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Abstract. We discuss the applicability of the Newton- Kantorovich method to a nonlinear 
equation which contains partial integrals with Uryson type kernels. A basic ingredient of 
this method consists in verifying a local Lipschitz condition for the Fréchet derivatives of 
the nonlinear partial integral operators generated by such kernels. The abstract results are 
illustrated in the space C of continuous functions and the Lebesgue space Lp for 1 < p < 00. 
In particular, it is shown that a local Lipschitz condition for the derivative in the space L for 
p < oo leads to a degeneracy of the corresponding kernels. For ordinary integral operators, 
such a degeneracy occurs for p < 2 only. 
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0. Introduction 
Let S and T be subsets of Euclidean space with finite Lebesgue measure, and let 

l:TxSxTxR —'R 

m:TxSxSxR —R 
n:TxSxTxSxR—*R 

be given Carathéodory functions (i.e. functions which are continuous in the last variable 
and measurable in the other variables). The purpose of this paper is to investigate the 
nonlinear partial integral equation of Uryson type 

x(t,$) = f l(t, s, r, x(r, s)) di- 

+Tf 
m(t, s, a, x(t, a)) da + IT is n(t,s, r, a, x(T, a)) dadr	

(1) 
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by means of the Newton- Kantorovich method. 
Equations of this type arise in both the theory and applications of boundary value 

problems for partial differential equations [2, 13, 14], as well as in various nonlinear 
transport problems. They describe, for example, the propagation of radiation through 
the atmosphere of planets and stars [12, 211, or the transfer of neutrons through thin 
plates and membranes in nuclear reactors.[22]. 

The first two integrals occurring in the right-hand side of equation (1) are usually 
called "partial integrals", inasmuch as the integration is carried out only with respect to 
some variables, while the other variables are "frozen". As a matter of fact, most of the 
classical tools of nonlinear analysis (degree theory, fixed point principles, variational 
methods based on degree arguments, etc.) do not apply to operators involving such 
integrals. One reason for this is that, in contrast to ordinary integral operators, partial 
integral operators are not compact. The Newton- K antorovich method is one of the 
few, though important, tools which may be used to prove the solvability of nonlinear 
equations involving partial integral operators. Moreover, this method makes it also 
possible to "calculate" approximate solutions with prescribed accuracy. 

For the general theory of partial integral operators in so-called Lebesgue spaces 
with mixed norm we refer the reader to the papers [3, 4, 7, 15 - 19], where various 
boundedness and continuity conditions are studied in detail. The results of the present 
paper are in a certain sense parallel to those of the paper [1], where existence results 
are given for ordinary integral equations of Uryson type. However, there are important 
differences in both the methods and results which we will point out in the corresponding 
places. 

1. The Newton- Kantorovich method 

The Newton- Kantorovichmethod is one of the basic tools for finding approximate so-
lutions of the operator equation

	

F(x) = 0,	 (2) 

where F is some nonlinear operator in a Banach space X. In the corresponding iterative 
scheme

	

x1 =x—F'(x)'F(x)	(n=O,l,2,...)	 (3) 

one has to require, in particular, that the Fréchet derivative F of F at all points 
Xn exists and is invertible in the algebra £(X) of all bounded linear operators in X. 
The direct verification of this requirement may cause essential difficulties in practice. 
However, in the last years several new ideas have been developed to overcome these 
difficulties. For the reader's ease, let us briefly sketch some of these ideas related to the 
Newton- Kantorovich method [28 29]. 

Suppose that F is defined on the closure BR(X) of some ball BR(X) = {x E X 
II x II.< R} and admits a Fréchet derivative F'(x) at each point of BR(X) such that F' 
satisfies a Lipschitz condition	

. 

II F'( x i) - F'(x2)1I	k(r) Ik - x211	(XI, X2 E Br(X), 0 <r < R)	(4)
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as a map from BR(X) into £(X). We also assume that the Fréchet derivative at zero 
is invertible and put

a = II F ) (0 ) - ' F(0 )II	 (5) 

b = IIF) (0))II . ( 6) 

Since the (minimal) Lipschitz constant k = k(r) in (4) is non-negative, the function 
p: [0, R] -i [O,00) defined by 

(r) a + bJ(r - t)k(t)dt	(0 <r <R)	 (7) 

is convex. The scalar equation
r = (r)	 (8)

may have no solution, a unique solution, or many solutions in [0, R]. Let us suppose 
that (8) has a unique solution r E [0, R] and p(R) R. In this case equation (2) 
has a solution x E Br. (X), and this solution is unique in the ball BR(X) (see [281). 
Moreover, the iterations (3) are defined for every n and converge to the solution x. 

The usefulness of the Newton-K antorovich method does not only consist in reducing 
the operator equation (2) in a Banach space to the scalar equation (8) on a real interval. 
It is also possible to give estimates for the convergence speed. In fact, let 

U(r) - 
- (r) — r

V(r) = U(r + U'(r)),	W(r) =	V' (r) 1 —'(r)'	
k=O 

where by Vc we mean the k-th iterate of the operator V. Then the estimates 

II xn+i - x,,fl <V"(a)	and	II x -	< W(V)(a)) 

hold [281. So, in order to study equation (2) from the viewpoint of existence, uniqueness, 
and approximation it suffices in many cases 

to calculate (or estimate) the constants a and b 

• to calculate (or estimate) the scalar function k = k(r). 

