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Abstract. We prove that the solution of a vériationa.l inequality on a submanifold in R™
involving a pseudodifferential operator of order -1 is bounded.
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1. Introduction

Consider the variational inequality to find u € K such that (v — u, Au) > (v — u,bd) for
all v € K, where b € W32(S) is given, K denotes the positive cone of the Hilbert space

W=32(S) and A4 is an elliptic pseudodifferential operator of the negative order —1 on
a closed manifold S C R". ’ :

Variational inequalities are nonlinear problems even if the operator A is linear be-
cause K fails to be a linear subspace of W~%2(S). The usual setting is that A maps a
Banach or Hilbert space X into its dual X*. In many applications X is a Sobolev space
and A denotes a linear elliptic differential operator of order m. By energetic consider-
ations, for example, it is often easy to prove the (weak) solvability of the variational
inequality. Concerning the regularity of weak solutions we find two different situations:
For elliptic equations Au = b the inclusion b € W*? implies, in general, the inclusion
u € WH+m2 In contrast to this case, problems for variational inequalities have limited
regularity, i.e. even if b is smooth, their solutions u cannot overcome a certain threshold
of smoothness. For instance, Shamir [14] gave an example where u ¢ W32(Q)UW?24(0)
for A= -A+I,be WP forallp>1and K ={u€ W'3Q): u>0onT C 89}
(cf. Lions [9: Section 8.2] and Rodrigues [12:" p. 279]). For variational inequalities
with elliptic differential operators the regularity of solutions was investigated, e.g., by
Kinderlehrer [6], Kinderlehrer and Stampacchia (8], and Uralzeva [2, 17]. The case of
systems of variational inequalities with one-sided obstacles was treated in the papers
of Kinderlehrer (7] (systems in R?) and Schumann [13] (Lamé's system of elasticity in
RY (N >2). , .

It seems however that problems concerning regularity of solutions of variational
inequalities have not been considered if the operator A is a pseudodifferential operator
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of negative order. This case can also be motivated by a physical example (see [10]).
A-priori the solution u of the variational inequality only belongs to the Sobolev space
W~%2(S) of negative order —3.- Thus we are interested to prove moré regularity for
the solution. In Section 5 we shall prove the following result.

Theorem. Suppose b € WY7(S) for some v € (1,2) and r-> % Then the
3olut:on u € K of the variational inequality (1) below’ i essent;ally bounded, i.e. u €

Loo(S)-

We use the following notation. The norm in the Lebesgue space L,(U) where
U C R™ denotes an open set is

1/p
lully = ullpw = ( [ |u<x)|"dz) ,

1/p

and
lwlly,, = (||u||” +fuf?,)

denotes the norm in the Sobolev space WY?(U) with vy € (0 1) where the seminorm
Jul+,p is defined by

= ([ = v wlu(z)—u(y)lpdzdy)l/p-_

The set of pseudodifferentia.l operators of order m acting on U is denoted by ¥™(U).-

2. Problem and approximation (I)

We suppose that S is.a smooth compact N'-di'mgznsional manifold (N > 2) without
boundary (85 = 0). Consider the following variational inequality:

Findu € K. such that
(v—u,Aﬁ)Z(v—d,b) for allve K . o (1)

.where b € W2'2(S) 18 given and K i the posziwe cone of the Hzlbert space W~ 2'2(5)
i.e. ' . ,

K' {v e W™ 32(S): (v (p) >0 for all <p € 'D(S) such that ¢ > 0 on S} (2)

Cleaxly Kisa closed cone of the Sobolev space X = W 2(S ). We denote the norm
in X by || - 1,2 and make the followmg hypotheses on the lmea.r continuous operator

A WE(S) o wha(s)

(H1) There exists a constant ¢ > 0 such that (v, Av) > ¢||v||* , ,forallve X
1
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(H2) For sake of technical simplicity, we assume that a part [ of S lies in the hy-
perplane RN C R® (n = N + 1). Furthermore we suppose that the principal
symbol of the pseudodifferential operator A € ¥~!(S) on I is given by

o1 (A)", &) =[¢'|7"  for («',0) €T - 3

where z' = (z),...,zn) and € =(£&),...,&n) (the general case can be handled
after a coordinate transform).

It folldws from hypothesis (Hl) that the variational inequality (1) has a unique solution
u'€ K (for a proof cf. Lions [9: Chapter 2.8.2/Theorem 8.1]). Hypothesis (H2) will be
used in Sections 4 and § to prove regularity of the solution.

