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On the Application
of the Newton-Kantorovich Method
to Nonlinear Partial Integral Equations

J. Appell, E. De Pascale, A. S. Kalitvin and P. P. Zabrejko

Abstract. We discuss the applicability of the Newton-Kantorovich method to a nonlinear
equation which contains partial integrals with Uryson type kernels. A basic ingredient of
this method consists in verifying a local Lipschitz condition for the Fréchet derivatives of
the nonlinear partial integral operators generated by such kernels. The abstract results are
illustrated in the space C of continuous functions and the Lebesgue space L, for 1 < p < o0.
In particular, it is shown that a local Lipschitz condition for the derivative in the space L, for
p < oo leads to a degeneracy of the corresponding kernels. For ordinary integral operators,
such a degeneracy occurs for p < 2 only.
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0. Introduction

Let S and T be subsets of Euclidean space with finite Lebesgue measure, and let

1:TxSxTxR—R
m:TxSxSxR-R
n:TxSxTxSxR—=R
be given Carathéodory functions (i.e. functions which are continuous in the last variable

and measurable in the other variables). The purpose of this paper is to investigate the
nonlinear partial integral equation of Uryson type

z(t,s) = /rl(t,s,r,:r('r,s)) dr

+/Sm(t,s,a,f(t,a)) da+/T/s"(t’5’T"’zz(T,é)) o (1)
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by means of the Newton-Kantorovich method.

Equations of this type arise in both the theory and applications of boundary value
problems for partial differential equations [2, 13, 14], as well as in various nonlinear
transport problems. They describe, for example, the propagation of radiation through
the atmosphere of planets and stars [12, 21], or the transfer of neutrons through thin
plates and - membranes in nuclear reactors(22]. -

The first two integrals occurring in the right-hand side of equation (1) are usually
called “partial integrals”, inasmuch as the integration is carried out only with respect to
some variables, while the other variables are “frozen”. As a matter of fact, most of the
classical tools of nonlinear analysis (degree theory, fixed point principles, variational
methods based on degree arguments, etc.) do not apply to operators involving such
integrals. One reason for this is that, in contrast to ordinary integral operators, partial
integral operators are not compact. The Newton-Kantorovich method is one of the
few, though important, tools which may be used to prove the solvability of nonlinear
equations involving partial integral operators. Moreover, this method makes it also
possible to “calculate” approximate solutions with prescribed accuracy.

For the general theory of partial integral operators in so-called Lebesgue spaces
with mixed norm we refer the reader to the papers (3, 4, 7, 15 - 19], where various
boundedness and continuity conditions are studied in detail. The results of the present
paper are in a certain sense parallel to those of the paper [1], where existence results
are given for ordinary integral equations of Uryson type. However, there are important
differences in both the methods and results which we will point out in the corresponding
places.

1. The Newton-Kantorovich method

The Newton-Kantorovich method is one of the basic tools for ﬁndlng approximate so-
lutions of the operator equation

F(z) =0, (2)

where F is some nonlinear operator in a Banach space X. In the corresponding iterative
scheme

Tny1 = 2p — F'(20) 7 F(z,) (n=0,1,2,...) (3)

one has to require, in particular, that the Fréchet derivative F' of F at all points
zn exists and is invertible in the algebra £(X) of all bounded linear operators in X.
The direct verification of this requirement may cause essential difficulties in practice.
However, in the last years several new ideas have been developed to overcome these
difficulties. For the reader’s ease, let us briefly sketch some of these ideas related to the
Newton-Kantorovich method [28 29].

Suppose that F is defined on the closure Br(X) of some ball Bg(X) = {z € X :
llz]| < R} and admits a Fréchet derivative F'(z) at each point of BR(X) such that F'
satisfies a Lipschitz condition

IF'(21) = F'(z)ll < k(r) llas — 22l (21,22 € Bo(X), 0<T<R)  (4)

s
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as a map from Bg(X) into £(X). We also assume that the Fréchet derivative at zero
is invertible and put

a=||F'(0)~ F(0)l (5)
b= IF'(0)~"1l. (6)

Smce the (minimal) Lipschitz constant k = k(r) in (4) is non-negative, the function

: [0, R] — [0, 0) defined by

r

p(r)=a+ b/(r — t)k(t)dt (0<r<R) (7

0

is convex. The scalar equation
r = p(r) (8)

may have no solutlon a unique solution, or many solutions in [0, R]. Let us suppose
that (8) has a unique solution r, € [0, R] and ¢(R) € R. In this case equation (2)
has a solution z. € B, (X), and this solution is unique in the ball Br(X) (see [28]).
Moreover, the iterations (3) are defined for every n and converge to the solution z..

The usefulness of the Newton-Kantorovich method does not only consist in reducing
the operator equation (2) in a Banach space to the scalar equation (8) on a real interval.
It is also possible to give estimates for the convergence speed. In fact, let

U@r) = “’(’L oL V() =Ur+U™Y(r), W)=Y Vi)
k=0

where by V* we mean the k-th iterate of the operator V. Then the estimates
llznt1 —zall SV™(e)  and  |lz. — zal| < W(V"(a))
hold [28]. So, in order to study equation (2) from the viewpoint of existence, uniqueness,
and approximation it suffices in many cases
e to calculate (or estimate) the constants a and b

e to calculate (or estimate) the scalar function k = k(r).

