \leq p$. In the last step we get
 $\sup_{\epsilon, \delta} \left(\delta \|g_{\epsilon}\|_{\frac{1}{p}, p}^2 + \|g_{\epsilon}\|_p^p + \epsilon^{-1} |g_{\epsilon}^{-1}\|_{\frac{1}{p}, p}^p \right) \leq M_1 < +\infty$ (39)

where the estimates used above show that the consta (d) Let $\varepsilon_n \to +0$ for fixed $\delta > 0$. Since $\sup_n ||g_{\varepsilon_n}||_p \leq M_1$ we can extract a where the estimates used above show that the constant M_1 is independent of $\delta > 0$.
This proves estimations (30) and (31).
(d) Let $\varepsilon_n \to +0$ for fixed $\delta > 0$. Since $\sup_n ||g_{\varepsilon_n}||_p \leq M_1$ we can extract a
subsequenc that $g^{\delta} = \varphi u^{\delta} \in L_p(S)$, i.e. $u^{\delta} \in L_p^{loc}(\Gamma)$. Let $\varphi \equiv 1$ on V. The weak sequential lower
semicontinuity of the norm gives $||u^{\delta}||_{p,Y} \le ||\varphi u^{\delta}||_{p} \le M_1$ for $V \subset\subset U$.
(e) If $\delta_n \to +0$, there exists a subseque semicontinuity of the norm gives $||u^{\delta}||_{p,V} \le ||\varphi u^{\delta}||_{p} \le M_1$ for $V \subset\subset U$. (d) Let $\varepsilon_n \to +0$ for fixed $\delta > 0$. Since $\sup_n ||g_{\varepsilon_n}||_p \leq M_1$ we can extract a
sequence with $\varphi u_{\varepsilon} \to g^{\delta}$ in $L_p(U)$. As $u_{\varepsilon} \to u^{\delta}$ in $L_2(S)$ (Proposition 2) we conclude
 $g^{\delta} = \varphi u^{\delta} \in L_p(S)$, i.e. $u^$

 $\rightarrow u_0$ in $W^{-\frac{1}{2},2}(U)$. Proposition 1 gives $\varphi u^{\delta} \rightarrow \varphi u$ in $W^{-\frac{1}{2},2}(S)$. Consequently (e) If $\delta_n \to +0$, there exists a subsequence such that $\varphi u^{\delta} \to u_0$ in $L_p(S)$ and $\varphi u^{\delta} \to u_0$ in $W^{-\frac{1}{2},2}(U)$. Proposition 1 gives $\varphi u^{\delta} \to \varphi u$ in $W^{-\frac{1}{2},2}(S)$. Consequently $u_0 = \varphi u \in L_p(U)$, and it follo $u_0 = \varphi u \in L_p(U)$, and it follows that $u \in L_p^{loc}(\Gamma)$ with $||u||_{p,V} \le ||\varphi u||_p \le M_1$ for $V \subset \subset U \blacksquare$

5. L_{∞} -regularity $5. L_{\infty}$

5.1. To prove L_{∞} -regularity for the solutions u_{ε} of equation (19) we apply a method from the classical theory of differential equations due to Stampacchia. It depends on estimates for the size of level sets. As in Subsection *4.2* we begin with a kind of differentiation of equation (23). Here we are going to use the operator

$$
(P^{\gamma}v)(x) := \int_{\mathbb{R}^N} e^{ix\xi} \chi(\xi) |\xi|^{\gamma} \hat{v}(\xi) \frac{d\xi}{(2\pi)^N}
$$
(40)

for $v \in C_0^{\infty}(\mathbb{R}^N)$ where $1 < \gamma < 2$ and $\chi \in C^{\infty}(\mathbb{R}^N)$ is the same function as in Subsection 4.2. For $g_{\epsilon} = \varphi u_{\epsilon}$ we have the following estimate.

Lemma 2. Suppose $b_{\varepsilon} \in W^{\gamma,2}(U)$ for some $\gamma \in (1,2)$. Then there exist appropriate ψ *do's* Q_{γ} *and* $Q_{\gamma-2}$ *from* $\Psi^{\gamma}(U)$ *and* $\Psi^{\gamma-2}(U)$ *, repectively, such that*

$$
(P^{\gamma}v)(x) := \int_{\mathbb{R}^{N}} e^{ix\xi} \chi(\xi) |\xi|^{\gamma} \hat{v}(\xi) \frac{d\xi}{(2\pi)^{N}}
$$
(40)
\nwhere $1 < \gamma < 2$ and $\chi \in C^{\infty}(\mathbb{R}^{N})$ is the same function as in
\nor $g_{\epsilon} = \varphi u_{\epsilon}$ we have the following estimate.
\n $uppose b_{\epsilon} \in W^{\gamma,2}(U) for some \gamma \in (1,2)$. Then there exist appropriate
\n -2 from $\Psi^{\gamma}(U)$ and $\Psi^{\gamma-2}(U)$, respectively, such that
\n $\delta a |[g_{\epsilon}(x) - k]^{+}|_{\frac{1}{2},2}^{2} + a |[g_{\epsilon}(x) - k]^{+}|_{\frac{1}{2}-1,2}^{2}$
\n $\leq \int_{U} (|Q_{\gamma}f_{\epsilon}| + |Q_{\gamma-2}g_{\epsilon}|) [g_{\epsilon}(x) - k]^{+} dx.$
\nor $v, w \in C_{0}^{\infty}(\mathbb{R}^{N})$ we get