As already mentioned, the simplest case is when the scalar equation (8) has a unique 
solution r in [0, R] and (R) R. Other cases may be reduced to this case. For 
example, if (8) has another solution r E [0,R] with r > r, say, we simply take 
R < r. Likewise, if (8) has a whole continuum of solutions [r.,r] C (0,R], we can 
choose R = r.
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2. Lipschitz conditions for derivatives and norm estimates 

Throughout we denote the (partial) integral operator generated by some kernel function 
by the corresponding capital letter, i. e. 

L(x)(t, s) = f 1(t, S, T, x(, s)) dr	 (9) 

M(x)(t,$) = f m(t,s,a,x(i,a)) do ,	 (10) 

N(x)(t,$) = fTIS	dadT.	 (11) 

The nonlinear partial integral equation (1) may then be rewritten as operator equation 
(2) if we put

F(x) = x - L(x) - M(x) - N(x)	(x E BR(X)),	 (12) 

where X is some Banach space of real functions over T x S. 
Suppose now that the three kernel functions in (1) have partial derivatives in the 

last argument
li(t,s,T,u) =	-(t,s,r,u) 

rni(t,$)a,u)= am----(i,s,a,u) 
Iu 
an ni(t,s,r,a,u)= —(i,s,r,a,u). 

Consider the operators L*, M and N* defined by 

L*(x)(t, s, T) = 1 (i, s, r, x(r, s))	 (13) 

S, a) = m 1 (t, 5 1 a, x(t, a))	 (14) 

N* (x)(t, s, i, a) - n 1 (t, S, T, a, x(r, a)). (15) 

These operators are not superposition operators in theusual sense, since they map 
functions of the two variables (t, s) into functions of three (or even four) variables; we 
call such operators "generalized superposition operators" in the sequel. The operators 
(13) - ( 15) may be considered between the space X and the kernel spaces 9T(X,X), 
!R(X,X), and !RTxs(X,X) defined by the norms 

	

IIPlI9r(X X) = sup	(t,$) i—* I p(t,s,r) h(r,$)	 (16) 
II h IIx< 1 	 X 

	

II q fl9 5( x,x ) = sup	(t, s)	J q(t; s, a) h(i, a)l daIIx (17) 
II h IIx< 1	S  

	

II rPITS(x,x) = sup	(t, S)	ITis r(t,s,r,a) h(r,a) dadr 	(18) 
II h IIx< I 	 X
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respectively, where we have written II( t , $ ) -* f(t,$)II instead of 11111 to point out the 
variables of the function involved. Of course, the functionals (16) - (18) are nothing else 
than the operator norms of the moduli [8 - 11, 24 - 271 of the corresponding (regular) 
linear partial integral operators 

Ph(t,$)	
IT 

p(t, s, 7-) h(r, s) d-r	 (19) 

Qh(t, s) 
= is q(t, s, ci) h(t, a) dci	 (20) 

Rh(t, s) 
= fT! r(t,s,r, a)h(r, a)dadr	 (21) 

in the algebra £(X) of bounded linear operators on X. We set 

L i (x)h(t, s) 
= IT 1 1 (t, s, T, x(r, s)) h(r, s) dr (22) 

M1 (x)h(t, s) 
= is m 1 (t, s, a, x(t, a)) h(t, a) dci (23) 

Ni (x)h(t, s) 
= IT! n(t, s, T, a, x(r, a)) h(T, a)dcidr. (24)

Lemma 1. Suppose that the generalized superposition operators L*, M* and N 
defined by (13) - (15) act from BR(X) into BT(X,X), 9g(X,X) and !RTXS(X,X), 
respectively, and satisfy a Lipschitz condition. Then the operators L, M and N defined by 
(9) -(11) are Fréchet differentiable with L' = L 1 , M' = M1 and N' = N1 . Consequently, 

F'(x) = I - L 1 (x) - Mi (x) - N, (x)	(x E BR(X )) .	 (25) 

Proof. The assertion has been proved in [1) for integral operators N of the form 
(11), so we have to prove it only for partial integral operators L and M of the form (9) 
and (10), respectively. For x E BR(X) and h E X we have 

[L(x + h) - L(x) - Li(x)h](t,$) 

= f [l (t, s, T, x(r, s) + h(r, s)) - l(t, s, r, x(r, s)) - l (t, s, r, x(r, s)) h(r, s)] dr 

= fT! [l (t, s, T, x(r, s) + Ah(r, s)) - 1 1 (t, s, r, x(r, s )) ] h(r, s) dAdr 

= Ij [L i (x + Ah) - Li(x)]hdA}(ts). 

Since the operator L 1 : BR(X) - £(X) satisfies a Lipschitz condition, by assumption, 
we conclude that 

IIL(x + h) - L(x) - L i(x ) h lI !^ / I  II L 1(x + Ah) - Li(x)II li h il dA = o(IIhII), 

which means that L'(z) = L i (x). The equality M'(x) = Mi (x) is proved similarly I 
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Applying Lemma 1 allows us to "find" the constants a and b for the equation (2), 
where F is given by (12). In fact, the function h = F'(0)'F(0) satisfies the linear 
partial integral equation 

h(t,$) - fT l i ( t,s,r,O) h(r,$)dr, 

- j m
1 (t,s,a,O) h(t,a)da - ITIS	 (26) 

= g(t, s) 

where 

g(t, s) = - fT l(t, s, r, 0) d7 - fs m(t, s, a, 0) du - fT fs n(t, s, r, a, O)dadr.	(27) 