To prove fegula.rity we first approximate the solution u of variational inequé.lity (1)
by solutions ué (6 > 0) of the following family of variational inequalities:

Find u% € K, such that
"6(‘u—u6 |u6)+(v—u6,Au6).Z (v —ub,8%) forallve K, (4)

where v
Ky = KN LyS) = {v € Ly(S): v(z) 20 ae. on s},
b e Wi2 and (- | -) denotes the inner product in Ly(S).

We will show that the family (u)s>o of solutions of variational inequalities (4) »
approximates the solution u of variational inequality (1).

Proposition 1. Let b,b° € W32(S). Then the following assertions are true.
1. For any § > 0, there ezists a unigque solution u® € K, of inequality (4).

- 2. If sup; ||b6||%|2 < +00, then sup; ||u6||_%',2 < 400,

3 If B = bin WE(S) as 6§ — 40, then u® — u in X = W-12(S) where u is the
unique solution of inequality (1).
Proof. Assertion 1: K is a closed, convex cone of LQ(S).‘ The linear continuous
operator A defined by '
(v, Au) = §(v | u) + (v, Au) for all u,ve X (5)

is strongly coercive on Lj(S) since (u, Au) > §||u|f + c|lu[|?, , for all u € Ly(S) (cf.
L,

(2))- Thus existence and uniqueness of the solution u® of variational inequality (4)
follow immediately. ' ‘ '

Assertion 2: We set v = 0 in (4) and get *

6 § 5 § LTI
Sllu’lly + (u’, Au’) < 0]y ollu®ll-} 2
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Thus, by (2) and Young’s inequality

Sl®lI3 + II w2y, <allt’li,
This means that there exists a constant C > 0 such that

wp |-y, <C  and  supvBlulls < C )

Assertion 3: Now, we suppose that b — b in W#:2(S) and that (§,) is a sequence
converging to zero. For simplicity we write only § instead of §, in what follows. Then
we may conclude that, at least for a subsequence, 4 — u; € K in X and Véu® — win
Ly(S). By compact embedding, v6u® — w in X. Since (u®) is bounded in X it follows
that V&u® — 0 in X as § — +0. Therefore w = 0 and v6u® — 0 in Ly(S).

(a) To prove u = u; we want to show that u; satisfies the inequality
(v —u1,Auy) 2 (v = u1, b) for all v € K. (7

Then a density argument proves that u, is a solution of inequality (1) and the uniqueness
of the solution gives u = u;. Indeed, from (4) we get

6(u6 [uf) + (uf, Au®) < (u® = v,8%) + 8(v | ©?) + (v, Aud). (8)

Since the positive bilinear form v (Av,v) is weakly sequentla.lly lower semicontinuous
(cf. Zeidler [19: Vol. 3, p. 156]) it follows from § — +0 that
(uy, Auy) < liminf(u6,Au6) .
< liminf ((u®, Au®) + 6||u‘5||2)‘ ' (9)
<:(uy = v,b) + (v, Au,)
for all v € K,. Thus (7) is proved and we have u = u;. A well-known argument
concerning subsequences (cf. Zeidler.[19: Vol. 1, p. 480]) shows that the whole sequence

(u®») is weakly convergent to u.

5

(b) We prove the strong convergence u® — u in X. Let 'us use (8) with v = u to get

(u, Au) < liminf(u’, Au’)
< lim sup(u?, Auév)
< limsup ((u?, Au®) + 6||u’|)?)
< limsup ((w® —u,b%) + 8(u | u6) + (u, Au®))
= (u, Au)
and therefore (u’, Au®) — (u, Au) as § — +0. Then (2) implies

C"u6 - ullz_%g < (u6 - uaAu6 - Au) —0 .

and Assertion 3 is proved @
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3. Approximation (II)

In Section 2 we replaced the variational inequality (1) acting in X = W‘é'Q(S) by a
family of approximate variational inequalities depending on § > 0 with cone K; C Ly(S)
(see (4)). Now we suppose that § > 0is fixed and introduce a penalization of the negative
part of the functions of Ly(S). The aim is to get a variational inequality over the whole
of L2(S). This variational inequality has a unique solution u, = u! where € > 0 is the
penalization parameter. (Since § is fixed in this section we shall omit the supercript 8.)
Later, in Sections 4 and 5 we are going to derive bounds on the solutions depending
neither on € nor on § in order to get regularity results for the solution u of variational
inequality (1).

Suppose € > 0. We construct the following approximation of the variational in-
equality (4):

Find u, € Ly(S) such that
8(v —ue | ue) + (v —ue, Aue) + Fo(v) — Fe(ue) 2> (v — ue, be) (10)

for allv € Ly(S), where b, € W§'2(S) and the penalization functional F, is defined by
R0 =5 [ oFas
)= 2¢e s

for v € La(S), denoting for any real function ¢ by p* the positive and negative parts of
@, respectively, i.e. o = ot + .