As already mentioned, the simplest case is when the scalar equation (8) has a unique
solution r, in [0, R] and ¢(R) < R. Other cases may be reduced to this case. For
example, if (8) has another solution r* € {0, R] with r* > r,, say, we simply take
R < r*. Likewise, if (8) has a whole continuum of solutions [r.,r*] C (0, R], we can
choose R = r,.
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2. Lipschitz conditions for derivatives and norm estimates

Throughout we denote the (partial) integral operator generated by some kernel function
by the corresponding capital letter, i. e.

L(z)(t,s) =Al(t,s,r,z(+,s)) dr (9)
M(x)(t,s)=/sm(t,s,a,a:(t,a)) do (10)
N(z)(t,s) =LLn(t,s,r,a,z(r,a)) dodr. (11)

The nonlinear partial integral equation (1) may then be rewritten as operator equation
(2) if we put
F(z) =z — L(z) - M(z) — N(z) (z € Br(X)), (12)

where X is some Banach space of real functions over T' x S.

Suppose now that the three kernel functions in (1) have partial derivatives in the
last argument

Lt,s,T,u) = g—i(t,s,r,u)
my(t,s,0,u) = %—r:(t,s,o,u)

. On .
ni(t, s, 7,0,u) = a—u(t,s,r, o,u).

Consider the operators L*, M* and N* defined by

L*(z)(t,s,7) =1 (t,s,r, z(r,s)) | (13)
M‘(:c‘)(t,s,a) =m(t,s,0,2(t,0)) ' (14)
N*(z)(t,s,7,0) = ny(t,s,7,0,2(r,0)). (15)

These operators are-not superposition operators in- the usual sense, since they map
functions of the two variables (¢, s) into functions of three (or even four) variables; we
call such operators “generalized superposition operators” in the sequel. The operators
(13) - (15) may be considered between the space X and the kernel spaces Rr(X, X),
Rs(X, X), and Rrxs(X, X) defined by the norms

”p”m‘r(x,X) = sup (t9s) H/ |p(ta$)7—) h(Tas)|dT 4 (16)
lIAllx <1 T X
lallms(x,xy = sup [|(¢,s) '—*/ la(t; s, o) h(t, 0)| do (17)
lIalIx <1 S X
[I7ll®pys(x,x) = sup (t,s)H/ / |r(t,s,r,a) h(T,a)|dod7’ , (18)
[Ihllx <1 TJS X
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respectively, where we have written ||(t,s) — f(t,s)|| instead of ||f|| to point out the
variables of the function involved. Of course, the functionals (16) - (18) are nothing else
than the operator norms of the moduli [8 - 11, 24 - 27] of the corresponding (regular)
linear partial integral operators

Ph(t,s) = /T p(t,s,7) h(r,s) dr (19)
Qh(t,s) = /s a(t, 5,0) h(t,0) do (20)
Rh(t,s) = /T | /s r(t,s,7,0) h(r, o) dodr (21)
in the algebra £(X) of bounded linear operators on X. We set
Li(z)h(t,s) = /T L(t,s,7,2(r, ) h(r,s)dr (22)
My(2)h(t,s) = /5 mi (4,5,0,(t,0)) h(t, o) do (23)
Ny(2)h(t, s) = /T /s n(t,s,r,0,2(r,0)) h(r,0) dodr. (24)

Lemma 1. Suppose that the generalized superposition operators L*,M* and N*
defined by (13) - (15) act from Bgr(X) into Rr(X,X), Rs(X,X) and Rrxs(X, X),
respectively, and satisfy a Lipschitz condition. Then the operators L, M and N defined by
(9) - (11) are Fréchet differentiable with L' = Ly, M' = M, and N' = N,. Consequently,

F'(z) = I — Li(z) — My(z) — Ni(z) (z € Br(X)). (25)

Proof. The assertion has been proved in [1] for integral operators N of the form
(11), so we have to prove it only for partial integral operators L and M of the form (9)
and (10), respectively. For £ € Br(X) and h € X we have

[L(:z: + h) — L(z) - L](.’B)h] (t,s) 4 ‘
= /’; [I(t, s,7,2(7,8) + h(1,8)) = I(t,s,7,2(,3)) — Li(t,s,7,2(r,s)) h(r,s)] dr

- /T/Ol (15,7, 2(7,5) + AR(r, ) = b (8,5,7,3(7,9)) | b7, ) drdr
- {/01 [Li(z + AR) - L,(z)]hdA} t,s).

Since the operator L, : Br(X) — £(X) satisfies a Lipschitz condition, by assumption,
we conclude that

IL(z + h) - L(z) - Ly()h] < / 1Z1(z + Ak) = Ly(2)]| 1Al d = o(llA]),

which means that L'(z) = Li(z). The equality M'(z) = M,(z) is proved similarly B
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Applying Lemma 1 allows us to “find” the constants a and b for the equation (2),

where F' is given by (12). In fact, the function h = F'(0)~!F(0) satisfies the linear
partial integral equation

h(t,s)—/Tll(t,s,T,O) h(r,s)dr
—-/sml(t,s,a,O)h(t,a)do—/Fj/;nl(t,s,r,a,O)h(r,a)dadr (26)
=g(t,s)

where

g(t,s) = —/ l(t,s,T,O)d‘r—/m(t,s,a,O)a’a—/ /n(t,s,r,a,O)dadr. (27)
T s TJs

Suppose that the (unique!) solution of equation (26) may be written in the form
h(t,s) = g(t,s) + / ri(t,s,7) g(r,s)dr
T