Suppose that the (unique!) solution of equation (26) may be written in the form 

h(t, s) = g(t, s) + I
T ri (t,s, r) g(T, s) dr
	 I(28) 

+
 J

rm (t,s,a)g(t,a)da + 	f rn(t,s,r,a)g(T,a)dadr 
SS 

with some resolvent kernels rg, rm and r defined through the kernels l, m and n1, 
respectively. Then the constant a in (5) is of course nothing else than the norm II h Mx of 
the function (28) in the space X. Since the explicit form of these resolvent kernels is in 
general hard to find, one usually looks for a representation of the form F'(0) = T - E, 
where T is boundedly invertible and the norm of E in £(X) is small. The elementary 
equality T - = T(I - T E) implies then that, under the hypotheses of Lemma 1, 
the estimates

I T 1 F(0) II a = IIF'(OY'F(0)II 1 - hEll 11 7'- ' II

11T'hl b= II F'( 0 ) - 'hl	11 T 'Il 11( 1 - T'E)-'hl	lT'hl	IITIEIIk <
	hlTIl k=O 

are true. In this way, we have proved the following 

Lemma 2. Suppose that the generalized superposition operators L,M and N 
given by (13) - ( 15) act from !RT(X,X), 9s(X,X) and 9 TXS(X , X ), respectively, sat-
isfy a Lipschitz condition, and F'(0) = 7' - E, where T is invertible in Z(X) and 
hEll <e. Then the estimates 

a< 11T1F(0)II	and	b<	
1T' 

1 - e lI T-1 I1	 1 -ehlT1ll 

hold.
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Under the conditions of Lemma 2 it is natural to write the linear operators T and 
E also as sums of (partial) integral operators like (9) - (11). Various conditions for the 
"smallness" of the norm of E may then be found in [4 - 7]. On the other hand, the 
invertibility of T is often not easy to verify, except for particular cases. Assume, for 
instance, that T has the special form 

Th(t, s) = h(i, s) IT (t, T) h(T, s) d7- 

-is 
(s, a) h(t, a) da - cj is 0 (t, r) (s, a) h(r, a)dadT, 

where ç: T x T .- IR, 4' : S x S -* IR and c E R are given. Then T is invertible if and 
only if

1 a() + a('P) + ca()a('I'),	 (29) 
where a denotes the spectrum, 4P and 'P are the integral operators generated by the 
kernels 0 and 0, respectively . 0 Moreover, in some cases the operator T' may be 
expressed explicitly through the operators I and T. For example, in case c = 0 the 
formula

	

T' = - --L- I I	-	®('P -	
ded,7 

	

42 Jr,Jr.	leii 
holds, where r, and r, are simple losed contours around a() and a('F), respectively. 
If the kernels 0 and 0 are symmetric or degenerate, the relation (29) may be verified 
by standard schemes. 

3. Lipschitz conditions for partial Uryson operators 
The crucial assumption in Lemma 1 is of course the Lipschitz condition for the operators 
L, MS and N* defined by (13) - (15), respectively. In this section we take a closer look 
to this condition from a general point of view. More information in some specific function 
spaces which arise frequently in applications will be given in subsequent sections. 

In what follows, we study all operators in "ideal spaces" of functions over T x S. 
Recall that a Banach space X of measurable or continuous functions x : T x S - R 
is called ideal space if the norm on X is monotone, i.e. from u(t, s )i :^ Iv(t, s)i a.e. on

	

T x S and u,v E X it follows that H u ll	lvii. 
Suppose that the three kernel functions 1,m and n in (1) also have second partial 

derivatives in the last argument 

12 (t, s, 7, u) = 
a2

'(i, s ) r, u) 

a2 m2 (t, s, a, u) = - -j- (t, s, a, u) aU 

a2  
n2(t,S ) T 7 01 1 U) = --(t,s,r, or, u) 

1) A detailed proof of formula (29) can be found, e.c., in the paper of T. Ichinose: Spectral 
properties of tensor products of linear operators. Trans. Amer. Math. Soc. 235 (1978), 75 - 
113.
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and that

Ili(i,s,r,ui) — l i (t,s,r,uz)	l(t,s,r,w)u 1 —u21
	

(30) 

m i (t, s, a, u 1 ) - m j (t, s, a, u2) < ñi2 (t, s, a, w) 1 U i - U2 1

	
(31) 

ni (i, s, r, a, u 1 ) -	s, r, a, u2)1 < ñ2 (t, s, i, a, w) Iui - u2I
	

(32) 

for I U iI,1 U 21	w. Here

12 (t, s, r, w) = sup 112 (1, s, r, u)I 
Iul<w 

7122(1, s, a, w)	sup 112(1, s, a, u)I 
IuI<w 

S , T  a, w) = sup 112 (1, s, r, a, u)I, 
IuI5w 

respectively. It is then natural to state the Lipschitz condition (4) in terms of the 
generalized superposition operators

	

s, r) = 12 (t, s, r, x(r, s))	 (33) 

	

S, a) = m2 (i,s, a, x(t, a))	 (34) 

s, i, a) = n 2 (t, S, T, a, x(r, a))	 (35) 

which are second order analogues to the operators L*,M* and N* defined by (13) - 
(15), respectively. As a matter of fact, we want to replace the generalized superposition 
operators L** , M*S and N** given by (33) - (35), respectively, by the usual superposition 
operators

	

s, r) = 12 (t, s, r, x(i, s, r))	 (36) 

