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Local Solutions .
to Quasilinear Parabolic Equations
without Growth Restrictions

V. Pluschke

Abstract. The paper deals with quasilinear parabolic boundary value problems where the
nonlinear coefficients and right-hand side are defined with respect to the unknown function
u = u(z;t) only in a neighbourhood of the initial function. The quasilinear. parabolic problem
is approximated by linear elliptic problems by means of semidiscretization in time. It'is proved
that the approximations converge uniformly although the data are not continuous functions,
and the limit turns out to be the weak solution of the parabolic problem for sufficiently small
time t. The crucial points of the paper are Loo-estimates to ensure that the approximations
belong to the domain of non-linearities and uniform estimates of the discrete time derivatives
in a Lebesgue space in order to obtain uniform convergence.
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1. Introdilction

In this paper we want to prove existence of a weak solution to the pa.rabohc 1mtla.l
boundary value problem

Dyu + A(t,u)u = f(z,t,u) in Qr S T (11) _

u(z,t)=0 "~ . on I - ' T (1.2)
u(z,0) =Up(z)  inenskipG ©(1.3)
where . N N
i " Ou du
A(t,v)u = - -— (aik(z,t,v)f) + Za,-(:z:,t,v)—
i,kZ=1 Oz Oz; o dz; (14)
Ou o
D.,u.— E

by means of approximation by the Rothe method. Here we denote.by G C RN (N. >.2)
a simply connected, bounded domain with boundary G e C, I={0,T}, Q’I‘ =G x1
and I' = 0G x I.
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We point out that the coefficients of the operator A depend on the unknown function
u. The Rothe method was applied to rather general nonlinear differential equations
especially in the papers of Kacur (see [2 -.5]). In these papers convergence of the
approximations usually is obtained by means of compactness arguments. In the present
case we will estimate the convergence order and error of the Rothe approximations.
In some papers (see, e.g., [3]) the Cauchy sequences of Rothe approximations were
estimated for a monotone operator A. We will do this without assuming monotonicity
of A. Our proof of convergence is based on an a priori estimate of the time derivative
derived by means of some nonlinear Gronwall lemma.

Furthermore, we present L..-estimates for the approximations to the quasilinear
problem (1.1) - (1.4). This allows to omit any growth restriction of the coefficients and
the right-hand side with respect to u. In addition, assumptions like Lipschitz condition
need only be supposed on a bounded set. For the proof of the L, -estimmates we use
the technique of Moser (7] and Alikakos [1], where estimates in Lo.-norms are obtained
by a limit process p — oo. This technique was used by the author to deal with the
Rothe method for semilinear parabolic problems in [9] and problems with degenerating
coefficient in {10].

2. Preliminaries

In the following || - ||, denotes the norm in L,(G) and (-,-) the duality between L,(G)
and Ly(G) (% + %I =1). WI?(G) and W, ?(G) are the usual Sobolev spaces, the last
one being normed by ||ul};,, = | Vu|l,. Fort € I and v € C(G) the operator A(t,v) from
(1.4) generates a bilinear form on Wy '?(G) x W, ’pI(G) denoted by Ay (-, ). Moreover,
we use C(I,V),C%}(I,V) and L,(I,V) for the sets of continuous, Lipschitz continuous,
and Lp-integrable mappings I — V, respectively. By ¢ we denote generic constants
which may be different on different places but are independent of the subdivision and
‘of p if it is variable. Furthemore, by N and Ny we denote the sets of natural numbers
beginning with 1 and 0, respectively, i.e. No = NU {0}.

In order to solve problem (1.1) - (1.4) by semidiscretization in time (Rothe method)
we subdivide the time interval I by points t; = jh (h > 0; 7 = 0,...,n) and replace
(1.1) - (1.3) by the time discretized problem (in weak formulation; j =1,...,n)

(6uj,v) + Aj(u;,v) = (f;,0)  forall ve W (G) (2.1),
u; =0 on 0G (2.2);
u=Up - , (2.3)0
where -
buj = M: fi = f(z,tj,u-1), Ai() = A(t',“'—x)("')'
h J £

Starting from (2.3)0 thus we have to solve a set of liriear elliptic boundary value problems
(2.1);,(2.2); to obtain the approximations u;. By interpolation with respect to time
this yields the Rothe functions

Bl e (te o) (2.4)

ﬂn(za t) =
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’L_I.n(:!,',t) - { uj(x) ifte (tj—l ’ tj] (25)

Uo(z) ift<0.
For given Uy € C(G) and R > 0 we define the set
Ma(Uo) = {(z,t,u) €RY? i z€ G, tel, u-Ua) < R}
and the ball B
Br(Us) = {u €C@): llu~Uoligg, < R}.