Parallel with (10) we consider the following variational inequality:
Find ub € Ly(S) such that
6(v —ul | u®) + (v —ub, Au’) 4+ F(v) — F(u®) > (v — u®,b%) (11)
for all v € Ly(S), where F s the mdxcatnz of the convez set Kl, i.e. for v € L2(S) we
have F(v) = 0 if v € K and F(v) = 400 otherwise.

We get now the following statement.

Proposition 2. Let § > 0 be fized and b*,b° € W%'Z(S). Then the following
assertions are true. :

1. For any e > 0 the variational snequality (10) has ezactly one solution u, € L2(S5).

2. The veriational inequality (11) has ezactly one solution u® € Lo(S).

3. If Mo = sup, |lbe|ly , < +00, then there ezists a constant M > 0 independent of
6§ such that M = sup, (||uc||® L2 + 6|luc? + F. (ue)) < +oo.

4. b, — b in WH2(S) as € = +0 implies u, — u® in Ly(S) and in W—12(S).
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Proof. Assertion 1 follows from the coercivity of the operator A-defined by (5) and
the fact that Fe(v) > 0 for all v € Ly(S) (cf. Lions [9: Chapter 2.8.5/Theorem 8.5]).
Since (11) and (4) are equivalent Assertion 2 is obvious. To prove Assertion 3 we set
v =0 in (10). As F.(0) = 0 we get

- Bllell3 + (er Aue) + Folue) < lbelly allucll_y o
Therefore P . ' '
Blluellz + FlluelZ y , + Fe(ue) < callbell} , S (12)
which gives Assertion 3. . '

. ‘To prove Assertion 4 suppose € = €, — +0. If ||b. —b6]|%,2 — 0 we get from estimate
(12) that at least for a subsequence u, — u;.in Ly(S). Thus u, — u; in X. We need
to prove that u; = u®. From the variational inequality (10) it follows that

5”“:”% + (uc, Au,) < 8(v | ue) + (vauz) + Fe(v) = Fe(ue) + (u, —v,be) (13)

for all v € Ly(S). By virtue of Barbu and Precupanu [3: Theorem 2.3/p. 107} we have

1
F(p) = 5-lle = Jewllz + F(Jew) (14)

where J, = (I + €F)~! denotes the resolvent of F. Then sup, F,(u.) < +oco implies
lue — Jeue|| — 0 if € — +0. Therefore we have Jou, — u; in Ly(S) and, since the
convex funtion F is weakly sequentially lower semincontinuous (see [3: p. 102]),

-F(uy) £ liminf F(Ju,) .-

. 1 2
_ — 15
< hmmf( 26”“-5 Jeue|” + Fs(u,)) .(15)
< liminf Fe(ue).

Since u, — u; in Ly(S) and ue — u; in X we get from (13)

Sllurll® + (w1, Awy)
< liminf (8||uc||3 + (ue, Aue))
- <limsup (6|uell? + (ue, Au.)) .
< limsup {6(v | ue) + (v, Aue) + Fe(v) — Fe(ue) + (ue —v,b0)}
< F(v) — liminf F,(ue) + 8(v | u1) + (v, Auy) + (w1 — v,b) -
< F() = Flu) + 60 | 1) + (v, Aur) + (1 — v,b)

(16

for all v € L,(S), i'e. u; is a solution of variational inequality (11). Observe that

Fe(v) — F(v) for all v € L2(S) (see Barbu and Precupanu [3: p. 107}). Uniqueness
implies u; = u?f
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4. Regularity

In this section we derive L,-bounds for the solution u. = u¢ of the variational inequality
(10) that are independent of ¢ and 6. (Here again, we shall omit the supercript §.) We
are going to consider u. on the hyperplane part I' of S defined in hypothesis (H2). The
solution u, € L(S) satifies the inequality :

(v —ue | ue) + (v ~u,, Aue) + Fo(v) — Fe(ue) > (v —Vue,bet)b » 17)

for all v € Ly(S). We multiply inequality (17) by the test function v = u, + t, where %"
0#t € R and p € C§(S) satisfies the condition suppn CC T. Thus

80 0e) + (1, Ave) 4 (B + ) Fuw) {i}kn,be)' or > }o.