	

s, a) = m2 (t, s, a, x(t, s, a))	 (37) 

N* s (x)( i s, i, a) = n2 (t, s, r, a, x(t, s, i, a))	 (38) 

defined on functions over T x S x T, T x S x S and T x S x T x 5, respectively. To 
make this precise, we need some special definitions. First, given an ideal space X of 
real functions over T x 5, we denote by 

XT,	X,	XTXS 

the spaces of functions 

p: TxSxT—R,	q: TxSxS —dR,	r: TxSxTxS—R
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defined by the norms 

IIPIIx, =inf {IIIIx 

II q IIx5 = inf {II)IIx 

I r IIx	= inf {II)IIx

p(t,s,r) 15 P(T, s) for 3E x} 

q(t,s,a)I 15 4(t, a) for 4 e x} 

Ir(t,s,r,cr)I	f(T,cY) for , E x}, 

respectively, where the inequalities in these definitions are considered everywhere on 
T x S x T, T x S x S and T x S x T x S, respectively. Further, we define spaces 

T(X,X),	91SMX),	91TxS(X,X) 

of measurable functions 

p: TxSxT—+IR,	q: TxSxS—lR,	r: TxSxTxS—R 

by the norms 

IIPIItr( x,x ) =	sup 
I ii ix li h i ix :5i 

IIItR5(X,x ) =	sup 
un ix ll h iix :5i 

sup!
li z lix li h i ix <i

(t, S)	fT p(t,s,T)x(T,$)h(T,$) I dr	(39) 

(i)s) 
—+ f q(t, s, )x(t, a)h(t, a da	 (40) 

(I, s)	fT f r(t, s, r, u)x(r, a)h(r, a) I dadT(41) 

respectively. 
The construction described above is not as trivial as it seems to be. For example, 

if X is a Lebesgue space L with p ^: 2, one can easily see that the spaces 9T(X, X), 
9s(X,X) and !RT X S(X,X) consist of kernels of linear integral operators (19) - (21) 
acting from LP into L; in the case 1 p < 2 these spaces strongly degenerate (i.e. 
contain only the zero function). More generally, if X is an Orlicz space LM (see, 
e.g., [201), the spaces !RT(X,X), 9 s(X,X) and !RTxs(X,X) contain kernels of linear 
integral operators (19) - (21) acting from LN into LM, where the Orlicz space LN is 
generated by any Young function N satisfying for some c> 0 the asymptotic condition 

lim sup N(cu2)
<00. 

U-00 M(u) 

Below we use the usual abbreviation (u V v)(t, s) = sup {u(t, s), v(t, s)} and put

	

7(r) = sup {Iiuvv ii	ii u ii,il v ii < r}	(r >0). 

Moreover, given a bounded nonlinear operator F between two normed spaces, by 

1u(F;p) = sup {iiFxii: jjxji	p}	(p >0) 

we denote the growth function of F.
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Lemma 3. Let X be a Banach space of real functions over T x S. Then the 
following holds: 

(a) If the superposition operator L55 in (36) is bounded from XT into 9T(X,X), 
then the generalized superposition operator L 5 given by (13) satisfies the Lipschitz con-
dition

-	 (XX)	,u(L;y(r)) li x i - x2llX	(42) 

where lix llix,ll x2llx	r. 
(b) lithe superposition operator M in (37) is bounded from Xs into i5(X,X), 

then the generalized superposition operator MS given by (14) satisfies the Lipschitz con-
dition

- .M 5 (x2)M 9 (XX)	ii(Jl; y(r)) li x i - X2 11X	(43) 

where li n ux, J JX2 11X	r. 

(c) If the superposition operatorN in (38) is bounded fromXTX s into9TX s(X, X), 
then the generalized superposition operator N 5 given by (15) satisfies the Lipschitz con-
dition

- N 5 (x2)1I	(XX)	 lxi - X211x	(44) 

where 11X1IIX,iIx2llX	r. 
Proof. Let us prove (42), the estimates (43) and (44) are proved in the same way. 

For any z i ,z2 eX with ix i Iix,ix 2 Iix < r we have, by (30), 

II L (x i) - L'(x2)I(Xx) 

= sup	(t, s) I l (t, s, T, x1 (r, s)) - 1 (t, s, T, x2(r, s)) I h ( T , s)I dT 
IIhIIx <1 1	iT 

• sup	(t, s)... J 12( t , s, r, i x i(T , s )i	1x2(T, s)i) 
II h IIx^ 1	T 

x(r,$) - X2(T,S)I 

L_ 

By the Krasnosel'skij-Ladyzhenskij lemma (see, e.g., [101) there exists a function w 
Tx S x T -+ R such that iw( t ,s, r )i	ixi(r,$)l V x2 (7-,$) and 

S ) r, w(t, .s, r)) I = 12 (t, s, T, lxl(T, s)l V 1x2(r, s)l). 
Thus, 

11 L (x i) - 

^ sup	(t, s) 
I.. JT 

12(t , s , r , w (t , s, r)) I XI (T, ) - X2 (r, )I lh(r, )l dr IIX IIhIIx^I   

This implies (42), by the definition of 7(r) and p(L; 7(r)) I
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4. The case X = C(T x S) 
In many cases, Lemma 3 is sufficient to find the constants a and b given by (5) and (6), 
respectively, and the function k = k(r) from (4) in the space C explicitly. Consider the 
scalar functions 

kj (r) =	sup	 sup I	I(t,s,r,u - 11(t,$)r,u2)I dr 

	