Proof. (a) For $v, w \in C_0^{\infty}(\mathbb{R}^N)$ we get

Lemma 2. Suppose
$$
b_{\epsilon} \in W^{\gamma,2}(U)
$$
 for some $\gamma \in (1,2)$. Then there exist appropriate
\n*s* Q_{γ} and $Q_{\gamma-2}$ from $\Psi^{\gamma}(U)$ and $\Psi^{\gamma-2}(U)$, respectively, such that
\n
$$
\delta a |g_{\epsilon}(x) - k|^{+}|_{\frac{2}{3},2}^{2} + a |[g_{\epsilon}(x) - k]^{+}|_{\frac{2}{3}-1,2}^{2}
$$
\n
$$
\leq \int_{U} (|Q_{\gamma}f_{\epsilon}| + |Q_{\gamma-2}g_{\epsilon}|) [g_{\epsilon}(x) - k]^{+} dx. \tag{41}
$$
\nProof. (a) For $v, w \in C_{0}^{\infty}(\mathbb{R}^{N})$ we get
\n
$$
(P^{\gamma}v, w) = \int_{\mathbb{R}^{N}} \left(\int_{\mathbb{R}^{N}} e^{ix\xi} \chi(\xi) |\xi|^{\gamma} \hat{v}(\xi) \frac{d\xi}{(2\pi)^{N}} \right) w(x) dx
$$
\n
$$
= \int_{\mathbb{R}^{N}} |\xi|^{\gamma} \hat{v}(\xi) \overline{\hat{w}(\xi)} \frac{d\xi}{(2\pi)^{N}} + \int_{\mathbb{R}^{N}} (\chi(\xi) - 1) |\xi|^{\gamma} \hat{v}(\xi) \overline{\hat{w}(\xi)} \frac{d\xi}{(2\pi)^{N}} \tag{42}
$$
\n
$$
=: I_{1}^{\gamma} + I_{2}^{\gamma}.
$$
\n
\nFerning the integral I_{2}^{γ} we observe that the operator R_{2}^{γ} defined by
\n
$$
(R_{2}^{\gamma}v)(x) = \int_{\mathbb{R}^{N}} e^{ix\xi} (\chi(\xi) - 1) |\xi|^{\gamma} \hat{v}(\xi) \frac{d\xi}{(2\pi)^{N}}
$$
\n
$$
\in C_{0}^{\infty}(\mathbb{R}^{N})
$$
 is regularizing, whereas Parseval's inequality implies

Concerning the integral I_2^{γ} we observe that the operator R_2^{γ} defined by

$$
(R_2^{\gamma}v)(x) = \int_{\mathbf{R}^N} e^{ix\xi} \big(\chi(\xi) - 1\big) |\xi|^{\gamma} \hat{v}(\xi) \, \frac{d\xi}{(2\pi)^N}
$$

for $v \in C_0^\infty(\mathbb{R}^N)$ is regularizing, whereas Parseval's inequality implies

$$
=:\n\begin{aligned}\nI_1^{\gamma} + I_2^{\gamma}.\n\end{aligned}
$$
\nthe integral I_2^{γ} we observe that the operator R_2^{γ} defined by

\n
$$
(R_2^{\gamma}v)(x) = \int_{\mathbb{R}^N} e^{ix\xi} \left(\chi(\xi) - 1\right) |\xi|^{\gamma} \hat{v}(\xi) \frac{d\xi}{(2\pi)^N}
$$
\n
$$
(\mathbb{R}^N) \text{ is regularizing, whereas Parseval's inequality implies}
$$
\n
$$
I_1^{\gamma} = a \iint_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^{-N-\gamma} \left(v(x) - v(y)\right) \left(w(x) - w(y)\right) dx dy \tag{43}
$$
\n
$$
\gamma, N > 0. \text{ Defining}
$$

with $a = a(\gamma, N) > 0$. Defining

$$
I_1^{\gamma} = a \iint_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^{-N - \gamma} (v(x) - v(y)) (w(x) - w(y)) dx dy \qquad (43)
$$

\n
$$
a(\gamma, N) > 0. \text{ Defining}
$$

\n
$$
(J_{\gamma}v, w) = I_1^{\gamma}
$$

\n
$$
= a \iint_{\mathbb{R}^N \times \mathbb{R}^N} |x - y|^{-N - \gamma} (v(x) - v(y)) (w(x) - w(y)) dx dy
$$

\n
$$
w \in C_0^{\infty}(\mathbb{R}^N) \text{ we get}
$$

\n
$$
(J_{\gamma}v, w) = (P^{\gamma}v, w) - (R_2^{\gamma}v, w). \qquad (44)
$$

for all $v, w \in C_0^{\infty}(\mathbb{R}^N)$ we get

$$
(J_{\gamma}v, w) = (P^{\gamma}v, w) - (R_2^{\gamma}v, w). \tag{44}
$$

(b) The application of the operator $J_{\bm{\gamma}}$ to equality (23) and scalar multiplication by a test function *he* gives