From

! .
}in(l) I(Fc(ue +1tn) = Fe(u.)) =¢7* / nu_ dS
- r

it follows that

6/nu5d5+/nAu5dS+é‘l/nu;d5=/nb5d5 (18)

for all n € C§°(S) and by approximation for all € Lz(S) with suppn CC T. Since K
can be chosen a.rbltra.rlly we get

buc + Augs+ e 'u; =b,  in LP(T). : (19)

4.1 (Localization and preliminary regularity). In the following we are going to use
local properties of pseudodifferential operators. We choose an open subset U ¢ T and
an arbitrary but ﬁxed test function ¢ € C§°(U) with ¢ > 0. Settmg ge = pu., relation
(19) gives o

8ge + pAu, + e 1g; = @b, =: b,. (20)

Remark that suppb C U. Furthermore we choose a function g € C§°(U) such that
¢ =1 on an open set W CC U with K, = - supp C W. Then relation (20) may be
written in the form

69 + (pAp)ue + € g7 = b, — pA(l — p)u, = b, + Ryu. = b, + pRyu. (21)

where Ry = —pA(1—p) is a so-called regularizing ¥do: Ry € ¥~>°(S) (see Dieudonné [4:
Vol. 7, Prop. 23.26.11/p. 212)). Therefore Ry : W~2:2(§) — W™2(U) C W™%(S) is
a continuous operator for all m € N.

Next we make use of the principal symbol o_ I(A) defined in hypothesxs (H2). Let
us agree to write z € R and ¢ € R" in the following instead of z' and ¢’, respectively.
Since the principal symbols of both ¢wAu and pA¢ are the same: U-i(*PA#)(z,{) =
o_1{(nAp)(z,€&) = p(z)|€]~!, we only get a perturbation of order —2 exchanging ¢ and
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# in the term (pAp) of (21): @ Au = pAp + P_; where P, € ¥~2(U) is a proper ydo
of order —2. Thus

8ge + (pAP)ue + €7 g7 = b, + pRiue + P_ag, =: f.. (22)

By the mapping properties of proper 1do’s, we see that P, : W~%:2(U) — W2(U)
1s a continuous linear mapping. Introducing a third cut-off function y, such that u; = 1
on supp u we can re-write (22) as

69! + (“Aul)gg + 5_19: = fe- (23)

The principal symbol of uAp; on T is o1 (pAu;) = u(z)|€|*.
Let us fix € > 0 and study the individual function g, for a moment.

Lemma 1. Let us assume b, € W,7(T) for allp < 4+00. Then g, = pul € whr(U)
for alle, 6 >0 and p < +o00.

Proof. The solution u, of inequality (17) belongs to Ly(S). Therefore f, € WhH2(U).
From Treves [15: Theorem 2.1/p. 16] we get (uAu;1)g. € W'2(U) and relation (23)
gives the inclusion

89 +e7'g; € WHA(U) (24)

Therefore 6g} and (§+€~")g; both belong to W!?(U), and g. € WH2(U) for each fixed
pair §,¢ > 0. From the embedding theorem it follows that g, € L,, (U) with p; = 13—'_\’2
for N > 3 and p; < +oo arbitrary for N = 2. From the same argument we derive the
inclusion fe,(uAp1)ge € WP1(U) and finally g, € W1P1(S) C L,,(U) with p; = ng—'\-]"i'
for N > 5 and p; < 400 arbitrary for N < 4. Repeating the argument we conclude
that for each €,6 > 0

ge =pul e WHP(U)  forall p < +oo. (25)

Then it follows from the embedding theorem that g, € CP(U) for all B € (0,1) N

4.2 (Lp-regularity). We intend first to apply a ¥do P with principal symbol [¢] to
equality (23). Then wé multiply it by the test function (g.)?~! = |g.|P~2g.. In order
to avoid additional regularizing terms containing e~!g.” we need some preparation. For

this define d
(Po)e) = [ e x(@oO

for v € C§°(RY), where x € C®(R™) is a cut-off function characterized, e.g., by

[0 ifl¢f] <1
X(é)_{l' if €] > 2.

Now we put [ Pv-wdr into a form adapted for considerations of the positive and
_negative part of the functions involved. Taking real functions v,w € C{(RN) the
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theorem of Fubini gives

o= [ ([ e“‘x(&)lélﬁ(f)%) w(z) dz
= [ K@@ )(2 =

= [, JEBOTE 5w+ [, (0 - Do) T g
= Il + 12.