+/sr"‘(t’s’”)g("”)do,+/T/sr,,(t,s,r,g)g(T,a)dadT (28)

with some resolvent kernels r;, r, and r, defined through the kernels {;, m; and n,,
respectively. Then the constant a in (5) is of course nothing else than the norm ||A|| x of
the function (28) in the space X. Since the explicit form of these resolvent kernels is in
general hard to find, one usually looks for a representation of the form F'(0) =T — E,

where T is boundedly invertible and the norm of E in £(X) is small. The elementary
equality T —F = T(I - T7'E) lmphes then that, under the hypotheses of Lemma 1,

the estimates

IIT l1'“(0)|I
a=||F'(0)"*FO)]| <« —=—"20
' 1 | 1 I 1 1 l IH - ” 1 ”k ”T_l”
b=F0‘ <|IT Y -TEY Y < ||T™ TE|f< —1=
IF' @1 < 1T 1K SIS T BT

k=0
are true. In this way, we have proved the following

Lemma 2. Suppose that the generalized superposition operators L* , M* and N*
given by (13) - (15) act from Rr(X,X), Rs(X, X) and ERsz(X X), respectively, sat-
isfy a Lipschitz condition, and F'(0) = T — E, where T 1s invertible in £(X) and
||E|| < €. Then the estimates

;

IT-1F(0)|] Tl
< - /0 d b ————
S1-enry "t S 1= elIT-1]

~ hold.
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Under the conditions of Lemma 2 it is natural to write the linear operators T and
E also as sums of (partial) integral operators like (9) - (11). Various conditions for the
“smallness” of the norm of E may then be found in [4 - 7). On the other hand, the
invertibility of T is often not easy to verify, except for particular cases. Assume, for
instance, that T has the special form

Th(t,s) = h(t,s) - /T¢(t,7‘) h(r,s)dr

—/w(s,a)h(t,a)da—c//d)(t,r)z/)(s,a)h(r,a)dadr,

where ¢: TxT - R,%: SxS—Randc c € R are given. Then T is invertible if and
only if

1¢o(®)+ a(\Il) +co(®)o(¥), (29)
where o denotes the spectrum, ® and ¥ are the integral operators generated by the
kernels ¢ and ¥, respectively.!) Moreover, in some cases the operator T~! may be
expressed explicitly through the operators ® and ¥. For example, in case ¢ = 0 the

formula N1 & (% — -1
a2 o, Jr, T—¢-7
holds, where T'¢ and I'y are simple ¢losed contours around o(®) and o(¥), respectively.

If the kernels ¢ and % are symmetric or degenerate, the relation (29) may be verified
by standard schemes.

3. Lipschitz conditions for partial Uryson operators

The crucial assumption in Lemma 1 is of course the Lipschitz condition for the operators
L*,M* and N* defined by (13) - (15), respectively. In this section we take a closer look
to this condition from a general point of view. More information in some specific function
spaces which arise frequently in applications will be given in subsequent sections.

In what follows, we study all operators in "ideal spaces” of functions over T x S.
Recall that a Banach space X of measurable or continuous functions z : T'x S — R
is called ideal space if the norm on X is monotone, i.e. from |u(t, s)| < |v(t,s)| a.e. on
T x § and u,v € X it follows that ||u| < ||v].

Suppose that the three kernel functnons I,m and n in (1) also have second partial
derivatives in the last argument

L(t,s,7,u) = %(t, 5,T,u)

52
ma(t,s,o,u) = a—ur;l(t, s,0,u)

2 .
n
w(t, s, 7,0, u)

na(t,s,7,0,u) =
.
1 A detailed proof of formula (29) can be found, e.c., in the paper-of T. Ichinose: Spectral
properties of tensor products of linear operators. Trans. Amer. Math. Soc. 235 (1978), 75 -
113.
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and that
Ill(t,s,r,ul) - UhL(t,s,T, ug)l < ig(t,s,r,w) fur — uq| (30)
|m1(t,s,a,u1) - my(t,s, o, u2)| < ma(t, s, 0,w) [uy — ug| (31)
|ni(t, s, 7,0,m) — na(t, s, 7,0, u)| < fia(t,s,7,0,w) |ur — ug| (32)

for |uy}, |uz| < w. Here

I}(t,s,r,w) = sup |l2(2,s,T,u)|
u|<w

ma(t,s,o,w) = sup |L(t,s,o,u)|
lu|<w

fiz(t, s, 7,0,w) = sup |la(t,s,7,0,u)l,
lu|<w

respectively. It is then natural to state the Lipschitz condition (4) in terms of the
generalized superposition operators

L**(z)(t,s,7) = l(t,s,7,2(7,s)) (33)
M**(z)(t,s,0) = mg(t,s,a,z(t,a)) (34)
N**(z)(t,s,1y0) = ﬂg(t,S,T, o, z(T, U)) v (35)

which are second order analogues to the operators L*, M* and N* defined by (13) -
(15), respectively. As a matter of fact, we want to replace the generalized superposition
operators L**, M** and N** given by (33) - (35), respectively, by the usual superposition
operators -

I:”(z)(t,s,‘r) = lg(t,s,r,z(t,s,r)) (36)
M**(z)(t,s,0) = ma(t,s,0,2(t,s,0)) (37
N“(z)(t,s,r, g) = ng(t,s,r, o, z(t,s,r,a)) (38)

defined on functions over T x S x T, T x S x Sand T x S x T x §, respectively. To
make this precise, we need some special definitions. First, given an ideal space X of
real functions over T x S, we denote by .