We will show that the approximations #™ and #™ and hence the solution u of our
problem belong to Br(Us) for sufficiently small ¢t. Therefore, we suppose the following
local conditions.

Assumptions. For given R > 0 let a;x, a; and f be Carathéodory functions defined
on Mg(Up). Thenif r > N and y; < with ﬁ;<p1,21,_\'—_'2<;42
_and ﬁ,&—_—; < u3, we suppose the following:

(i) Uo € Wy (G) and A(0,U)Us € L(G).

(i) ai(-t,u) : I x Bp(Up) — C(G) and ai(-,t,u) : I x Br(Up) = Loo(G) are
bounded mappings which fulfil the Lipschitz conditions '

llaix(-,t,u) — aix(:, f',u')"”l Sh(lt =]+ lu—ul.)
l|lai(:,t,u) — ai(',i':"')”,,, < L(Jt -t + lu— u'l})

for all ¢t,t' € I and u,u’' € Br(Up) as well as the ellipti;:ity condition

Z aix(z,t,u) E:lx > a &’

ik

A

for all (z,t,u) € Mp(Up) and € € RY, a > 0 being some constant.
(iii) f(,t,u): I x Bp(Ug) — L,(G) is bounded and fulfils the Lipschitz condition
[£Cotw) = FCthu), S bl =1+ llu = u'll)
for all t,t' € I and u,u’ € Br(Up).
Example. We consider the equation

1- L
ug — V(l T u Vu>+b(x,t)(ta.nu),,=We

inG={zeRV: |z < 1} with homogeneous boundary condition (1.2) and initial
function Up = —_EL The coefficient b = b(z, t) will be defined by

b(x,t)={¢( : ) fort >0
{0 fort =0
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where ¢ : R* — R is a Lipschitz function with supp¢ C [0,1]. If @ < 1 and 0 <

B < U2, one can choose N < r < & and ;2% < pp < . Then for R < 1 this
problem fulfils the above Assumptions (i) - (iii) if v and pj are choosen in such way
that £ > r£N22,

Note that the coefficient b = §(z,t) in the example does not fulfil any Lipschitz
condition with respect to ¢ .uniformly in z € G. Moreover, for ¢(s) = max{1 — s,0}
the smallest pointwise Lipschitz constant L = L(z) = lz—llg does not belong to Ln/s(G),

however the second Lipschitz condition in Assumption (ii) is fulfilled for u; = %

For a given function ¢ : Mg(Uy) — R we define the cut function yF by

¥(z,t,u) for (z,t,u) € Mp(Up)

‘¢%anw={ |
Y(z,t,Uo(z) + R sign(u — Up(z)) otherwise.

For the following calculations we replace the coefficients aix and a; in A (see (1.4))
by af and aR, respectively, and the right-hand side f in (1.1) by fR. Obviously,
these functions fulfil Assumptions (ii) and (iii) globally for all v € C(G) instead of
u € Bgr(Ug). In Theorem 3.1 we will prove that the argument u = u;_; belongs to
BRr(Uy) for sufficiently small t € I, therefore we may identify al and af with a;x and
ai, respectively, and f® with f. For simplicity we drop the superscript R from the
beginning. .

Starting from the given Uy in (2.3)o there exist unique solutions u; € W,'"(G) of
the truncated equations (2.1); for all h < kg (5 ='1,2,...,7) (see [11: Corollary 7.4]).
Since r > N this implies u; € CXG) (A=1- %) and ||u;llee = ““1”0(6)'

We list some auxiliary assertions which we need for the estimates.