. (26)

The operator R, defined by
(Rav)(e) = [ () - il 2 oW for vECR®Y)

is regularizing: Ry € ¥~°°(R"), since the amplitude x(£) — 1 vanishes outside the ball
B3(0) (cf. Dieudonné [4: Remark 23.19.5(iii)/p.149]). Applying Parseval’s equality to
I, we get

I, = a/./RN . |z —y|~N ! (v(:z) - v(y)) (w(z) - w(y)) dzdy 27)

where a = a(N) > 0 is a constant (see Wloka [18: p. 97] and Hérmander [5: Vol.
1/p. 241]). We stress that both integrals I; and I, depend on v and w. We have
(R2v,w) = I, and define an operator J; by

(hv,w)y=1 = a//RN - |z — y|"N'1(v(:z:) - v(y)) (w(:z:) - w(y)) dzdy

for all v,w € C$(RN) to get
(J1v,w) = (Pv,w) — (Rpv,w). (28)

We now prove Ly-regularity of the solution u of the variational inequality (1).
Theorem 1. Let 2 Svp < +o0 and b € WH2(S)NnWLP(T). Thenu e Ll<(T).

Remark 1. For 2 < p < +oo, the inclusion b € W1?(S) implies the inclusion
u € Ly(S) if after a coordinate transform the operator A has the principal symbol (3)
in each coordinate patch of a partition of unity on S.

Proof of Theorem 1. To prove the theorem we consider the approximate problems
and derive uniform bounds for the solutions u, = uf of inequality (10) and uf of
inequality (4).

(a) For simplicity we set ¥ =bewh 2(S) N WP (F) By approximation, we
may assume that the family (b.) belongs to W$2(S) N WLH(T) for all ¢ < +o0 and,
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furthermore, 5, — % in W§'2(S) and in W,lo‘f(I‘) as € — +0. In particular, for any
openset O CCT
sup [lbe[l1,p,0 < M = M(0) < +06. . (29)

It follows from Lemma 1 that g € W'4(U) for all ¢ < +co. Therefore also g, €
W14(U) for all ¢ < +00. Suppose ¢ > N, arbitrary. Then W4(U) is a Banach algebra
(see Adams [1: p. 115]) and it follows that (g.)?~! = |g.|P~2g, € W'9(U) for each
g 2 2. It is our goal to show that (29) implies o

sup flgell, < M < +00 (30)

where the constant M, is independent of §. This gives the local boundedness of Ue €

Ly(T). In fact, we may choose ¢ such that ¢ = 1 on any open set V CC U and

estimation (30) implies ° _ C

sup ||ucllp.v < M; < +o0. (31)
. .

» (b) We a:ppl)-l operator J1 to equalAit:y (23) a.nd‘multiply‘ it By he = (ge)?P™? to get -
6(J19erhe) + (I (uAm e, ) + €7 (J107, he) = (s for o), o
that is ' A
. Ly+ Ly + Ly := éa // |z — 917" 7} (ge(2) = 9e(v)) (he(2) — he(y)) dody
a | + (Pudu)geh) L
e [[ I =l 67 (2) - 07 0) (hele) ~ hitw)) ddy
= (P = Ra)ferhe) + (Ra(uAm)ge, he). |

(32)

Now we have to consider the terms L;,L; and L3 of (32) separately. The function
t — [t|P=2¢ is uniformly monotone for p > 2:

(IslP=2s = [tP~2t) (s —t) > c|s — t|? forall s,t€R (33)
where ¢ > 0 is a constant (cf. Zeidler [19: Vol. 2/p. 503]). Then
L = éa // Iz = yI7 " (ge(2) = 0e(v) (196(2) 1P ge(2) ~ l9e(v)[P~*ge(y)) dzdy
> dea [[ o= 41" ou(a) < gu(w)Pdady -
Clsear,

The third term Lj in (32) is the penalization term. Oberserving that

(|s|p;zs - |t|”_.2t)(s_ —-t7) 3 (|s_|"_28_ B |t‘|"2t;)'(s" ~t7)
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it follows from (33) that .
Ly = é"a/ Iz =417 (97 (2) - 97 () (he(2) — he(y))dedy
eca [[ 1o =y oz (@) - g7 WPz .