Xr, Xs, XrTxs
the spaces of functions

p: TxSxT—R, g: TxSxS—R, r: TxSxTxS—-R
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defined by the norms

lellxr = inf {llfllx : Ip(t,s, )| < (7 s) for pe X}
llllxs = inf {lldllx : la(t,s,0)| < d(t,0) for 4 € X}
lrllxres = inf {IIFllx : Ir(t,s,7,0)] < #(r,0) for 7 € X},

respectively, where the inequalities in these definitions are considered everywhere on
TxSxT,TxSxSand T xS xT xS, respectively. Further, we define spaces

Rr(X,X), Rs(X,X), Rres(X,X)
of measurable functions

p: TxSxT >R, g: TxSxS—R, r: TxSxTxS—R

by the norms

lelsyx = sup |[(ts) o / Ip(t, 5, 7)z(r, s)h(r, s)| dr (39)
Izl x . 1ih]|x <1 T X
lallsgxp = sup [(ts) / la(t, 5,0)a(t, 0)h(t, 0| do (40)
zllx IlAllx <1 s X
||r||9-%xs(x,x)= sup (t,s)H//|r(t,s,r,o)z(r,a)h(r,a)|dad'r (41)
Nzl x.llA]lx <1 TJS X

respectively.

The construction described above is not as trivial as it seems to be. For example,
if X is a Lebesgue space L, with p > 2, one can easily see that the spaces mT(X X),
Rs(X,X) and Rrys(X, X) consist of kernels of linear integral operators (19) - (21)
acting from Lg into Ly; in the case 1 < p < 2 these spaces strongly degenerate (i.e.
contain only the zero function) More genera.lly, if X is an Orlicz space Ly (see,
e.g., [20]), the spaces Ry (X, X), Rs(X, X) and Rrxs(X, X') contain kernels of linear
integral operators (19) - (21) acting from Ly into Lp, where the Orlicz space Ly is
generated by any Young function N satisfying for some ¢ > 0 the asymptotic condition

lims N(cu?)
1 u
umoo. M(u)

< oo

Below we use the usual abbreviation (u V v)(t,s) = sup {u(t, s), v(t,s)} and put
v(r) =sup {lluvoll: [[ul,lpll<r}  (r>0).
Moreover, given a bounded nonlinear operator F' between two normed spaces, by
#(F;p) =sup{||Fz||: |lz]| < p}  (p>0)

we denote the growth function of F.
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Lemma 3 Let X be a Banach space of real functwns over T x S. Then the
following holds:

(a) If the superposition operator L** in (36) is bounded from Xr into Ry(X,X),
then the genera.lzzed superposition operator L* given by (13) satisfies the Lipschitz con-
dition

12%(21) = L*(22) |y (x, xy S #(L7759(7) l2a = 72l (42)
where ||z, | x, [|z2]lx <.

(b) If the superposition operator M™ in (87) s bounded from Xs into ﬁs(X,X),
then the generalized superposition operator M* given by (14) satisfies the Lipschitz con-
dition 5

”M‘(zl) - M‘(x2)”m5(x,x) < ”(M‘.;'Y(r)) lzr — z2||x (43)
where ||z1|x, l|z2llx <.

(c) If the superposition operator N** in (38) is bounded from X1y s intoRyxs(X, X),
then the generalized superposstion operator N* given by (15) satisfies the Lipschitz con-
dition

IV (@) = N @)l iy < HT7520) s = 2allx (44)
where ||z1]|x, |z2[lx <.

Proof. Let us prove (42), the estimates (43) and (44) are proved in the same way.
For any z,,z, € X with ||z1]|x, |}z2]|x < r we have, by (30),

"I{‘(Il) - L‘(”)lmr(x,X)

= sup [|(¢,s)+— / |I! (t,s,T,:cl(‘r,s)) - (t,s,'r, zg(r,s))l \h(r,s)|dr
C lislix <1 - JT ' X
‘S -sup [[(¢,s) — / |i2(t,s,'r, |z1(r, s)| V |.‘L'2(T,$)|)|

limtlx <t || T .

x |zl(r,._s) — :z:g('r,.é)| |h(7, )| dr

. _ X
By the Krasnosel’skij-Ladyzhenskij lemma (see, e.g., [10]) there exists a function w :
T x S x T — R such that |w(t,s,7)| < |z1(7,s)| V |z2(7, s)| and
|lg (t, s, T, w(t,s, 7')) | =1 (t, 5,7, |z1(7,8)| V |z2(T, s)|)
Thus,

”L‘(zl) - L.(:"'?)"g‘,r(xyx)

(t,s) — /T Ilg(t,s,‘r, w(t,s,'r))l |z1(7,5) — (T, s)| |h(T,s)|dT .