(t,3)ETxS T IulI,1u21<r	ui - u21	
(45) 

km(r) =	sup	 sup IS'	
mi(t,s)o,ui) - m i (t, s,o,u2)I

di	 (46) 
(t,$)ETxS 	ui I,1u21<r	ui - U21 

kn (r) =	sup f  Is	
supI'(, s) r, o, ui) -ni(t, .s, r, o, U2)I

(t,3)ETXS T 	Iuil,1u21<r	 ui - u21
dadr. (47) 

These functions are finite for r < R if and only if the operators L, M* and N given 
by (13) - (15) satisfy a local Lipschitz condition in C. Moreover, the numbers given in 
(45) - (47) are then the minimal Lipschitz constants for the corresponding operators on 

r(C). This may be stated in a more precise and convenient way: 
Theorem 1. The operators L 1 , M1 and N1 given by (22) - (24) satisfy a Lipschitz 

condition on B R(C) if and only if the three kernel functions 1, m and n in (1) have 
second partial derivatives in the last argument 

ô2 1(t, s, r, u) 
12(t,S,T,U) = ôu2 

m2(t,$)o,u) = a
2 m(t, s, o, u) 

ôu2 
- a2n(t,s,r,o,u) 

T12(t,S ) T,O,tL) - 5u2 

for all (t, s) E Tx S and almost all (r, u) E Tx R, (o, u) E S x R and (r, o, u) E Tx S x 
respectively, and the three functions 

= sup IT sup 2r,u)Idr	 (48) 

	

(3)ETxS 	IuI<r 

m(r) =	sup Is sup Im2(t,s,o,u)Id	 (49) 

	

(t,$)ETxS 	IuI<r 

	

= sup fT is 
SUp In2(t,s,7,c,u)Idadr	 (50) 

	

(i,$)ETXS 	IuI<r, 

are finite for r R. Moreover, the numbers Tc,(r), km(r) and k(r) are then the minimal 
Lipschitz constants for the operators L 1 , M1 and N1 , respectively, on ir(C). Finally, 
the minimal Lipschitz constant k(r) for the operator F' by (25) on r(C) satisfies the 
two-sided estimate 

max {(r), km(r), n(r)} < k(r) < i(r) + m(r) + kn(r).	(51)
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Proof. The proof for the integral operator N1 given by (24) is contained in [1]. Let 
us prove the assertion for the partial integral operator L1 given by (22), the proof for 
the operator M1 given by (23) is similar. By what has been observed before, for this 
it is necessary and sufficient to show that the function k,(r) given' by (45) is finite for 
r<R. 

Suppose first that kj (r) is finite for all r R. This means that 

li(i,s, r, u i) —1i(i,s,T,u2)I IT	sup	 dr ki (r) <00 
 IulI,1u21<r	'	Jul - U21 

for all (t, S) E T x S, and hence the function A t, , given by 

1I(t,s,r,ul)-1I(t,$) T1 u2) 
t,, (T) =	sup

Jul1-1 I.ju2l<r 	- u21 

is finite a.e. on T. Since

	

s, r, u1 ) - l(i, s, T,U2)I	.X t,3 ('r) Ju l - u2 

for l u il, 1u21	r, the map u	l i (t,s,r,u) is absolutely continuous. Consequently, the 
partial derivative 12 = Li. exists for almost all u and satisfies 5UPIuI<r 1 12( 1 , 3 , T, u)I 
At, 3 (7-). But this implies

sup 
IT,

At,(T)dT < 00.
(t,.)ETxS 

Conversely, suppose that the function ki (r) given by (48) is finite for r	R. This
implies that the function A t, , given by A, 3 (r) = SUPIUI<r 1 12(t, S, T, u)I is finite a.e. 
T, for all (I, s) e T x S. Consequently, for J ul, J U21 <r we have 

S, r, u i ) - 11 (t, s ) r, u2)I = fu 2
12 (t, s, r, u) du	t,., ( T ) ui - u21. 

We conclude that
k: (r)	sup I , 3 (r)dr < 00. 

(t,$)ETXS 

Of course, the proof shows also that k j (r) = ki (r) for all r RU 

Theorem 1 implies, in particular, that the estimate k(r) k,(r) + km(r) + k(r) 
holds for the Lipschitz constant k(r) in (4) in case X C. The problem of calculating 
the numbers a and b given by (5) and (6), respectively, is quite easy. In fact, suppose 
that the partial integral equation (26) has a unique solution (28) in the space X = C. 
From the definition of the norm in the space C we obtain then the equality 

a =	sup	g(t, s) 
+IT 

rj (t, s, r) g(T, s) d7-
(t,$)ETxS 	 (52) 
+ S	IT is
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and from explicit formulas for the norm of a linear partial integral operator in the space 
C (see [5, 6)) the equality 

b=1+	sup	
^ 17T 

Ir,(t,s,r)Idr 
( 3)ETXS 

(53) 

	

+ f r(t, S,	da + fTf5 In(t, s, T, a)I dadr] 

where g is defined by (27), and rj, Tm and r,, are the resolvent kernels corresponding to 
m 1 and n 1 , respectively. 

The resolvent kernels Ti, rm and r,, are in general difficult to compute explicitly. 
An exceptional case is that of degenerate kernels. We illustrate this by means of the 
following very elementary example. 