= ¢ calg; |}

The second term of L, = (P(pAyl)ge,hg) of (32) contains the ‘composition of P ¢
¥!(U) and the proper 1do pAu, € ¥~ (U). The principal symbol of P(pAp;) € ¥O(U)
is 0o (P(kAm1))(z,€) = x(€)u(z). Thus there exists a 1/)do Py € ¥7Y(U) such that

/(PyA;zl)(v) wdz ’ ' ‘

/{// i(z— y)fx(f)/‘(y)v(y)dy(2 )N}w(z)dx+/P_lv wdz

- / (/ e = x(£)5(€) W) w(z)dz + (P_yv,w)
= [ ([ 700 g ) wiares
+ [ ([, €@ = 1900 ) wla)ds + (Praviw)

= /vwdz + (Rav,w) + (P-1v,w)

(34)

for all v,w € C§°(W) where F denotes an oscillatory integral and Rj is regularizing by
the argument already used for R,. Then, by approximation,

Lo = [ lacPdz + (Rogei o) + (Porgeihe).
By Holder’s inequality, equations (32) and (34) together give
ealgel?, + el + & calgc 17,
| (||(P Rl + IR )ocl + Ragely-+ 1Psgel Ygeliz™?
< C(Ilgbellipw + (P = B2)Ruucllyw + 1 P-gellipw
+ NRa (1 Ap el w + I Bogellpw + 1 P-rgellsw) lgells™
since K, =suppp CW CCU. Young s mequa.hty and Proposmon 2 imply
Blgel’ , + lloelly + €7 gZ 1L, ‘ .
< c(nb 15 pow + Hlell? 5 + ||P_zg,n”,,,,'w +llgell” y , + IP-igel2w)  (35)
< C(1+1P-2gelldw + I1P-1clpw)
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since R; and R; are regularizing.

(c) We are.going to apply a bootstrap a.rgument Using the embedding theorem
and the fact that P_y : Weohia(U) — W (U) and P_y : Wak2(U) — WEA(U)

are continuous linear mappings we get .

P-19ellqyw < e1llP-1gelly 2w < callgell-y (36)

1P=2gell1,q1.w < e1llP-28ell3 2w < callgell—y - (37)

for some constants ¢; > 0 and ¢; > 0, where q, = ,3—’:’1 We stress that these constants

depend upon W and K, but neither on € nor on é. It follows from (35) with p = ¢,
that

sup (6Iye|",‘
[ 4

[} =1 — 1N
R P R Ty < oo (38)

This implies sup, ||ge|lq, < +00. As in the first step we get

sup {|| P-2gellz,g1, W + [ P-19ell1,0,w} < +c0.
L4

With ¢, = 13—1:’3 the embedding theorem implies

|P-2gcll1,g2,w < callP-29cll2,,,u- and  ||P-igellg,w < c3l|P-1gell1,q0,w

and we get from (35) with p = ¢,

sup (5|9e|"’
£,6

L0

+lgellz +¢7071%,,) < oo
We can repeat this procedure as far as g; < p. In the last step we get
sup (8lgcl5 , + loell? +¢7'lo7 13 ) < My < oo (39)
£ P’ P!

where the estimates used above show that the constant M, is independent of § > 0.
This proves estimations (30) and-(31).

(d) Let en — 40 for fixed § > 0. Since sup,, ||ge. |l < M) we can extract a
subsequence with pu, — g% in L,(U). As u, — u® in L,(S) (Proposition 2) we conclude
that ¢° = pul € L,(S), ie. u® € L{5(T). Let ¢ =1 on V. The weak sequential lower
semicontinuity of the norm gives ||u®||,,v < |lpu’|l, < M, for V CcC U. :

(e) If 6, — +0, there exists a subsequence such that pu® — wug in L,(S) and
@u® — up in W-$2(U). Proposition 1 gives pu® — @u in W~32(5). Consequently’
uo = pu € Ly(U), and it follows that u € LP(T) with |lull,v < |lpul, < M, for
VccUl
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5. Loo-regularity

5.1. To prove L,-regularity for the solutions u, of equation (19) we apply a method
from the classical theory of differential equations due to Stampacchia. It depends on
estimates for the size of level sets. As in Subsection 4.2 we begin with a kind of differ-
entiation of equation (23). Here we are going to use the operator

(Pro)(e) = [ (@S0 o (40)

for v € C§°(RN) where 1 < v < 2 and x € C®(R") is the same function as in
Subsection 4.2. For g, = pu, we have the following estimate.

Lemma 2. Suppose b, € W72(U) for some v € (1,2). Then there ezist appropriate
Ydo’s Qy and Qy— from ¥V(U) and U7~2(U), repectively, such that

8a|lge(z) = kI*|5 , + allge(z) — K* |30

(41)
< / (lQ-yfeI + |Q‘7—2gel)[g!(z) - k]+d:l:.
U
Proof. (a) For v,w € C(RV) we get
(PTv,w) = ./IRN </“;N eizEX(f)lflvﬁ(f) (2d€)N) w(z)dz
= [ ero©B@ s + [ (O - IO T e P

=:1T ;’ + Ig .
Concerning the integral I, we observe that the operator R; defined by
(Bp)@) = [ ™ (x(@) = DIE36) o
for v € C°(RN) is regularizing, whereas Parseval’s inequality implies