< sup

I1allx <1

This implies (42), by the definition of v(r) and ;t(lz"; v(r)) B
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4. The case X = C(T x S)

In many cases, Lemma 3 is sufficient to find the constants a and b given by (5) and (6),

respectively, and the function k = k(r) from (4) in the space C explicitly. Consider the
scalar functions

\

Lit,s,7,u1) — Lh(t,s,7,u

ki(r) = sup / sup | i )bt 2)| dr (45)

(6,)€T%S JT Juy|,|us|<r [ur — ug)
» my(t,s,o,uy) —m(t,s,o,u

km(r) = sup / sup | i 1) 1, 2)| do (46)

(4,3)€Tx5 JS fu],ua|<r [y — ug|
n(t, s, 7,0,uy) —ny(¢,s,7,0,u

kn(r) = sup / / sup [, 1) =mit,s,7,0,u) dodr. (47)

(t,9€TxSIT JS fui]|usl<r fuy — ua]

These functions are finite for 7 < R if and only if the operators L*, M* and N* given
by (13) - (15) satisfy a local Lipschitz condition in C. Moreover, the numbers given in
(45) - (47) are then the minimal Lipschitz constants for the corresponding operators on
B,(C). This may be stated in a more precise and convenient way:

Theorem 1. The operators Ly, M) and Ny given by (22) - (24) satisfy a Lipschitz
condition on BRr(C) if and only if the three kernel functions I, m and n in (1) have
second partial derivatives in the last argument

3l(t,s,T,u
l(t,s,7,u) = %
&m(t,s,
ma(t, s, 0,u) = %ﬂ
n(t,s,7,0,u
na(t, s, 7,0,u) = %

for all(t,s) € TxS and almost all (7,u) € T xR, (0,u) € SxR and (1,0,u) € TxSxR,
respectively, and the three functions

El(r)i sup / sup |l2(t,s,7,u)| dr (48)
(¢,9)ETXSJT |u|<r :

bar) = sup [ sup Ima(t,s0u)ldo (49)
(¢,8)ETxSJS |u|<r .

En(r)= sup // sup |n2(t,s,7,0,u)|dodr (50)
(,9)€ETXxSJT JS |u|<r

are finite for r < R. Moreover, the numbers I::I(r), l-c,,.(r) and I::,,(r) are then the. minimal

~ Lipschitz constants for the operators Ly, M, and N,, respectively, on B,(C). Finally,
the minimal Lipschitz constant k(r) for the operator F' by (25) on B,(C) satisfies the
two-sided estimate

max {ki(r), km(r), ka(r)} < k(r) < Bi(r) + km(r) + ka(r). (51)
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Proof. The proof for the integral operator N, given by (24) is contained in {1}. Let
us prove the assertion for the partial integral operator L, given by (22), the proof for
the operator M, given by (23) is similar. By what has been observed before, for this
it is necessary and sufficient to show that the function ki(r) given by (45) is finite for
r< R.

Suppose first that ki(r) is finite for all # < R. This means that

/ Ill(t,S,T,‘U.))—Il(t,s,T,u2)|
sup
T

lushlual<r lur — uel

dr < ki(r) < 0

for all (t,s) € T x S, and hence the function A, , given by

L(t,s,muy)— Lt s, 7,u
ha(r) = up [albmri) Zhitsr )
s L lwal<r -

is finite a.e. on T'. Since
|11(t,8,7',u1) - ll(tvs)T)U'?)' S ’\t,s(T) |ul - 'U.2|

for |ui|, |uz| < r, the map u — li(¢, s, 7,u) is absolutely continuous. Consequently, the
partial derivative l; = %’u exists for almost all u and satisfies supjy <, |l2(¢, s, 7, u)| <

At,s(7). But this implies

l~cz(r) <  sup / At,s(7)dT < 00.
(t,5)€TxSJT

Conversely, suppose that the function ki(r) given by (48) is finite for r < R. This
implies that the function A, given by A¢s(7) = supjyi<, [2(t, 5,7, u)| is finite a.e. on
T, for all (¢,s) € T x S. Consequently, for |u], uz} < r we have

|l](t,$,T,u1) - 11(t,S,T,u2)l = < :\t,s(r) |u1 — u2i.

uy
/ lo(t,s, T,u)du

We conclude that

ki(r) < sup / :\.,,(r)dr < o0.
(t,9)eTxsJT

Of course, the proof shows also that I~cl(r) = k,(r) forallr < RN

Theorem 1 implies, in particular, that the estimate k(r) < ki(r) + km(r) + kna(r)
holds for the Lipschitz constant k(r) in (4) in case X = C. The problem of calculating
the numbers a and b given by (5) and (6), respectively, is quite easy. In fact, suppose
that the partial integral equation (26) has a unique solution (28) in the space X = C.
From the definition of the norm in the space C we obtain then the equality

a= sup
(t,3)€TxS

+ /rm(t,s,a)g(t,o)do-{-//rn(t,s,‘r,o)g(r,a)dadr ,
s TJs

g(t,s)+ [ nu(t,s,7)g(7,s)dr
/T - (52)
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and from explicit formulas for the norm of a linear pa.rtlal integral operator in the space
C (see [5, 6]) the equality

(t,s)ETXS

+/|rm(t,s,a)|da'+/ / lr,,(t,s,r,a)ldadr]
S TJS

where g is defined by (27), and ry, 7, and r,, are the resolvent kernels corresponding to
l;, m; and n;, respectively.

b=1+ sup [/ [ri(t,s, )| dr
T
(83)

The resolvent kernels ry, ry, and r, are in general difficult to compute explicitly.
An exceptional case is that of degenerate kernels. We illustrate this by means of the
following very elementary example.