Example 1. Let S = T = [0,1] and 

l(t, s, r, u) = A(u),	m(i, s, a, u) = /.L(u),	n(t, s, T, a, u)	0 

where A and It are real C2 -functions with A'(0)	1, p'(0) $ 1 and .V(0) + jil(0)	1. 
For any g e C([0, 1] x [0, 1]) equation (26) has then the unique solution 

1	 1 
A' (0) 

Ig(T,$)d	
p'(0) 

	

h(i,$) = g(t,$) 
+ 1— A'(0)	

T 
+ 1— p'(0) 

Ig(t,a)da 
-	 0	 0 

+	
A'(0)p'(0)(2 - A'(0) - p'(0))	

1 1 

(1— A'(0)) (1— p'(0)) (1— A'(0) - p1(0)) I I g(-r, a) dadr. 
00 

In particular, since g(t, s) —[A(0)+p(0)] in this case, we get here the constant solution 
h(i,$) = g("$)	Putting this into (52) and (53) yields 

I	A(0) + p(0) 
a 
= 1 - A'(0) - 

A'(0)	I 
b = 1 + 1 - A'(0) +

A'(0)p'(0)(2 - A'(0) - 

1— )(0) + (1— A'(o)) (1— p'(0)) (i - A'(0) - 

The Lipschitz constant k = k(r) in (4) may in turn be estimated by 
,,,	'. k(r) < sup A Iu)I + sup 

IuI!5r	ltI<r 

This gives a sufficiently effective "recipe" for finding the scalar function V given by (7), 
and hence for applying the Newton-Kantorovich method to equation (1) in this special 
case. To be more specific, suppose that the functions A and It are quadratic polynomials 

)t(u)= A 2 u 2 +A i u+Ao	and	p(u)= ii2 u 2 +p i u+po	(54)



410	J. Appell, E. De Pascale, A. S. Kalitvin and P. P. Zabrejko 

which is the simplest nonlinear case. A trivial calculation shows that then 

	

arri Ao+/20	I 
I 

1 - -

I
 ^

b=1+	1	1+1 ILl

	

1 

A
-A1	Il-iLl

Ai/2i(2—A1 -/21)	I 
(1 - A 1 )(1 - /2 i )(1 - A 1 - /21)' 

and k(r) 2(1 A 21 + 1/221), hence W(r) = a + cr 2 , where c = b(1 A 21 + 1/2 21) . Consequently, 
the number of real solutions of the fixed point equation (8) depends on the sign of the 
discriminant D = 1 - 4ac. 

We remark that this effective calculation also applies to the more general case 

l(t, s, r, u) = a(t)b(s)c(r)A(u)	and	m(t, s, o, u) = d(t)e(s)f(a)y(u) 

and also to the case of degenerate kernels. Here one may make use of an algorithm 
proposed by Vitova [23] for solving partial integral equations with degenerate kernels. 

5. The case X = L,,. (T x S) 
In rather the same way as in X = C(T x S), the Lipschitz conditions for the operator 
F' given by (25) and the operators L 1 , M1 and N1 given by (22) - (24), respectively, are 
also equivalent in the space X = L,(T x S). This may again be analyzed by imposing 
appropriate conditions on the kernels 1 1 , m 1 and n 1 and the corresponding operators 
L,M and Nt given by (13) - (15), respectively. 

For r>O and S>O,let 

k,(r, 5) = ess sup f	sup	1 1 (t, s, T, u 1 ) - 1 1 (t, S, r, u 2 ) d7- (55) 
(t,$)ETXSJT I",I.I"215' 

l'1-"2IS6 

km(r,6) = ess sup f	sup	I m,(t , s , a, u i) - M, (t, S ? 0 , U2)1 dcr	 (56) 
(t,S)ETXS JS I "i I,l"25' 

"1 "2I 

kn (r,6)	ess sup / [	sup	n i (t,s,r,a,u i ) - n i (t,s,r,a,u2 ) dadr. (57) 
(t,$)ETxSJTJS I1I,I'2I5' 

I"I-'2I:56 

Lemma 4. The following three conditions are equivalent: 

(a) The limits 

k i (r,S)	 .	km(r,S)  ______	 ___	 k(r, 5)	
(58) k,(r)	lim	 k,,, (r) = lim	,	kn(r) = lim 

are finite for r < R. 
(b) The operators L 1 , M1 and N 1 given by (22) - (24) satisfy a Lipschitz condition 

from BR(L) into £(L).
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(c) The operator F given by (25) satisfies a Lipschitz condition from BR(L,) into 

Proof. We prove this again for the function k 1 given by (55) and the operator L1 
given by (22). Suppe that assertion (a) holds. For e > 0 choose S > 0 such that 
k j (r, 8)	(k,(r) + e)t5 for 0 < 6 6. By the definition (55) of k 1 we get 

II L1 (x i)h - L 1( x2) h I L < k,(r,8) li x i - X211L,, 

for lI h il	1, II X III, lIX211 5rand IIXI — x211	8. In fact, for lix i —x211 <6'	S and
fixed (t, S) E Tx S we have 

IT 
1 1(t, s, r, x 1 (T, s)) - ii (t, s, r, x2(7, s))] h(T, s) dr 

8 
JT(Xj' X2) 

Iii (t, S, T, xi (r, .$)) -1 (i, s ) r, x2(T, 
s))dr 

 lxi ( T ) s) - X 2 (-r, )l 

IT
sup

	

	li(t,s,r,ui) -1l(t,$)T,u2)IdT


	

 I1I,I2I5 r	 lui - u21 
1-1 —2156 

where we have put
T(xi,x2) = {r x 1 (7-,$) 54 r2(7-,$)}. 