Feaff -yl 00 - o) ) - w(w)ddy (43)
with a = a(y, N) > 0. Defining .
(Jyv,w) = I}
—af[ el - ) o) - o)) dedy
for all v;w € C(RV) we get

(Jyv,w) = (PTv,w) — (RJv,w). . (44)
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(b) The application of the operator J, to equality (23) and scalar multiplication by
a test function h, gives

Ly+ L+ L3 :=éa // |z —y|™ —N=- 7(g,(x) - ge(y)) (h (3’) - h (y))dxdy
' (P‘y("‘A/"l )g€1h ) . .
+ e“a/ lz = y17" "7 (97 () — 95 (v)) (he(;‘) — he(y))dzdy

= ((P" = R])fe, he) + (RI(pAur1)ge, he).-

For k > 0, choose h, = [g. — k|t € W:2(U) in (45). It follows that supp [ge(z) — k]* C
suppy for k > 0. We first get

Li=da [[le =y (loule) - 4 - [ge(\y) ~ k)
x (lge(z) =~ I* = lge(y) — K|*)dzdy '

> 6 [[ e =™ i0u(a) - 4 ~ loety) - K| dey
= dallg. — KI*13,

(45)

Observing that '

(s—=t)([s-Kt-{t—K*)>0 forall s,t €R

we see that . -

Ly = e / Y R (o OBl ¢))

 x (lge(x) = kI = [ge(y) — k]*)dzdy
>0.

In the second term L of (45), the principal symbol of the composition PY(uAu,) €
VI~ H(U) is 041 (PY(pdAp))(2, &) = p(z)€]7" x(€). 1t follows that there exists a 1do
P,_2 € ¥77%(U) such that PY(uAp,) = P 'y + P,_, where P*"! ¢ ¥7"1(U) is
defined by (40) with v replaced by v — 1. Thus (44) with v — 1 instead of v gives

L, =(P" g, h. )+(P7 29e, he)
/ 2~ 9N ({gu(2) — k] = [92(v) — k1) (92(z) ~ kl* loe(v) - K1)

+ (nge’h )+ (P7 2g,,h )
g al[g¢ - k] |J;_‘_2 (ngey he) + (P‘y—de, h,).

The regularizing operator R; = R}~ arises from (44). Observe that u =1 on K, =
supp . Summarizing we get

ba|(ge - k]+ 2 tallge — k]+|3-_1 2 . :
Y RY T — , z) — k]tdz
S/U{((P R))fe) + (R (nAp1)ge — Py-2ge — nge)}lgg(,), K7z (46)

= /U (Q‘yfe + Q7—296)[ge(z) - k]+d$
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where we have introduced Qy = PY — R} and Q-5 = R)(uAm ) — Py_z — Ry to keep
the notation short. This proves the lemma o )

5.2 We prove an embedding theorem which is needed later in this section.

Lemma 3. Suppose Q@ C RY is a domain and s € (0,1) is given. We set é =3
1e. ¢g= Nziv,“ > 2. Then the following assertions are true.

s
N

1. We have the continuous embedding W*2(Q) C Ly(R), such that
lullg < ellulls,2 for all u € W(Q).

2. If Q) CC Q is an open set, then there ezists a constant C = C(2,2) >.0 such
that

llullg < Cluls,2 for all u € W*2(Q) with suppu C Q. (47)
Proof. For Assertion 1 cf. Triebel [16: p. 196]. For Assertion 2.we prove that

1/2 = .
ws fJulla = {|u|3,2 + [ |u|2} (48)
. Q\Q

is an equivalent norm on W*2(Q), i.e. there exist constants ¢1,c2 > 0 such that

er{luo+ [ s s{|u|32+ / |u|2dz}Scz ot [ uldey (49)
' o\Q, ’ 0 ' a\Q,

for all u € W*?*(Q). The first inequality in (49) is obvious. To prove the second one
we suppose the contrary. Then there exists an sequence (u,)nen such that lunlls2z =
nllunlla (n € N). We define v, = Teafts Thus [lvals,2 = 1 and |jvalla — .0, and we
can select a subsequence, again denoted by (v,) such that v, — v in W2(Q), v, = v
in Lz(Q) and va(z) — v(z) a.e. in . From |[ua)|la — 0 it follows that

vn(z) -0 ae in Q\Q, (50)

and

elta = [ 1o =3I P lon(a) - valo)dzdy — 0.
. QxN o ] ,
Therefore |va(z) ~ va(y)| — 0 ae. in Q x Q and (50) implies vo(z) — 0 ae. in Q.