Example 1. Let S =T = [0,1] and
I(t,s,7,u) = AMu), m(t,s,o,u) = p(u), n(t,s, 7,0,u) =0

where A and p are real C?-functions with A’'(0) # 1, p'(0) # 1 and X'(0) + p'(0) # 1.
For any g € C([0,1] x [0, 1]) equation (26) has then the unique solution

h(t,s) = g(t,s) + l—i’f%()). g(r,s)dr + (0) / (t,o0)do

N (0)¢'(0)(2 — X'(0) — u'(0))
T =2 0) (1 - #(0) (1 - X(0) - w(0)) //g(r o) dodr.

In particular, since g(t,s) = —[A(0)+ x(0)] in this case, we get here the constant solution
h(t,s) = % Putting this into (52) and (53) yields

_ ‘ A0) + 1(0)
T=X(0) - #(0)
X (0) #(0)
YOI \1 —4(0)

N(0)'(0)(2 — X(0) - #(0))
(1= X(0) (1 = w(0)) (1 = N(0) — w(0)) |

The Lipschitz constant k = k(r) in (4) may in turn be estimated by

k(r) < sup [A"(u)] + sup |u"(u)].
lul<r lul<r

b=1+‘

This gives a sufficiently effective “recipe” for finding the scalar function ¢ given by (7),
and hence for applying the Newton-Kantorovich method to equation (1) in this special
case. To be more specific, suppose that the functions A and u are quadratic polynomials

Au) = Aau? + Mju+ Ao and u(u) = pou® + pyu + po (54)
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which is the simplest nonlinear case. A trivial calculation shows that then

Ao + po
1-XA —m
A ) AMpi(2 =X - )
b=1+‘ |+’ " ,
=X L} (=201 = p)(1 = Ay — )

a=|

and k(r) = 2(|Az| 4 |p2]), hence ¢(r) = a + cr?, where ¢ = b(|A2| + |i2]). Consequently,
the number of real solutions of the ﬁxed point equatxon (8) depends on the sign of the
discriminant D = 1 — 4ac.

We remark that this effective calculation also applies to the more general case

-t s, 7, u) = a(t)b(s)e(T)A(u) and . m(t,s,o0,u) = d(t)e(s)f(o)p(u)

and also to the case of degenerate kernels. Here one may make use of an algorithm
proposed by Vitova (23] for solving partial integral equations with degenerate kernels.

5. The case X = Lo(T x S)

In rather the same way as in X = C(T x §), the Lipschitz conditions for the operator
F' given by (25) and the operators L;, My and N, given by (22) - (24), respectively, are
also equivalent in the space X = Loo(T x S). This may again be analyzed by imposing
appropriate conditions on the kernels /;, m; and n; and the corresponding operators
L*,M* and N* given by (13) - (15), respectively.

Forr > 0and § > 0, let A

ki(r,6) = esssup / sup |ll(t,s,r,u1) - L(¢,s, T, u2)| dr (55)
(,3)ETXxSJT lurllvzlsr
luy —uz|<é

km(r,6) = esssup / sup |m1 (t,s,0,u1) — my(t, s, o0, u2)| do (56)
: (t,8)ETXSJS |"1||u2|<'
u,-..,|<6

kn(r,6) = esssup / / sup |n1(t $, 7,0 ul) —ny(t,s,7,0,u2)| dodr. (57)

- (t,9)€ETxS S |I"l| |"2||<' N

. ui-uzl<

Lemma 4. The following three conditions are equivalent:

(a) The limits

n(r 5)

k)= i 22,

() = fim 208 ) = iy (58)

are finite for r < R.

(b) The operators Ly, M, and N, given by (22) - (24) 3atwfy a Lipschiiz condition
from Bg(Loo) into £(Loo). :
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(c) The operator F' given by (25) satisfies a Lipschitz condition from Bp(Le) into
L(Loo)-

Proof. We prove this again for the function k; given by (55) and the operator L,
given by (22). Suppose that assertion (a) holds. For ¢ > 0 choose § > 0 such that
ki(r,8) < (ki(r) + €)6 for 0 < 6 < 6. By the definition (55) of k; we get

”Ll(:cl)h - Ll(“)h"Lm < ki(r,6) |lz1 — z2||Lo,

for ||| < 1, [|z1]],||z2]] < r and ||z) — z2|] < 6. In fact, for ||z) — z2|| < §' < 6 and
fixed (t,s) € T x S we have

/T [ll(t,s, T,.’L‘l(T,s)) - Il(t,s,'r, xg(r,s))]h(r,s) dr

< 5,/ Ill (t,s,r,zl(r,s)) - I] (t,S,T, IQ(T,S))|
B T(z1,z2) |11(T’s) — z2(7, 5)|
< 5,/ sup |ll(t,s,T,u1) - hL(t,s, T, ‘ltg)‘ &

T

furlluzl<r fuy — u2|
fuy —u2|56

dr

where we have put
T(z1,z2) = {7 : z1(7,8) # z2(7,5)}.