(b) The application of the operator
$$
J_{\gamma}
$$
 to equality (23) and scalar multiplication by
\nst function h_{ϵ} gives
\n
$$
L_1 + L_2 + L_3 := \delta a \iint |x - y|^{-N-\gamma} (g_{\epsilon}(x) - g_{\epsilon}(y)) (h_{\epsilon}(x) - h_{\epsilon}(y)) dx dy
$$
\n
$$
+ (P^{\gamma}(\mu A \mu_1) g_{\epsilon}, h_{\epsilon})
$$
\n
$$
+ \epsilon^{-1} a \iint |x - y|^{-N-\gamma} (g_{\epsilon}^-(x) - g_{\epsilon}^-(y)) (h_{\epsilon}(x) - h_{\epsilon}(y)) dx dy
$$
\n
$$
= ((P^{\gamma} - R_2^{\gamma}) f_{\epsilon}, h_{\epsilon}) + (R_2^{\gamma}(\mu A \mu_1) g_{\epsilon}, h_{\epsilon}).
$$
\n(45)

For $k \geq 0$, choose $h_{\epsilon} = [g_{\epsilon} - k]^+ \in W^{\frac{1}{2},2}(U)$ in (45). It follows that supp $[g_{\epsilon}(x) - k]^+ \subseteq$ $\operatorname{supp} \varphi$ for $k \geq 0$. We first get

$$
L_1 = \delta a \iint |x - y|^{-N-\gamma} ([g_{\epsilon}(x) - k] - [g_{\epsilon}(y) - k])
$$

$$
\times ([g_{\epsilon}(x) - k]^+ - [g_{\epsilon}(y) - k]^+) dxdy
$$

\n
$$
\geq \delta a \iint |x - y|^{-N-\gamma} |[g_{\epsilon}(x) - k]^+ - [g_{\epsilon}(y) - k]^+|^2 dxdy
$$

\n
$$
= \delta a |[g_{\epsilon} - k]^+|_{\frac{1}{2},2}^2.
$$

\nthat
\n
$$
(s^- - t^-) ([s - k]^+ - [t - k]^+) \geq 0 \quad \text{for all } s, t \in \mathbb{R}
$$

Observing that

$$
(s^- - t^-)([s-k]^+ - [t-k]^+) \ge 0
$$
 for all $s, t \in \mathbb{R}$

we see that

$$
L_3 = \varepsilon^{-1} a \iint |x - y|^{-N-\gamma} (g_{\varepsilon}^-(x) - g_{\varepsilon}^-(y))
$$

$$
\times \left([g_{\varepsilon}(x) - k]^+ - [g_{\varepsilon}(y) - k]^+ \right) dx dy
$$

$$
\geq 0.
$$

In the second term L_2 of (45), the principal symbol of the composition $P^{\gamma}(\mu A \mu_1) \in$ It is the second term L_2 of (45), the principal symbol of the composition $P^{\gamma}(\mu A \mu_1) \in$
 $\Psi^{\gamma-1}(U)$ is $\sigma_{\gamma-1}(P^{\gamma}(\mu A \mu_1))(x,\xi) = \mu(x)|\xi|^{\gamma-1}\chi(\xi)$. It follows that there exists a ψ do $\Psi^{\gamma-1}(U)$ is $\sigma_{\gamma-1}(P^{\gamma}(\mu A\mu_1))(x,\xi) = \mu(x)|\xi|^{\gamma-1}\chi(\xi)$. It follows that there exists a ψ do $P_{\gamma-2} \in \Psi^{\gamma-2}(U)$ such that $P^{\gamma}(\mu A\mu_1) = P^{\gamma-1}\mu + P_{\gamma-2}$ where $P^{\gamma-1} \in \Psi^{\gamma-1}(U)$ is defined by (40) with γ replaced by $\gamma - 1$. Thus (44) with $\gamma - 1$ instead of γ gives

see that
\n
$$
L_3 = \varepsilon^{-1} a \iint |x - y|^{-N-\gamma} (g_{\varepsilon}^{-}(x) - g_{\varepsilon}^{-}(y))
$$
\n
$$
\times ([g_{\varepsilon}(x) - k]^+ - [g_{\varepsilon}(y) - k]^+) dxdy
$$
\n
$$
\geq 0.
$$
\nthe second term L_2 of (45), the principal symbol of the composition $P^{\gamma}(\mu A \mu_1)$
\n
$$
-1(U) \text{ is } \sigma_{\gamma-1}(P^{\gamma}(\mu A \mu_1))(x, \xi) = \mu(x)|\xi|^{\gamma-1}\chi(\xi).
$$
 It follows that there exists a ψ
\n
$$
-2 \in \Psi^{\gamma-2}(U) \text{ such that } P^{\gamma}(\mu A \mu_1) = P^{\gamma-1}\mu + P_{\gamma-2} \text{ where } P^{\gamma-1} \in \Psi^{\gamma-1}(U)
$$

\nined by (40) with γ replaced by $\gamma - 1$. Thus (44) with $\gamma - 1$ instead of γ gives
\n
$$
L_2 = (P^{\gamma-1}g_{\varepsilon}, h_{\varepsilon}) + (P_{\gamma-2}g_{\varepsilon}, h_{\varepsilon})
$$
\n
$$
= a \iint |x - y|^{-N-\gamma+1} ([g_{\varepsilon}(x) - k] - [g_{\varepsilon}(y) - k]) ([g_{\varepsilon}(x) - k]^+ - [g_{\varepsilon}(y) - k]^+)
$$
\n
$$
+ (R_3g_{\varepsilon}, h_{\varepsilon}) + (P_{\gamma-2}g_{\varepsilon}, h_{\varepsilon})
$$
\n
$$
\geq a |[g_{\varepsilon} - k]^+|_{\frac{\gamma-1}{2},2} + (R_3g_{\varepsilon}, h_{\varepsilon}) + (P_{\gamma-2}g_{\varepsilon}, h_{\varepsilon}).
$$
\n
$$
= \text{regularizing operator } R_3 = R_2^{\gamma-1} \text{ arises from (44). Observe that } \mu \equiv 1 \text{ on } K_{\varphi}
$$
\n
$$
\text{Summarizing we get}
$$
\n
$$
5a |[g_{\varepsilon} - k]^+|_{\frac{\gamma}{2},2}
$$