Lemma 2.1. Let u,v € W'"(G) (r > N) and u',u" € C(G). Moreover, define
w = |u|P~D/2y for p > 2, and suppose Assumption (ii). Then

uP"lu e WeT(G)  with V(ulP~%u) = (p — 1)[ulP~2Vu
0 o=

and it holds:

HuP~2ull, =l and  fwlZ=lulp  (E+i=1)  (26)

and
Ageun(u, 1w %u) > B llwl|Z, — kaflull 2 (2.7)
| A¢ury (v, |u|’_2?f)| < cllollr llwlhz ol £/ (2.8)

|(Acer,ury = Aer w0 [ulP20)| < e (I = 7] + [lu’ = w"|l,)
x |lolly,r llollh 2 [lwl| P27 (2.9)

with p < 7 in (2.9), ky = EB5H8 > const ) - comst g 5 ¢ AN
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Proof. The proof that |u[P~?u belongs to W;'"(G) and that of relations (2.6) and
(2.7) is given in [8: Lemmas 2 and 3]. In order to prove relations (2.8) and (2.9) we
estimate a bilinear form generated by an elliptic operator A with coefficients ‘@;x €
L (G) and &; € Ly,(G), where 1 < A1, A, < +00. By means of

V([ul~?u) = (p = DlulP~? Vu

= (p = Dlul®D/2(ju >~/ Vu)

: 1
Z 9P T [y 22 gy (P22

= glil [w](P=2/P Ty
p

we obtain

A (v, [P~

<emax [ Jaul [99] V(P )l dz + e max [ 1l (V0] ulP ! do
t G . ? G

<cmax | || |Vo||Vw||w|P~D/P dz + ¢ max/ |ai| |Vl |w|*®=D/P dz.
ik G S S N e et ] G = N e e’
Ay Az A3 As B, B B3
First let p > 2. We now apply the Holder inequality with exponerits «; and §; to the
integrals with factors A; and Bj, respectively. Especially we choose
ps
p—2
ps - 2N

2(p——1) with s < m

ap = A, az=r, - az3=2 a4 =
ﬂlv ="\2') ﬂ? =T, ﬂ3 =
Hence AT )
A (v, [ulP?u)| < e max auala IV oll- | Vewllz fwl] 2277
+ max [lailla, [IVolle Joll #7277) (210)
< o max aulla, + max @illag ) ol r ol 2 ]l =27,

In the last estxmate the continuous embeddmg Wy 2(G) € Ly(G) was used. In ordef to

ensure Z, ya; =1and Z:l ]ﬂ'l =1 the Lebesgue exponents /\1 and /\2 in (2.10)
have to fulﬁl the conditions o
prN - ’ o . prN» :
A2 .
Ry E o) Bl ey 1) Fa g PX (2.11)

Since the right-hand sides in (2.11) are bounded from above for all p > 2 and a; =
aik(-,t, v ) € Loo(G), @i = ai(-,t,u') € Loo(G) this yields relatlon (2.8).

To prove relation (2.9) we choose @;x = aix(-,t',u') — a,k( ", u"), @ analogously,
and Ay = g1, A2 = p2. Then (2.11)is fulfilled for 2 < p < r in view of the restrictions
on yu;. Estimation of (2.10) by means of the Lipschitz conditions (ii) yields (2.9).

Finally, if p = 2, then the term Ay disappears.. Hence we set ay.= 0 and have

o) = r2' < p1, az = r and a3 = 2..Obviously, the-assertion lolds, too I
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An essential tool in our investigations is the Nirenberg— Gaglxa.rdo interpolation in-
equality (see [6: pp. 80 — 84]). Let 1 < ¢ < p < s and ‘ < 3+ %. Then for all
u € Wy 'P(G) we have

|
+ [wi=
|-

S =

lulls < erlluliipllully™®  with = <6<1. (2.12)

R

If g=1, then § < 8 < 1. As a corollary of this inequality we get
Lemma 2.2. Let 2 < s < 13—5 and u € W1 2(G) Then for € > 0, a > 0 and
1 < ¢ <2 there holds

lullf® < ellull?, + cellull 28 (2.13)
where we distinguish the following cases:
a)Ifl<a<l, then0<ﬂ§ﬂ—<aandc,~e_‘1’_-_g.
b)Ifa=1,thenf=1and c, ~e~° withd <o < +00.
c)Ifl<a<a,thena<f<f <+ andcefve_;-L—‘;

with
1

o

+

5= @ 5= 2N(s —gq)
' 1+4(1-a)s’ g[2N — (N - 2)s]’

If g = 1, then the choice S = and o = & is ezcluded.

a =

Qi

Proof. We start with (2.12) for p = 2 and obtain for @ # 1 by means of the Young
inequality