Since 8’ > ||z; — z2|| is arbitrary, this implies that
”LI (xl) _‘Ll(z2)”£("w) S k{(T,(S) lel - m?llfxoo

for ||z, —z2|| < 8. Now, for arbitrary z,,z2 € Loo, fix m € N such that ||z; —z2|| < mé.
Then >

|L1(z1) - LI(I2)||£(L°°)
<3 [a[(-B)ar+ Za] - n[(- 2w + ],
j=

) llz1 — 22|
m

<m(ki(r) +¢
= (ki(r) + €)llz1 — z2||,

and hence assertion (b) is true. Conversely, suppose that assertion (b) holds. As was
shown in [30] (see also [1]), the equality

sup sup |L1(1‘1)h(t,s) - L](I2)h(t,s)|
II=1II.||33||<56' I&II<1

Nz -=2ll<

~

=/ sup  |L(t,s,7ur) — Li(t,s, 7, uz)| dr
T .

lugllugl<r
luy—uz|<é

holds in the space Lo, and assertion (a) follows by taking Lo,-norms. The equivalence
of assertions (b) and (c) is clear '
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The following statement is parallel to Theorem 1.

Theorem 2. The operators Ly, M, and N, given by (22) - (24), Tespectively, satisfy
a Lipschitz condition on BR( ) if and only if the three kernel functions I, m and n in
equation (1) have second partial derivatives in the last argument

8(t, s, 7, u)
12(t15$ T7u) = au2
8*m(t,s,o,u
mZ(t’szavu) = %
62 t b b b
na(t, s, 7,0,u) = On(t,s,7,0,u) ’Bsu: 7,u)

for all(t,s) € TxS and almost all (7,u) € TxR, (0,u) € SXR, and (1,0,u) € TxSxR,
respectively, and the three functions

ki(r) = esssup / sup [lp(t,s, 7 u)IdT (59)
(t,3)ETxSJT |u|<r
km(r) = esssup / sup |mq(t,s,o,u)|do (60)
(t,)€TxS /s |ul<r .
kn(r) = esssup // sup |nq(t, s, 7,0,u)|dodr (61)
(t,8)ETxS S |u|<r

are finite for r < R. Moreover, the numbers ki(r), Em(r) and kn(r) are then the minimal
Lipschitz constants for the operators Ly, M; and N; given by (22) - (24), respectively,
on B,(Lo). Finally, the minimal Lipschitz constant k(r) for the operator F' given by
(25) on B,(Loo) satisfies the two-sided estimate (51).

The example of the operator F' given by

1

Fz(t,s) = z(t,s) — /tsxz(r,s) dr — /(1‘— t)(1 — s)z%(t,0) do

0

shows that, in general, the equality ‘
k(r) = ki(r) + km(r) + En(r)

is not true.

Theorem 2 gives an effective algorithm for estimating the Lipschitz constant k(r) in
(4) in the space X = L. Analogously to what we have done in the preceding section
for X = C, we may calculate the numbers a and b given by (5) and (6), respectively,
in the space X = L,,. However, the proof is somewhat more technical, so we state this
separately as :



On Application of the Newton-Kantorovich Method 413

Theorem 3. Suppose that equation (26) hes o unique solution (28) in the space
X = Loo. Then the numbers a and b given by (5) and (6), respectively, may be calculated
in Lo, by means of the formulas

a = esssup

g(t,s)+/Tr1(t,s,r)g(r,s)dr

(1,9)€TxS
+/rm(t,s,0)g(t,a)da+//rn(t,s,r,a)g(‘r,a)dadr (62)
S TJS
b=1+4 esssup [/ |r.1(t,s,r)|d'r
(t,99eTxS | JT
+/ |rm(t,s,a)|da+/ / Irn(t,s,r,o)ldadv'] (63)
S TJS ’

where the function g is defined by (27), and r, »m and r, are the resolvent kernels
corresponding to 1y, m; and n,, respectively.

Proof.. Obviously, it suffices to prove equality (63). Denote by [4] = sup{|Az(t, s)|:
|lz]| < 1} the abstract norm of a linear operator A € £(Lo). Then [A] = [|A]], where
|A] is the modulus of A, i.e. the minimal positive majorant of A (see, e.g., [8 - 11, 24
- 27]). Consequently, we have ||A|} = ||[A] |} = [|[|A]] ||, where all norms are taken in
£(Loo). Now, in (7] is was shown that the operator A given by the right-hand side of
(28) has the modulus

|Alz(t,s) = z(t,s) + /Tlrl(t,s,r)|:c(r,s) dr

(64)
+/S|Tm(t,s,0)|z(t,a)d0+/;/;Ir,.(t,s,r,a)|z(r,a)dadr.

Putting z(¢,s) = 1 in (64), we conclude that b = ||A4]|| is just given by (63) 1

We illustrate the results of this section again by means of Example 1. The constants
a and b given by (5) and (6), respectively, may be calculated precisely as in the space
X = C. The functions ki, k,, and k, given by {59) - (61), respectively, have the form

Fi(r) = sup (N ()] - Jul <7}, () = sup {1 ()] s [ul < 7}, Fa(r) =0,

For the polynomials A and u given by (54) this gives, in particular, ki(r) = 2X, and
km(r) = 2u2.