The regularizing operator $R_3 = R_2^{\gamma-1}$ arises from (44). Observe that $\mu \equiv 1$ on $K_{\varphi} =$

$$
\text{supp }\varphi. \text{ Summarizing we get}
$$
\n
$$
\delta a||g_{\epsilon} - k|^{+}|\frac{2}{1}, 2 + a||g_{\epsilon} - k|^{+}|\frac{2}{1 - 1}, 2|
$$
\n
$$
\leq \int_{U} \left\{ \left((P^{\gamma} - R_{2}^{\gamma})f_{\epsilon} \right) + \left(R_{2}^{\gamma}(\mu A\mu_{1})g_{\epsilon} - P_{\gamma - 2}g_{\epsilon} - R_{3}g_{\epsilon} \right) \right\} |g_{\epsilon}(x) - k|^{+} dx \quad (46)
$$
\n
$$
= \int_{U} \left(Q_{\gamma}f_{\epsilon} + Q_{\gamma - 2}g_{\epsilon} \right) |g_{\epsilon}(x) - k|^{+} dx
$$

where we have introduced $Q_{\gamma} = P^{\gamma} - R_2^{\gamma}$ and $Q_{\gamma-2} = R_2^{\gamma}(\mu A \mu_1) - P_{\gamma-2} - R_3$ to keep the notation short. This proves the lemma \blacksquare

5.2 We prove an embedding theorem which is needed later in this section.

where we have introduced $Q_{\gamma} = P^{\gamma} - R_2^{\gamma}$ and $Q_{\gamma-2} = R_2^{\gamma}(\mu A \mu_1) - P_{\gamma-2} - R_3$
the notation short. This proves the lemma \blacksquare
5.2 We prove an embedding theorem which is needed later in this section.
Lemma 3. $\frac{1}{q} = \frac{1}{2} - \frac{s}{N}$, *C . q* **=** *i.e.* $q = \frac{2N}{N-2s} > 2$. Then the following assertions are true. *is a domain and s* \in (0, 1) *is given.* We set $\frac{1}{q} = \frac{1}{2} - \frac{s}{N}$,
 bowing assertions are true.
 mbedding $W^{s,2}(\Omega) \subset L_q(\Omega)$, such that
 $u||_{s,2}$ for all $u \in W^{s,2}(\Omega)$.
 t, then there exists a constant

1. We have the continuous embedding $W^{s,2}(\Omega) \subset L_q(\Omega)$, such that

1U11q ^c II ^u IIs,2 $||u||_a \le c||u||_{a,2}$ *for all* $u \in W^{s,2}(\Omega)$.

2. If $\Omega_1 \subset\subset \Omega$ is an open set, then there exists a constant $C = C(\Omega, \Omega_1) > 0$ such *that* $\begin{aligned} \mathbb{I}^{|\alpha||q|} &\supseteq \mathbb{I} \\ \mathbb{I} &\subset \Omega \text{ is an open set} \\ \|u\|_q &\leq C |u|_{s,2} \\ \mathbb{I}^{|\alpha||q|} &\supseteq \mathbb{I}^{|\alpha||q|} \\ \mathbb{I}^{|\alpha||q|} &\supseteq \mathbb{I}^{|\alpha||q|} \end{aligned}$

$$
||u||_q \le C|u|_{s,2} \qquad \text{for all} \ \ u \in W^{s,2}(\Omega) \ \text{with} \ \ \text{supp}\, u \subseteq \Omega_1. \tag{47}
$$

Proof. For Assertion 1 *cf.* Triebel [16: p. 196]. For Assertion 2 we prove that

inuous embedding
$$
W^{s,2}(\Omega) \subset L_q(\Omega)
$$
, such that

\n
$$
u\|_q \le c\|u\|_{s,2} \qquad \text{for all } u \in W^{s,2}(\Omega).
$$
\nsopen set, then there exists a constant $C = C(\Omega, \Omega_1) > 0$ such

\n
$$
u\|_{s,2} \qquad \text{for all } u \in W^{s,2}(\Omega) \text{ with } \text{supp } u \subseteq \Omega_1.
$$
\n(47)

\non 1 cf. Triebel [16: p. 196]. For Association 2 we prove that

\n
$$
u \longmapsto \|u\|_q = \left\{ |u|_{s,2}^2 + \int_{\Omega \setminus \Omega_1} |u|^2 \right\}^{1/2} \qquad (48)
$$
\n(48)

\n
$$
W^{s,2}(\Omega), \text{ i.e. there exist constants } c_1, c_2 > 0 \text{ such that}
$$

is an equivalent norm on $W^{s,2}(\Omega)$, i.e. there exist constants $c_1, c_2 > 0$ such that