8 20_—00
lull 3 < efllull P58 lull 72~ < ellullf, + ce llully =

provided that af < 1. This yields the condition

2N(s - q)
s[2N - (N - 2)q)

a<< a:=

with 6=

D =

from (2.12), which is restrictive only in case c). Moreover, ¢, ~ ¢~*¢/(1=29)  Defining

B =pB(6) = _°o we obtain ‘_’ie = ‘l’"‘ﬁ Since @ may be chosen within the interval

[,1) we investigate the range of 8 on [§,1) using the derivative §'(8) = %{- In

case a) the function 8 = $(9) is monotonically degreasing on (0, 1] with 5(0) = « and
B(1) = 0. Hence, 0 < B < B with # = B(f) and B < . In case c) the functlon
B = B(8) is monotonically increasing on [0, 2) with 3(0) = a and a pole in § =
Hence, 8§ < 8 < +oco with 3 = B(8) and now 8 > a.

It remains to regard the case o = 1. Applying the Young inequality to (2.12) it
follows that 8 =1 and ¢, ~ e7%/(1=9) = ¢=?_ Varying 6 in [§,1) we get & < 0 < oo
with & = 1—35.

Ifs=¢q=2,then § =0. However, the validity of formula (2.13) is obvious in that

. case even for the choice =B =aando=5=01
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. Remark. If we choose 8 = f3, then the exponent ‘l’—:g = m‘l’f—a)a in ¢, tends to &
or a — 1.

For estimation of the discrete time derivative to the discretized quasilinear problem
we need a nonlinear Gronwall inequality (see Willett and Wong [12]) instead of the

well-known linear one, which is used in the linear case. We use the following discrete
version.

Lemma 2.3. Letd; (:=0,1,2,...,n) be non-negative real numbers, Ko > 0 and
c1,¢2,h, B > 0 constants with § # 1. Then the inequality

i—1 i—1
di<Ko+c1y hdj+czy hdf  (i=0,1,...,n)

=0 j=0
implies that

; 1/(1-8)
eidi < [ Koy P +(1-B)c2y he}™? (:=0,1,...,n%)

=1

with e; = (1 + c1h)™'. Here one has to choose n* < n in such way that the condition
(1 - B)ec2 Z;=1 hejl_ﬂ < Kol_[i 1s not violated.

Proof. The assertion of the lemma is a specialization of Theorem 4 in [12] with
u(t+1)=d; (:1=0,...,n),v(i) =cihand w(z) =c2h (2 = 1,...,n).l

Remark. If h < hg < 'clT’ then the sum Z;;L hd; may be replaced by Zj':o hd;
where the assertion holds with l_’;"ho and 1—Cc&.ho instead of Ko and ¢x (k = 1,2),
respectively.

Since th=t;and 1> (14 ch)™" > e~c1'h = e~1% we have the following corollary.

Corollary. Suppose the assumtions of Lemma 2.3 with § > 1. Then

-1/(8-1)
e

d; < (Ko_(p—l) ~ (B = 1)eat; ec‘(ﬂ_l)") b (2.14)

holds for all t; with 0 < t; < ¢* where t* > 0 is determined as the solution of the
equation (f — 1)cat et (B~ = Ko_(p_l).
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3. A priori estimates for the discretized problem

We start with Loo-estimates for the solutions u; of the discretized problem (2.1) - (2.3)
based on L,-estimates followed by a limit process p — +00. For positive constants %!

and v, we define .
. ™ f0<r<1

@) = {
nn(T) T ifr > 1.

The first lemma yields some tool for performing the limit process.

Lemma 3.1. Let {m,}.eNy, {B.}ven and {p,}oen, be sequences of non-negative
real numbers with

0<B, <1, [[B=8>0, p=pr (A>1)

v=1

satisfying the recurrence
l/p,
m, < (c1 prT(mp + mf:‘,’")) (v € N)
for 0 £ 7 < T where ¢; and c, are some positive constants. Then

Moo = hm supm, < CQ‘n.‘Y:(T) moﬂ

where
- 5 B, ifm,<1. 1
B=1]8, wih B, = , = —, = .
,1;[1 U fme1 PTGy M

Proof. Applying the definition of ﬂ~,,4we estimate
‘ »m" < (apir)' P -mfr,

v . . )
< H(Cl pf!,r)ﬂy-.'ﬂi-f-l/p; . mf“"'ﬂl

(3.1)

=1

Ve ) . - - - -
S H(Cl pic.z)l/p‘.' . T(z_.=l ﬁu"'ﬂ-‘+1/Pi) . moﬂv'“ﬂl )
=1

The first product converges since

l'ulpsz/P-' — li[p(;:z/(x’oz\")/\ c2i/(por’) _ p(EC’/” E::l 1/’\‘) /\(Cz/Po Z:':l i/A‘)
=1 - =1 . - . .

is bounded. The exponent of 7 may be estimated by -

A
<
8

=:172.