414 J. Appell, E. De Pascale, A. S. Kalitvin and P. P. Zabrejko
6. The case X = Ly(T' x S) (1 <p < )

The analysis of the preceding two sections becomes more difficult when passing to the
case of the Lebesgue space L, with 1 < p < c0. One reason for this is that the unit
ball in L, contains lots of unbounded functions, and therefore one “cannot get rid of
the functlon h” under the integrals in the right-hand sides of the norms (16) - (18).
But this is not just a technical problem: in fact, imposing a Lipschitz condition like
(4) in L, may lead to a strong degeneracy of the kernel functions involved! For the
integral operator N given by (11), for example, it was shown in [1] that the derivative
N' satisfies a Lipschitz condition in L, only if the corresponding kernel n, satisfies a
Lipschitz condition in u, and in L, for 1 < p < 2 only if n; does not depend on u, i.e.
the kernel n is linear in u.

We shall show now that the situation is even worse for the partial integral operators
L and M given by (9) and (10), respectively: a Lipschitz condition for the derivatives
L' and M' necessarily leads to linear kernels for all values of p!

Theorem 4. The derivatives of the operators L and M given by (9) and (10),
respectively, satisfy a Lipschitz condition in X = L,(T x S) (1 < p < o) if and only
if the corresponding kernel functions | and m are linear in the last argument.

Proof. We prove the assertion for the operator L' or, what is equivalent by Lemma
1, for the operator L; given by (22). Of course, if the kernel I of L is linear in u, the
kernel [; of L, is independent of u, and there is nothing to prove. Suppose that the
operator L, satisfies a Lipschitz condition in Ly, i.e.

P

ll t,s, 7, z1(T, s)) — (t s, Tyx2(T, s) ]h(r s)dr| dtds

(65)
Sk{’(r)llxl —z2|PlRIP (=l 2]l < 1)
where all norms are taken in L,(T'x S). Choosing, in particular, z;(t,s) = u;x p(¢)x£(s)

and h(t,s) = xp(t)xe(s), where D C T and E C S satisfy u; mesD mesE < rP (i = 1,2)
and putting this into (65) yields

1 4
—hL(t dr| did
mesE' L/T /1; [{‘l.(tas)'r)ul) l( 1S, T, u2)] T S (66)
< kP(r) |ur — u2|P(mesD)?(mesE).
Let:ting mesE in (66) tend to zero, we get
P
/ / (h(t,s,7,u1) = hi(t,s,7,uz)] dr| dt =0 (67)
TIJD

for almost all s € E. From (67) it follows in turn that

/ [ll(t,s,r,ul) - Il(t,s,v',uz)] dr =0
D

for almost all (¢,s) € T x E. Since D is an arbitrary measurable set, we conclude that
L(t,s,7,uy) — I1(¢,s,7,u2) = 0 for almost all (t,5,7) € T x S x T, and the assertion
follows i1
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Theorem 4 is, of course, rather disappointing: the Newton-Kantorovich method
applies to equation (1) in L, (1 € p < 00) only if the kernels [ and m are linear in u.
Only for the kernel n we have a larger choice in L,, provided that p > 2. Taking into

account this degeneracy, we close with another example in X = L,.
/

Example 2. Let S=T = [0,1] and p = 2. By what has been observed before, this
choice of p forces us to choose the kernels ! and m linear in u. For example, let

I(t,s,7,u) = A (t)Aa(s)u + Xo(t, s, 7)
m(t, s, o, u) = pi(t)p2(s)u + ;lo(t, s,0)

n(t, s, 7,0,u) =0.

The function g in (27) is here

1 1
g(t,s) = —//\o(t,s,r)dr —/;Ao(t,s,o)da
0 0

and equation (26) for h takes the form

h(t,s) = Mi(8)A2(s)8(s) + pa()pa(s)(t) + g(t,5) (68)

where we have put

é(s) = /h(r,s)dr and P(t) = /h(t,o)do. ‘ (69)
0 0 .

Inserting (68) into (69) we arrive at the system

1 )

85) = [Mra()86) dr + [ i) ar + / o(r,s)d

1

@b do + [ g(t,0)do

] )

o O —— =

1
#(t) = [ M(©ra(0)b(0)do +
0
for the uﬁknown functions ¢ and 3. If we suppose that
1 1 .
a(s)=1- Ag(s)//\l(‘r) dr#0 and B(t)=1- pl(t)/;tg(o)da #0
0 0

and put

v(s) = /19(7,8)'017 and (1) = /ly(t,a)dv,
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we end up at a system of two scalar equations

Mm@ Yy, [,
! ) e ! A

1

- [ [ e, n‘zsz(aa();/)(a)da

0 0 )

for the unknown real numbers
1 1
= //\g(o)d)(a)do and n= /;41(7')1/)(7‘) dr.
0 ) 0

The last system has a unique solution (£,7) € R? if and only if

A1 (T)#x(T) A2(0)u2(o) ‘
!—(T) o/—"‘(") do | # 1‘ (70)

and this solution may be used to find ($, ) and, consequently, the solution k of equation
(26).

In this way, we may find the numbers a and b given by (5) and (6), respectively,
by means of well-known upper estimates for the L,-norm of a linear integral operator.
The Lipschitz constant k(r) in (4) is very easy to compute in this case, since

Lz, s,mu) = A1(t)A2(s) and ma(t,s,o,u) = p1(t)u2(s)

do not depend on u.
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