Since 6' > I Ix  - x211 is arbitrary, this implies that 

	

II L1 (xi ) - Li(x2)I £(L )	k,(r,8) 1 lxi - X2llL, 

for II X 1 — x 21l	S. Now, for arbitrary x1, x2 e L, fix m E N such that li x i — x211 <m6.
Then 

I L i( x i) -

MLi[(1_i-)xi+2_x2] _ L i[(l_:_! )XI +_-_..x2IM M	m	 ni	m 

il x i —x2ll < m(ki (r) + c) 
M 

(kj(r)+E)Xi —x211, 

and hence assertion (b) is true. Conversely, suppose that assertion (b) holds. As was 
shown in [30] (see also [1]), the equality 

sup	sup Li(xi)h(t,$) - Li(x2)h(t,$)l 
III II.II2II5' lIhII<l III, - r 2II5 6 -

=J T 
sup	11(t,s,7,ui)-11(t,s,7,u2)dr 

I'i II'2I^' 
- '2 I 5 a 

holds in the space L, and assertion (a) follows by taking L.-norms. The equivalence 
of assertions (b) and (c) is clear I
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The following statement is parallel to Theorem 1. 

Theorem 2. The operators L 1 , M1 and Ni given by (22) - (24), respectively, satisfy 
a Lipschitz condition on BR(L) if and only if the three kernel functions 1, m and ri in 
equation (1) have second partial derivatives in the last argument 

.s, r, u) 
12 (t,s,7,u) =

5u2 

m2(t,$)o,u) = 5
2 m(t, s, o, u) 

0u2 
32 n(t, s, T, 0, u) 

n2(t,S,T,a,u) -	ôu2 

for all(t,$) E TxS and almost all (T,u) E TxR, (au) E SxR, and (r,a,u) e TxSxR, 
respectively, and the three functions 

= ess sup
17T. 

sup 112(t,s,T,u)IdT	 (59) 
(i,$)ETxS 	uI<r 

km(r) = ess sup 
fS, sup Im2(t,s,ou)Ida	 (60) 

(i,3)ETxS 	IuI!5r 

= ess sup Jf sup 1n2(t,s,r,a,u)Id0dT	 (61) 
(i,$)ETxS T S Iu<r 

are finite for r < R. Moreover, the numbers kj (r), km(r) and k(r) are then the minimal 
Lipschitz constants for the operators L 1 , M1 and Ni given by (22) - (24), respectively, 
on Br(L). Finally, the minimal Lipschitz constant k(r) for the operator F' given by 
(25) on Br(L) satisfies the two-sided estimate (51). 

The example of the operator F given by 

Fx(t, s) = x(t, s) - I tsx2 (7, s) dT - j ( 1 - t)(1 - s)x2 (t, a) da 

shows that, in general, the equality 

k(r) = k,(r) + L(r) + 

is not true. 
Theorem 2 gives an effective algorithm for estimating the Lipschitz constant k(r) in 

(4) in the space X = L,DO . Analogously to what we have done in the preceding section 
for X = C, we may calculate the numbers a and b given by (5) and (6), respectively, 
in the space X = L. However, the proof is somewhat more technical, so we state this 
separately as
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Theorem 3. Suppose that equation (26) has a unique solution (28) in the space 
X = L. Then the numbers a and b given by (5) and (6), respectively, may be calculated 
in L by means of the formulas 

a = ess sup g(t,$) + I
T r,(t,s,r)g(r,$)dr 

(,3)ETXS  

+I rm (t,s,a)g(t,cr)da + IT is r(t,s,r,i)g(r,a)drdr	(62) 

b=1+ esssup 17T lrz(t,s,T)IdT 
(i,S)ETXS  

+ j Jr. (t, S, a)l d + IT f lr(t, s, r, )[ dadr]	 (63) 

where the function g is defined by (27), and rl, rm and rn are the resolvent kernels 
corresponding to 1, m 1 and n 1 , respectively. 

Proof.. Obviously, it suffices to prove equality (63). Denote by [A] = sup{IAx(t,$)I: 
lixil < 11 the abstract norm of a linear operator A E £(L). Then [A] = [ I A I], where 
Al is the modulus of A, i.e. the minimal positive majorant of A (see, e.g., [8 - 11, 24 

- 27]). Consequently, we have hAil = [A] ii = ii [JAI] 11, where all norms are taken in 
£(L). Now, in [7] is was shown that the operator A given by the right-hand side of 
(28) has the modulus 

lAlx(t, s) = x(t, s) + J
T iri(t, s, T)iX(T,s) dr
	 (64) 

+
 I

irm (t,s,cr)ix(t,a)do + J J ir(t,s,r,a)ix(r,oda4r.  TS 

Putting x(t, s) 1 in (64), we conclude that b = JAI  is just given by (63) I 

We illustrate the results of this section again by means of Example 1. The constants 
a and b given by (5) and (6), respectively, may be calculated precisely as in the space 
X = C. The functions k 1 , km and k given by (59) - (61), respectively, have the form 

, = sup {iA"(u)i: Jul <r},	m(r) = sup iii U,u)I: Jul 5 r},	k(r)	0. 