Finally, H:ix Bj =B>0is convergent because of §; < Bj < 1. Passing to the limit
v — +oo in (3.1) this yields the assertion il
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For doing estimations in the next lemma remember that a;, a; and f at the moment
mean the truncated functions which fulfil Assumptions (ii) and (iii) globally.

Lemma 3.2. Let k € {0,1,...,n} be fized and suppose ||uk|li,r < C independent
of the subdivision for this solution uy of problem (2.1)i,(2.2)k. Then there are numbers
A1 > 0 and Ay > 0 such that the estimate

s = urlloz) < cQ@uaalty —tx)  for all t; € [t4,T)

holds.
Proof. We define z; = u; — uj for k < j < n. Then z; € W' (G) fulfils

(62j,v) + Aj(zj,v) = (f;,v) — Aj(ux,v) forall ve Wol'.'.'(G)

for j = k+1,...,n with zx = 0. We insert the test function v = |z;|P~2z; for p > r,
use the abbreviation w; = |2;|(?~?/2z; and obtain by means of Lemma 2.1

25012 = lzj-1llp 2511~ + kahlfewslf?

< kahllzl2 + RIS lzill 2=y + B4 (ur, 1217 2;5)

which yields with the Young inequality applied to the second term, with k1 yho = O( )
2512 = llw; |12 and [1£,]l- < ¢ the estimate

llw;lZ = fw; - lIZ + ch llw;1 2, , -
(3.2)

2(p-1 -

< chllwjli? + cphllw;ll 200+ ph| A, (ux, 2577 225)).

We estimate the last term on the right-hand side of (3.2). Application of the Young
inequality to formula (2.8) of Lemma 2.1 yields because of the assumption |Jukl|;,»'< C

- C -
|4 (ur, 125177 %25) | < ellwjll 2, + - [[w, || 2P=D77. (3.3)

Let now L o p2 co .54
ﬂ(p)A_.ﬂ_1+(l—a)6_p+26 : (3.4)

be the exponent 8 corresponding to a = ?;—2 defined in Lemma 2.2. Applying case a)

of this lemma with € = é to the last term of (3.3) we obtain
|45 (s |57 5)] < el + e llwillg?® (e ~ €7°)
with 1 < ¢ € 2. Observe that

a-f "p(20 +1) -2
o=o0(p)=2 T +1 2 <
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remains bounded as p — 4o0.

Since the first term on the right-hand side of (3.2) can be estimated in the same
way by Lemma 2.2/b) and the second one w1th the help of the continouos embedding
Wo2(G) C Layj(r—2)(G) by

q12(p=1)/p 1 2(p—1)/p -2
lwsllzmptyye S ¢ lwsllzeroiay < cllwilly,z ;27202

leading to the same term as in (2.8), we may continue to estimate (3.2) by
lw;lly = lwi-1lld < chllw;ily +chp™*+ [jw;|| 2%

where ¢ = % with small § > 0 was fixed. Summing up these inequalities for k+1 < j < 1
and rewriting into terms of z; = u; — ux (k < 7 < n) we obtain

Iz < chp® 3o (lzillZ, s + Iz 250

j=k+1 (3.5)
< o (= t0) ( max el + max I 1250),
hence
gax lzilp < ept (b= 0) (max =512y + mas 12 1252)
for every p > r. In order to estimate the limit limp_. || 25|, = ||2)]|c0 We fix ¢ € (1,2)

and choose the special sequence p, = r(%)" (v € Ng). Defining

my = krga‘é 15, and B, = B(p.)