2. If
$$
\Omega_1 \subset\subset \Omega
$$
 is an open set, then there exists a constant $C = C(\Omega, \Omega_1) > 0$ such
at
 $||u||_q \leq C|u|_{s,2}$ for all $u \in W^{s,2}(\Omega)$ with supp $u \subseteq \Omega_1$. (47)
Proof. For assertion 1 cf. Triebel [16: p. 196]. For assertion 2 we prove that
 $u \longmapsto ||u||_a = \left\{ |u|_{s,2}^2 + \int_{\Omega \setminus \Omega_1} |u|^2 \right\}^{1/2}$ (48)
an equivalent norm on $W^{s,2}(\Omega)$, i.e. there exist constants $c_1, c_2 > 0$ such that
 $c_1 \left\{ |u|_{s,2}^2 + \int_{\Omega \setminus \Omega_1} |u|^2 dx \right\} \leq \left\{ |u|_{s,2}^2 + \int_{\Omega} |u|^2 dx \right\} \leq c_2 \left\{ |u|_{s,2}^2 + \int_{\Omega \setminus \Omega_1} |u|^2 dx \right\}$ (49)
all $u \in W^{s,2}(\Omega)$. The first inequality in (49) is obvious. To prove the second one

for all $u \in W^{s,2}(\Omega)$. The first inequality in (49) is obvious. To prove the second one we suppose the contrary. Then there exists an sequence $(u_n)_{n\in\mathbb{N}}$ such that $||u_n||_{s,2} \ge$ $n||u_n||_a$ $(n \in \mathbb{N})$. We define $v_n = \frac{u_n}{||u_n||_{a,2}}$. Thus $||v_n||_{a,2} = 1$ and $||v_n||_a \to 0$, and we ²(Ω), i.e. there exist constants $c_1, c_2 > 0$ such that
 $\leq \left\{ |u|_{s,2}^2 + \int_{\Omega} |u|^2 dx \right\} \leq c_2 \left\{ |u|_{s,2}^2 + \int_{\Omega \setminus \Omega_1} |u|^2 dx \right\}$ (49)

st inequality in (49) is obvious. To prove the second one

nen there exist

$$
v_n(x) \to 0 \qquad \text{a.e. in } \Omega \setminus \Omega_1 \tag{50}
$$

and

$$
|v_n|_{s,2}^2 = \iint_{\Omega \times \Omega} |x-y|^{-N-2s} |v_n(x) - v_n(y)|^2 dx dy \longrightarrow 0.
$$

can select a subsequence, again denoted by (v_n) such that $v_n \to v$ in $W^{s,2}(\Omega)$, $v_n \to v$
in $L_2(\Omega)$ and $v_n(x) \to v(x)$ a.e. in Ω . From $||v_n||_a \to 0$ it follows that
 $v_n(x) \to 0$ a.e. in $\Omega \setminus \Omega_1$ (50)
and
 $|v_n|_{s,2}^2 = \$ can select a subsequence, again denoted by (v_n) such that $v_n \rightharpoonup v$ in $W^{s,\epsilon}$.

in $L_2(\Omega)$ and $v_n(x) \to v(x)$ a.e. in Ω . From $||v_n||_a \to 0$ it follows that
 $v_n(x) \to 0$ a.e. in $\Omega \setminus \Omega_1$

and

and
 $|v_n|_{s,2}^2 = \iint_{$ Therefore $|v_n(x) - v_n(y)| \to 0$ a.e. in $\Omega \times \Omega$ and (50) implies $v_n(x) \to 0$ a.e. in Ω .
This gives $v_n \to 0$ in $L_2(\Omega)$ and because of $|v_n|_{s,2} \to 0$ we see that $||v_n||_{s,2} \to 0$, which

5.3 Now we define sets $A_{\epsilon}(k)$ where $g_{\epsilon} = \varphi u_{\epsilon}^{\delta}$ superceeds a level k:

$$
A_{\epsilon}(k) = \{x \in \Gamma : g_{\epsilon} \geq k\}.
$$

We age going to estimate the size of $A_{\epsilon}(k)$. Remember that $1 < \gamma < 2$.

R. Schumann
 Lemma 4. We suppose $b \in W_{loc}^{\gamma,r}(\Gamma)$ for some $\gamma \in (1,2)$ and $r > \frac{N}{\gamma-1}$. Set b_{ϵ} :
 $= b$. Then there exist constants $C > 0$ and $\beta > 1$, independent from ϵ and δ , su. $b^{\delta} := b$. Then there exist constants $C > 0$ and $\beta > 1$, independent from ε and δ , such *that* s *e* $b \in W_l$
 \leq $\frac{C}{(h-k)}$ *or some* $\gamma \in (1,2)$ and $r > \frac{N}{\gamma-1}$. Set $b_{\epsilon} :=$
 (for all h > k ≥ 0 *(51)*
 (for all h > k ≥ 0 Lemma 4. We suppose $b \in W_{loc}^{\gamma,r}(\Gamma)$ j

= b. Then there exist constants $C > 0$
 $|A_e(h)| \leq \frac{C}{(h-k)^q} |A_e(k)|$

re $q = \frac{2N}{N+1-\gamma}$.
 Proof. Set $s = \frac{\gamma-1}{2}$, $q = \frac{2N}{N-2s} = \frac{2}{N}$.

ma 2, Lemma 3 and the inclusion supp

$$
|A_{\epsilon}(h)| \leq \frac{C}{(h-k)^{q}} |A_{\epsilon}(k)|^{\beta} \qquad \text{for all} \ \ h > k \geq 0 \tag{51}
$$

where $q = \frac{2N}{N+1-\gamma}$.