For the polynomials \ and It given by (54) this gives, in particular, k,(r)	2A2 and 
km(r) E 2f1.
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6. The case X=L(TxS) (l<p<oo) 

The analysis of the preceding two sections becomes more difficult when passing to the 
case of the Lebesgue space L with 1 p < 00. One reason for this is that the unit 
ball in L contains lots of unbounded functions, and therefore one "cannot get rid of 
the function h" under the integrals in the right-hand sides of the norms (16) - (18). 
But this is not just a technical problem: in fact, imposing a Lipschitz condition like 
(4) in L may lead to a strong degeneracy of the kernel functions involved! For the 
integral operator N given by (11), for example, it was shown in [1] that the derivative 
N' satisfies a Lipschitz condition in L2 only if the corresponding kernel n 1 satisfies a 
Lipschitz condition in u, and in L for 1 p < 2 only if n 1 does not depend on u, i.e. 
the kernel n is linear in u. 

We shall show now that the situation is even worse for the partial integral operators 
L and M given by (9) and (10), respectively: a Lipschitz condition for the derivatives 
L' and M' necessarily leads to linear kernels for all values of p! 

Theorem 4. The derivatives of the operators L and M given by (9) and (10), 
respectively, satisfy a Lipschitz condition in X = L(T x S) (1 p < 00) if and only 
if the corresponding kernel functions I and m are linear in the last argument. 

Proof. We prove the assertion for the operator L' or, what is equivalent by Lemma 
1, for the operator L 1 given by (22). Of course, if the kernel 1 of L is linear in u, the 
kernel 1 1 of L 1 is independent of u, and there is nothing to prove. Suppose that the 
operator L 1 satisfies a Lipschitz condition in L, i.e. 

	

is iT I IT 	s, r, x 1 (r, s)) - l (t, s, r, X 2 ( T , s))] h(r, s) dr dtds
(65) 

	

< k() li x i - x2II"II h II	(I I XI II, 11 x211 < r) 

where all norms are taken in LP (T x 5). Choosing, in particular, x(t, s) = UiXD(t)XE(s) 
and h(t,$) = XD( t )XE( S ), where  C T and EC S satisfy umesDmesE rP(i = 1,2) 
and putting this into (65) yields 

	

1 IEmesE	 J ID 
[1i(t,s,r,ui) -li(t,s,T,u2)] drdtds 

T 	 (66) 
< k'(r) Ju l - u21"(mesD)2(mesE). 

Letting mesE in (66) tend to zero, we get 

f P I L	T, ui) -	T, u2)] dr di = 0	 (67) 

for almost all s E E. From (67) it follows in turn that 

ID [l
j (t,s, T, u1) - l(t, s, r, u 2 )] dr = 0 

for almost all (t, s) E T x E. Since D is an arbitrary measurable set, we conclude that 
l i (t,s,T,u i ) - 1 1(t , s , 7- , u 2) = 0 for almost all (t,s,T) E T x S x T, and the assertion 
follows I
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Theorem 4 is, of course, rather disappointing: the Newton- Kantorovich method 
applies to equation (1) in L (1 <p < oo) only if the kernels I and in are linear in u. 
Only for the kernel n we have a larger choice in L, provided that p ^! 2. Taking into 
account this degeneracy, we close with another example in X = L2. 

Example 2. Let S = T [0, 1] and p = 2. By what has been observed before, this 
choice of p forces us to choose the kernels 1 and in linear in u. For example, let 

I(t, s, r, u) = A I ( t ) A2(S ) U  + .Xo(t, s, r) 
rn(i,s,a,u) = A I (0Y2( S )U  + zo(t,s,a) 

n(i, s I T ) 0, u)	0. 

The function g in (27) is here 

g(t, s) 
= - f	o(t, s, r) dT -J p do,o(t, s, a) d 

and equation (26) for h takes the form 

h(t,.$) = A I (t)A2(S)O(S)  + j i (t)p2 (s)5(t) + g(t,$)	 (68) 

where we have put

= I h(r, s) dr	and (t) 
= f h(t, a) da.	 (69) 

Inserting (68) into (69) we arrive at the system

(s)= 0	 /	/ i(r)A2(s)(s) dr + A I 	dr + g(T, s) dr 

(t)= J A i (t)A 2 (a)(a)da + Ji ( t 2	i)da + f g(t, a) da 

for the unknown functions q and 0. If we suppose that 

	

= 1— A2 (s)J A i (r)dr 0 0 and	(t) = 1— p i (t)J tL 2 (a)do, 54 0 

and put

7(s) = I g(T, s) dr	and	8(t) = Jg(t,a)da, 
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we end up at a system of two scalar equations 

I .\i(r),ui(T) _______ 
(1

dr+=J1(TT)dT 1 
/3(r)

	

/3(r)	I \0	
) 

o	 1 
A2(	(a)

'	 I 

e	J a)p2  
-	&(a)	

da) = I A2(a)7(a) do, I 
(0 a(a) 

o 

for the unknown real numbers 

=	
and	77 = f1ij(7)tk(-r)dr. 

The last system has a unique solution (, r) E R2 if and only if 

	

( ]1(r)I(r)d 	dor 54 1	 (70) 
(0, /3(r)	

T 

and this solution may be used to find (, 0) and, consequently, the solution h of equation 
(26). 

In this way, we may find the numbers a and b given by (5) and (6), respectively, 
by means of well-known upper estimates for the L2 --norm of a linear integral operator. 
The Lipschitz constant k(r) in (4) is very easy to compute in this case, since 

	

.s, r, u) = .X i (t)A 2 (s)	and	mi(i,s,a,u) = ,u,(t),02(5) 

do not depend on u. 
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