we get the recurrence

1/Pv
m, < (epf (b - tn) (mfzy +mPE)) (v € N).
In order to apply Lemma 3.1 we state by means of((3.4) that
o0 o0 -
2(0 +1
[I6=T] (- 2212
i=1 i=1 pi +20
is convergent since
2(0 + l)
<200 +1 —
converges. Hence, by Lemma 3.1,

Moo < ¢Quymlti —ti)me  with 0<B<B<1. (3.6)
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It remains to estimate my = maxk<j<i ||2j|-. To do this we start from (3.5) withp=r
and ¢ = 2, and obtain due to a®? < 1+a

lzill7 < ch(G—k)+ch Yzl

j=k+1

The discrete linear Gronwall lemma (Lemma 2.3 with ¢; = 0) yields for A < kg
liz;lly < ch(j—k)ehU=0 = c(t; — tx)eli=t)
hence mgy < c(t; — t§)'/" e<(*i—%)_ Finally, inserting this into (3.6) we get

max ||zjlloe < € Quy, pa(ti = te) (ti = ta)P/7 el
k<j<i .

Since B depends on the subdivision we repla.ce it by g if (t; — t&) < 1, a.nd by 1 else.
This completes the proof with A} = 7, + WLq and Ay =72+ % = 7—5 [ |

A simple conclusion of Lemma 3.2 is the local boundedness of the approximations.

Theorem 3.1. Suppose Assumptions (i) — (iii) with some R > 0. Then there is o
ttme T with 0 < T < T, independent of the subdivision such that the solutions u; of
problems (2.1);,(2.2); belong to Br(Up) for all t; € I =[0,T).

Proof. We choose k£ = 0'in Lemma 3.2 and obtain due to ||Up|ly,» = C
llu; = Uollo@y < € Qaailts)-
Since Qa,,2,(0) = 0 there is a { > 0 such that cQa, ,(t) < R for all ¢ < {. Then
_T min{{, T} @

The assertion of Theorem 3.1 means that the solutions u; € W1 "(G) of the trun-
cated problem are solutions of the non-truncated original equations (2.1); for all t; < T.

From now we only regard this interval [ = [0, T).
Theorem 3.1 especially implies

lujllo € €1 and  ||fillr <c¢  forall tj €l (3.7)
Since uj € Wol"(G) fulfils the elliptic equation Aju; = F; with Fj = f; — éu; we can

.use an a priori estimate for weak solutions of elliptic Dirichlet problems (see Simader
[11: Theorem 6.3]) and obtain by means of (3.7)

luillne < allFll +eallujlle < e (14 N16usli,)  forall ¢ € 1. (38)

This inequality is applied in the next lemma that yields boundedness of the discrete
time derivative.
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Lemma 3.3. Suppose Assumptions (i) — (iii). Then for h < hg there is a time
interval [0,T*] C [0,T] such that the estimate - o ' ‘

lujllr <-C2 forall t; € [0,T"] (3.9)

holds independently of the subdivision.

Proof. We take the difference (2.1); — (2.1);—1 (j = 2,---,7) and testing it with
v = |6u;|""28u; we get :

(8uj = bujoa, 1u;|"76u;) + h A, (8u;, |6u;|""*6u;)
= —(A - Aj_ 1)(u, 1, |6uj|™ 26u,) +{fi —fi-1, |6uj|'_26uj )

This relation may be estlmated by means of Lemma 2.1 and Assumption (iii), where
|6u |("=D/26u;. Hence

ll6u;ll; — lléwu;- 1|| 16211771 + klh”wllll 2
S kah 16037 + eh (14 1851 1) Byl ol o oy 1207
A (1 18 11) Mol
From (3.8) and the Holder inequ:i.lity there follows
ll6u;ll- _'Iléuj—lllrr + kyhr ;i 2

< ch (146w, + 6wl

pa(r=-1
(1 18um101) (1 4+ B8u5a0) oz ooy 17277 ).
" ;

+ 18-l
o (3.10)

We estimate the last line (*) of (3.10) separately and get
() < (VU N8uj-alie) Hwslln 2 llosfl 77577
+ (16w j-lly Hloslla 2 leosl] 27

+ ||6u,»_1uu o1 l- uw,»nl 2 s (r=2/r,

Further, applying the Young inequality with exponents p1 =7,p2=2and

p =.
the first two items and with exponents py > 7, p2 >r,p; =2andps = 25 (T L = 1)
to the last one we get