This gives'vn — 0 in Ly(£2) and because of |v,],2 — 0 we see that lvalls,2 — 0, which
contradicts ||un|ls,2 = 1. Thus (49) is proved, and (47) follows immediately B -

5.3 Now we define sets A.(k) where g, = puf superceeds a levej k:
A(k)={z€T: g > k}.

We age going to estimate the size of A.(k). Remember that 1 < v < 2.
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Lemma 4. We suppose b € W,7(T") for some v € (1,2) and r > _'NTI Set b, :=

loc
b® :=b. Then there ezist constants C > 0 and B > 1, independent from ¢ and §, such
that

< —— |A(K)P >
jA.(h)] < = F) |A(k)] forall h>k2>0 (51)
where ¢ = Ni']"__y.
Proof. Set s = 7%1, q= Nzivh = Ni’;’_v >2and ! 4 % = 1. It follows from

Lemma 2, Lemma 3 and the inclusion supp [g.(z) — k]* C suppyp CC U that

2/q
{ / llge(z) - k1+|qdz}
Ac(k)

, 1/q' 1/q (52)
<c {/ (1Qfel + 1Q-29¢l)’ dz} {/ |lge(z) — k]+|"d1}
Ac(k) A (k)
for £ > 0. Young's inequality gives *
2/q 2/q
{/ llge(z) — k]+|"dz} < C{/ (1Q+fel + 1Qv—29¢1)* dz} :
Al (k) Al (k) ¢
Therefore, for h > k > 0,
/9
|Ac(R)I(h — k) < c {/ (k)(IQvle + |Qy-29¢]) dl}
and, by Hélder’s inequality with r > -4 = Nandr>¢,
q
AeWI(h — 8 < e(1Qfellrv + 1Qa—20ellrv) 1Ac(R)T . (53)

We see that 8 =q—1—2 > 1. It follows from (22) and (30) in the proof of Theorem 1
that sup (|Q7 fell»,u + |Qy-29ellr,v) < +oo. This gives (51) B

Now we are in the position to prove the uniform boundedness of the family (u.) =
(uf). We are going to use the following result of Stampacchia.

Lemma 5 (see Kinderlehrer and Stampacchia [8: p. 63]). Let ¢ : [ko,+o0) = R
be a non-negative and non-increasing function such that
C

40 < G

[#(K)P  for h>k>ko (54)

where C,a and B are positive constants with § > 1. Then

$(ko + M) =0
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where ' .

M = 2757 C¥ (k)| 5. (55)
Theorem 2. Suppose b € WY (U) for some v € (1,2) and r > % Then the

solution u of the variational inequality (1) is locally bounded on T : u € LI2%(T"), i.e. for

all V. CC T there ezists a constant M > 0 such that 0 < u(z) < M a.e. on V.

Remark 2. Under the hypotheses of Remark 1 one may prove the inclusion u €
Loo(S). '

Proof of Theorem 2. We shall prove the theorem in three steps.

(a) First we define b = b% := b for all £,6 > 0. We are going to apply Lemma 5
and suppress the superscript § again. Set ¢.(k) = |A.(k)| and ko = 0. Then ¢.(ko) =
l{z € T': ge > 0}| < |U] and it follows from (51) that there exists a bound M > 0
independent of € and § such that '

#(2)ui(z) = g:(2) < M o= swp 23 CH[80)] T <alUlT T (56)

a.e onU.

(b) Next, we keep 6 > 0 fixed and let € := ¢, — +0. For simplicity, we omit the
subscipt n. From Proposition 2 we know that u, — u® in Ly(S), g. — ¢° = pu’ in
L,(U) and along a subsequence g.(z) — g%(z) a.e. in U. Since u® € K; (56) gives

0 < p(z)u’(z) = ¢*(z) < M

ae. inU.

(c) Finally, let 6 := 6, — +0. As in the proof of Theorem 1 we have pu® — @u
in Ly(U), and pu® — pu in W~3:2(S). Along a subsequence, a theorem of Banach
and Saks (see Riesz and Sz.-Nagy [11: p.72]) implies the strong L;-convergence of the
sequence of arithmetic means, i.e. vo = L(pu®t + pub? + ... + pub~) — pu in Ly(U).
Again, passing to a subsequence if necessary, va(z) — ¢(z)u(z) a.e. in U. Since for the
means 0 < va(z) < M we have also 0 < p(z)u(z) < M ae. in U. As we may choose
% in Subsection 4.1 such that ¢ = 1 on an arbitrary open set V CC U the assertion
follows B
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