2N $|A_{\epsilon}(h)| \leq \frac{C}{(h-k)^q} |A_{\epsilon}(k)|^{\beta}$ for all $h > k \geq 0$ (51)
 where $q = \frac{2N}{N+1-\gamma}$.
 Proof. Set $s = \frac{\gamma-1}{2}$, $q = \frac{2N}{N-2s} = \frac{2N}{N+1-\gamma} > 2$ and $\frac{1}{q} + \frac{1}{q'} = 1$. It follows from

Lemma 2, Lemma 3 and the incl

$$
re q = \frac{2N}{N+1-\gamma}.
$$

\nProof. Set $s = \frac{\gamma-1}{2}$, $q = \frac{2N}{N-2s} = \frac{2N}{N+1-\gamma} > 2$ and $\frac{1}{q} + \frac{1}{q'} = 1$. It follows from
\n $\text{max } 2$, Lemma 3 and the inclusion $\text{supp}[g_{\epsilon}(x) - k]^{+} \subseteq \text{supp}\varphi \subset\subset U$ that
\n
$$
\left\{ \int_{A_{\epsilon}(k)} |[g_{\epsilon}(x) - k]^{+}|^{q} dx \right\}^{2/q}
$$
\n
$$
\leq c \left\{ \int_{A_{\epsilon}(k)} (|Q_{\gamma}f_{\epsilon}| + |Q_{\gamma-2}g_{\epsilon}|)^{q'} dx \right\}^{1/q'} \left\{ \int_{A_{\epsilon}(k)} |[g_{\epsilon}(x) - k]^{+}|^{q} dx \right\}^{1/q}
$$
\n
$$
k \geq 0. \text{ Young's inequality gives}
$$
\n
$$
\left\{ \int_{A_{\epsilon}(k)} |[g_{\epsilon}(x) - k]^{+}|^{q} dx \right\}^{2/q} \leq c \left\{ \int_{A_{\epsilon}(k)} (|Q_{\gamma}f_{\epsilon}| + |Q_{\gamma-2}g_{\epsilon}|)^{q'} dx \right\}^{2/q'}
$$
\n
$$
\text{erefore, for } h > k \geq 0,
$$
\n
$$
\left\{ \int_{A_{\epsilon}(k)} |[g_{\epsilon}(x) - k]^{+}|^{q} dx \right\}^{2/q} \leq c \left\{ \int_{A_{\epsilon}(k)} (|Q_{\gamma}f_{\epsilon}| + |Q_{\gamma-2}g_{\epsilon}|)^{q'} dx \right\}^{2/q'}
$$

for $k \geq 0$. Young's inequality gives

$$
\left\{\int_{A_{\epsilon}(k)}\left| [g_{\epsilon}(x)-k]^{+}|^{q}dx\right\}^{2/q} \leq c \left\{\int_{A_{\epsilon}(k)}\left(|Q_{\gamma}f_{\epsilon}|+|Q_{\gamma-2}g_{\epsilon}|\right)^{q'}dx\right\}^{2/q}
$$
\n
$$
\text{or, for } h > k \geq 0,
$$
\n
$$
|A_{\epsilon}(h)|(h-k)^{q} \leq c \left\{\int_{A_{\epsilon}(k)}\left(|Q_{\gamma}f_{\epsilon}|+|Q_{\gamma-2}g_{\epsilon}|\right)^{q'}dx\right\}^{q/q'}
$$
\n
$$
\text{Hölder's inequality with } r > \frac{q}{q-2} = \frac{N}{\gamma-1} \text{ and } r > q',
$$
\n
$$
|A_{\epsilon}(h)|(h-k)^{q} \leq c \left(\|Q_{\gamma}f_{\epsilon}\|_{r,U}+\|Q_{\gamma-2}g_{\epsilon}\|_{r,U}\right)^{q}|A_{\epsilon}(k)|^{q-1-\frac{q}{\epsilon}}.
$$
\n
$$
\text{that } \beta = q-1-\frac{q}{\epsilon} > 1. \text{ It follows from (22) and (30) in the proof of T.}
$$

Therefore, for $h > k \geq 0$,

$$
|A_{\epsilon}(h)|(h-k)^{q} \leq c \left\{ \int_{A_{\epsilon}(k)} (|Q_{\gamma}f_{\epsilon}| + |Q_{\gamma-2}g_{\epsilon}|)^{q'} dx \right\}^{q/q'}
$$

's inequality with $r > \frac{q}{q-2} = \frac{N}{\gamma-1}$ and $r > q'$,

and, by Hölder's inequality with $r > \frac{q}{q-2} = \frac{N}{\gamma-1}$ and $r > q'$,

$$
\left(\int_{A_{\epsilon}(k)} |\langle \varphi \gamma \rangle e|^{1 + |\varphi \gamma - 2\varsigma e|} \right) dx
$$
\n
$$
\text{Ider's inequality with } r > \frac{q}{q-2} = \frac{N}{\gamma - 1} \text{ and } r > q',
$$
\n
$$
\left| A_{\epsilon}(h) | (h - k)^q \leq c \left(\| Q_{\gamma} f_{\epsilon} \|_{r, U} + \| Q_{\gamma - 2} g_{\epsilon} \|_{r, U} \right)^q \left| A_{\epsilon}(k) \right|^{q-1 - \frac{q}{r}}. \tag{53}
$$

We see that $\beta = q - 1 - \frac{q}{r} > 1$. It follows from (22) and (30) in the proof of Theorem 1 that $\sup (\|Q^{\gamma} f_{\varepsilon}\|_{r,U} + \| \dot{Q}_{\gamma-2} g_{\varepsilon}\|_{r,U}) < +\infty$. This gives (51)

Now we are in the position to prove the uniform boundedness of the family $(u_{\epsilon}) =$ $(u_{\varepsilon}^{\delta})$. We are going to use the following result of Stampacchia.