() SellwjliZ,

e (Ll 12+ 6o + NousoallS + Wous—allZ" + 6u;-11127).
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Now if we rewrite |6u;| = |w;|?/", then
8wl = Nlwsmallzifer N6uilG (rmry = NwjllFuscrmryen  N6u11T = Jl; |12

where 27" = s; and —“"u = s, are less than NN because of the conditions on v and
p3, respectively. Thus we obtain from (3.10) for small fixed £ > 0

lojllz = lleoj-1lZ +  flw;ll

2
< ch (14 gl + Tosl? + logallZ + a2 + fag—a 12727,

Depending on s < 22 we fix now a; = B2 such that the conditions of Lemma 2.2/c)
are fulfilled with ¢ = 2 Then a; = B2 > 1 is also fixed. Application of this lemma with

q = 2 to the items ||w;]| 2, |lwj-1]2 and Jlwi—1lls 227 yields

lwjllz = llws-1llF + ch llw;lI

2
S ek (loslla + lloy=ahZ2) + ceh (14 ol + oyl + o 17%)

with 8 = max{f;,a;} > 1. Summing up these inequalities for j = 2,...,t we obtain
for sufficiently small ¢

t
lwill2 + ch Y llw;ll?,
j=2

‘ - (3.11)
3 1—
<lwrlly +e | i+ hllonll?z + D hllwsll? + D kllwsliz?

=1 =1
fori=2,...,7

In order to apply Lemma 2.3 it remains to estimate [|w1 (|7 + & [|w1 || ?,. To do this
we insert v = |6u;|" 26w, into relation (2.1), getting

I6usll] + h Ay (Sus, [6ur|™"26u;) = (fi, [6us]"26uy) — Ay (o, [6us|""26u,)
and obtain by means of (2.7), Assumptions (i) and (ii), and (2.9)
6urll] + krh flon || 2,
< |lfo = A0, Uo)Voll- 16us 7™ + 11 = follus 6wl o)
+ chliguslly + | (Aco.uey = A1) (Us, [l 26ws)|
< % Ifo = 40, U0)Us ]| + (1 - -) 6url;

eh (14 lbusll ooy + luollr ol z a7,
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From this in the same way as above using the Young inequality and Lemma 2.2/b) the
boundedness

< Ifo = AQaliz +ch _

2 2
w +ch|lw
Hewn [I2 il 1”1,2_ 1= che <

K (3.12)

for all h < hg follows. Therefore, (3.11) provides
i i-1
flwill? < lfo — AQ)Uoll] +cti+ Y hllwjll + ¢ hflw;li?
=1 i=1 '

for i = 1,...,7 and h < hy. Hence, Lemma 2.3 applied to this nonlinear Gronwall
inequality with d; = |Jw;||Z yields (cf. also remark and corollary added to this lemma)

llwilly = ll6will] < M(t:)

where M(t;) is defined as the right-hand side of (2.14). Since 8 > 1 the bound M(¢)
has a singularity at ¢ = ¢*, therefore assertion (3.9) follows for every fixed interval
[0,T*] c [0,t*)n [0, T] N

By the above lemma the time interval I may be reduced once more. For simpliéity,
however, we write I = [0,T] N {0,T*] again.

Concluding this section we present two estimates (3.13) and (3.14) which are an
immediate consequence of Lemma 3.3. First applying Lemma 2.2 tow; = |6u;|("~?/26u;
we get

18wl = llw;ll < ellwjllyz + celldusll;

and obtain from this estimate by means of (3.11), (3.12) and (3.9)

rN
N-2

Z h||6u;|l, < ¢ with v < (3.13)
j=1

Finally, in view of the a priori estimate (3.8) Lemma 3.3 yields the boundedness
lujlir<Cs  forall t;el (3.14)

of space-like derivatives.
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4. Convergence and existence result

In this section we deal with approximations of the solution u of problem (1.1) - (1.3)
defined on the cylinder Q? Therefore we interpolate the solutions u; of the discretized
problem (2.1) - (2 3) with respect to t in the way given by (2.4) and (2.5), respectively,
and obtain the piecewise linear and piecewise constant functions @"(z,t) and @"(z, ),
respectively. These interpolations turn out to be approximations of the weak solution
u of the problem (1.1) - (1.3). Moreover, using the notation