Lemma 5 (see Kinderlehrer and Stampacchia [8: p. 63]). Let $\phi : [k_0, +\infty) \to \mathbb{R}$ *be a non-negative and non-increasing function such that*

$$
k^{q} = k^{q} \leq c \Big(||Q_{\gamma} f_{\epsilon}||_{r,U} + ||Q_{\gamma-2} g_{\epsilon}||_{r,U} \Big)^{q} |A_{\epsilon}(k)|^{q-1-\frac{q}{r}}.
$$
 (53)
\n
$$
-\frac{q}{||Q_{\gamma-2} g_{\epsilon}||_{r,U}} < +\infty.
$$
 This gives (51) **ii**
\n
$$
||Q_{\gamma-2} g_{\epsilon}||_{r,U} < +\infty.
$$
 This gives (51) **iii**
\n
$$
x \text{ position to prove the uniform boundedness of the family } (u_{\epsilon}) =
$$

\nuse the following result of Stampacchia.
\n
$$
x \text{ independent of the function}
$$

\n
$$
x \text{ independent of the function}
$$

\n
$$
x \text{ independent of the function}
$$

\n
$$
x \text{ independent of the function}
$$

\n
$$
x \text{ independent of the function}
$$

\n
$$
x \text{ independent of the function}
$$

\n
$$
x \text{ independent of the function}
$$

\n
$$
x \text{ independent of the function}
$$

\n
$$
x \text{ continuous on the function}
$$

\n
$$
x \text{ continuous on the function}
$$

\n
$$
x \text{ continuous on the function}
$$

\n
$$
x \text{ continuous on the function}
$$

\n
$$
x \text{ continuous on the function}
$$

\n
$$
x \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n
$$
y \text{ continuous on the function}
$$

\n<math display="block</math>

where C, α and β are positive constants with $\beta > 1$. Then

$$
\phi(k_0+M)=0
$$

where

$$
M = 2^{\frac{\beta}{\beta - 1}} C^{\frac{1}{\alpha}} [\phi(k_0)]^{\frac{\beta - 1}{\alpha}}.
$$
\n
$$
(55)
$$

Regularity for a Variational Inequality 373
 M = $2^{\frac{\beta}{\beta-1}}C^{\frac{1}{\alpha}}[\phi(k_0)]^{\frac{\beta-1}{\alpha}}$ (55)
 W^{1,r}(*U*) for some $\gamma \in (1,2)$ and $r > \frac{N}{\gamma-1}$. Then the
 quality (1) is locally bounded on $\Gamma : u \in L_{\infty}^{loc}(\Gamma)$ **Theorem 2.** *Suppose b* $\in W^{\gamma,r}(U)$ *for some* $\gamma \in (1,2)$ *and* $r > \frac{N}{\gamma-1}$ *. Then the solution u of the variational inequality* (1) is locally bounded on Γ : $u \in L^{\text{loc}}_{\infty}(\Gamma)$, *i.e. for all* $V \subset \Gamma$ there exists a constant $M > 0$ such that $0 \leq u(x) \leq M$ a.e. on V.

Remark 2. Under the hypotheses of Remark 1 one may prove the inclusion $u \in$ $L_{\infty}(S)$.

Proof of Theorem 2. We shall prove the theorem in three steps.

(a) First we define $b_{\epsilon}^{b} = b^{b} := b$ for all $\epsilon, \delta > 0$. We are going to apply Lemma 5 and suppress the superscript δ again. Set $\phi_{\epsilon}(k) = |A_{\epsilon}(k)|$ and $k_0 = 0$. Then $\phi_{\epsilon}(k_0) =$ $|\{x \in \Gamma : g_{\varepsilon} \geq 0\}| \leq |U|$ and it follows from (51) that there exists a bound $M > 0$ *independent* of ε and δ such that *where exists a constant M > 0 such that*
 where exists a constant M > 0 such that
 c 2. Under the hypotheses of Remark
 f Theorem 2. We shall prove the the

we define $b_{\epsilon}^{\delta} = b^{\delta} := b$ for all $\epsilon, \delta > 0$
 ≥ 0 1 a.e. on V.

ove the inclusion

steps.

ig to apply Lemm

= 0. Then $\phi_{\epsilon}(k_0)$

ists a bound M
 $c_1|U|^{\frac{\beta-1}{q}}$

$$
\varphi(x)u_{\epsilon}^{\delta}(x)=g_{\epsilon}(x)\leq M:=\sup_{\epsilon}2^{\frac{\beta}{\beta-1}}C^{\frac{1}{\epsilon}}[\phi_{\epsilon}(0)]^{\frac{\beta-1}{\epsilon}}\leq c_1|U|^{\frac{\beta-1}{\epsilon}}\qquad\qquad(56)
$$

a.e. on *U.*

(b) Next, we keep $\delta > 0$ fixed and let $\varepsilon := \varepsilon_n \to +0$. For simplicity, we omit the (b) Next, we keep $\delta > 0$ fixed and let $\varepsilon := \varepsilon_n \to +0$. For simplicity, we omit the subscipt *n*. From Proposition 2 we know that $u_{\varepsilon} \to u^{\delta}$ in $L_2(S)$, $g_{\varepsilon} \to g^{\delta} = \varphi u^{\delta}$ in $L_2(U)$ and along a subsequence $L_2(U)$ and along a subsequence $g_e(x) \to g^{\delta}(x)$ a.e. in *U.* Since $u^{\delta} \in K_1$ (56) gives fixed
n 2 we
ce g_{ε} (
 $0 \leq \varphi$

$$
0\leq \varphi(x)u^{\mathfrak{o}}(x)=g^{\mathfrak{o}}(x)\leq M
$$

a.e. in *U.*

(c) Finally, let $\delta := \delta_n \to +0$. As in the proof of Theorem 1 we have $\varphi u^{\delta} \to \varphi u$ in $L_2(U)$, and $\varphi u^{\delta} \to \varphi u$ in $W^{-\frac{1}{2},2}(S)$. Along a subsequence, a theorem of Banach and Saks (see Riesz and Sz.-Nagy [11: p.72]) implies the strong *L*² -convergence of the sequence of arithmetic means, i.e. $v_n = \frac{1}{n}(\varphi u^{\delta_1} + \varphi u^{\delta_2} + \ldots + \varphi u^{\delta_n}) \to \varphi u$ in $L_2(U)$. Again, passing to a subsequence if necessary, $v_n(x) \to \varphi(x)u(x)$ a.e. in *U*. Since for the means $0 \le v_n(x) \le M$ we have also $0 \le \varphi(x)u(x) \le M$ a.e. in *U*. As we may choose φ in Subsection 4.1 such that $\varphi \equiv 1$ on an arbitrary open set $V \subset\subset U$ the assertion follows \blacksquare

References

- [1] Adams, R.: *Sobolev spaces.* New York: Academic Press 1978.
- *[2] Archipova, A. A. and N. N. Uralzeva: On the regularity of the solution of a problem with one-sided obstacles on the boundary* (in Russian). Vestnik Leningr. Univ. (Ser. 1) $(1986)1, 3 - 10.$
- *[3] Barbu, V. and Th. Precupanu: Convezity and Optimization in Banach Spaces.* Leyden: Sijthoff & Nordhoff 1978.
- [4) Dieudonné, J.: *Grundziige der modernen Analysis, Vol.* 7. Braunschweig: Vieweg 1982, and Berlin: Dt. Verlag Wiss. 1982.
- [5] Hörmander, L.: *The Analysis of Linear Partial Differential Operators. Vols. 1 4.* New York - Berlin: Springer-Verlag 1989 - 1992.
- [6] Kinderlehrer, D.: *The srnothness of the solution of the boundary obstacle problem.* J. Math. Pures Appl. 60 (1981), 193 - 212.
- [7] Kinderlehrer, D.: Remarks about Signorini's problem in linear elasticity. Ann. Sci. Norm. Sup. Pisa 8 (1981), 605 - 645. **R. Schumann**
 Hörmander, L.: The Analysis of Linear Partial Differential Operators. Vols. 1 - 4. Ne

York – Berlin: Springer-Verlag 1989 – 1992.
 Kinderlehrer, D.: The smothness of the solution of the boundary obstacle
- *[8] Kinderlehrer, D. and G. Stampacchia: An Introduction to Variational Inequalities and*
- [9] Lions, J.L.: *Quelques méthodes de resolution des problêmes aux limites non linéaires.* Paris: Dunod 1969.
- *[10] Muñd, A.: Equilibrium 'configurations for rotating conducting bodies.* Univ. Leipzig (unpublished).
- [11] Riesz, F. und B. Sz.-Nagy: *Vorlesungen uber Funktionalanalysis.* Berlin: Dt. Verlag Wiss. 1973.
- [12] Rodrigues, J. F.: *Obstacle Problems in Mathematical Physics*. Amsterdam: North Holland 1987.
- [13] Schumann, R.: Regularity for Signorini's problem in linear elasticity. Man. math. 63 $(1989), 255 - 291.$
- *[141 Shamir, E.: Regularity of mixed second order elliptic problems.* Israel Math. J. 6 (1968), $.150 - 168.$
- *[15] Treves, F.: Introduction to Pseudodifferential and Fourier Operators.* New York: Plenum Press 1982.
- [16] Triebel, H.: *Theory of Functions Spaces.* Leipzig: Akad. Verlagsges. Geest & Portig 1983 and Basel: Birkhäuser Verlag 1983.
- *[17] Uralzeva, N. N.: On the regularity of solutions of variational inqualities* (in Russian). Uspechi mat. Nauk 42 (1987)6, 151 - 174.
- [18] Wloka, J.: *Partielle Differentialgleichungen.* Stuttgart: Teubner-Verlag 1982.
- [19] Zeidler, E.: *Nonlinear Functional Analysis and Applications. Vols. 1 4. New York -*Berlin: Springer-Verlag 1985 - 1992.

Received 16.06.1995