Thu(z,t) = u(z,t — h)

we write ~ “ _
= f(',t-",Thl—l.") and A"(', ) = A(in'r’.‘—‘n)(" )

with " = ¢ if tj_y <t < t}. Now piecewise constant interpolation of (2.1); over I
yields

/(D,u dt+/1_/i"(a", v)dt =/I_(f'", v) dt (4.1)"

for all v € Ly (I, W, ! (G)). The results of Section 3 may be rewritten in the following
form: A

u"(,t), a"(-,t) € Br(lo) (4.2)
I1Dei™(, ¢)ll- < C2 and [|a"(-,t) — @™(-,t)|l, < Cahan (4.3)
/[_ [a"(,8) — maa™( &))" dt < ch? | (4.4)
13, )l < s and 47, 8)lnr < Cs (45)

for all t € I. Next we prove convergence of the Rothe approximations.

Lemma 4.1. The interpolations 4" of the solutions u; of the discretized problem
(2.1) - (2.3) converge in C(I,L.(G)) to a limit function u and the error estimate

”ﬁ" - u"C(i,L.-(G)) < C4h;/2 (46)

holds with some positive constant C,.

Proof. We follow the proof of Lemma 6 in (8], therefore we only give an outline
of the corresponding estimates. We want to show that {ii"} is a Cauchy sequence in
C(f, L.(G)). Therefore we estimate the difference 4™" = 4™ — @". Analogously, we
define ™" = 4™ — @" and @™ " = |g™"|("=2/2gm.n,

First of all we state that
Difla™ (-, 8)[I] = r (D™, [a™" |7 2am™")
<r(Dame, e tamy seflamnGol . )
+c(hm + ha)" + c(hm + ha)7?
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because of the inequality

[EE——

'

< = (lame + ) lamn - e,

. : ro2
< (r=1) (2™ + Calhm + h,,)) Ca(hm + hn),

the Young inequality and the second inequality (4.3). Now we take the difference of
the relations (4.1)™ and (4.1)" for two different subdivisions into m and n subintervals,
respectively, and insert the test function

(1) |amm|r=2g™n f0 <t <t
v =
0 ift> to

into this difference (4.1)™ — (4.1)". The resulting equation is used to replace the first
term on the right of (4.7) after an integration of (4.7) over t € [0,¢y]. Then we obtain

. to
”ﬁ"""(,to)”: + T/A" (ﬁm,ﬂ, Iﬁm,nlr—Qﬁm,n)dt
0

to

Sr/(A —A'")( @™ e ")dt

1]

/ 177 = Pl Iy
e / [@™™ 7 dt + c(hm + ha)™/>.
0

In view of (2.9) and the Bour_;ded’ngss'.(4.5) we ha.‘ve'

\(An _ Am)(l—‘m’ |ﬁm,n|r—2ﬁm,n)

< ((hm + ) + 708" = Tl ) 1F™ 1 5™l 2 ™27

< e @™ 12y +c((hm + ha) + I7n, 8" = 7hn @™ + 6™ 2).

Now regarding the estimates (2.7), Assumption (iii), inequality (4.4) and the Young
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inequality we continue the above estimation by

o
l&™"(, to)llS +rk1/”‘:’m’n(‘,t)||12,2 dt
0

to
<e / o™ (-, )12, dt
0

to

: / (H™™17 + ™™ 112 ) dt + ¢ (hm + B )72,

"]

Since s = ma.x{ 2r— l)" } < -3 we can apply Lemma 2.2/b) with ¢ = 2 and then
(4.3). Hence, for sma.ll € > 0 there follows

0
1Z™"C o)l < e(hm +ha)/? + C/ l&™"C, Il dt
0

which yields by means of the usual Gronwall lemma
Na™(,t) = @57 < c(hm +ha)/2e  forall tel (4.8)

This implies that {@"} is a Cauchy sequence in the Banach space C (I, L,(G)) which
converges to u. Passing to the limit m — 400 in (4.8) this yields the error estimate

(4.6) 8

Actually, the approximations have stronger convergence than in C(I L.(G)). We
may derive convergence even in Holder spaces.

Lemma 4.2. Let 4™ be the interpolations introduced at the beginning of this section.
Then there is an a ER with0 < a <1 — g such that

~N

" —u in C“(—Q-,}:) for n > +oo0. . | (4.9)
Moreover, for every \ER with0 < A <1 — % it holds

" —u in C(I, C)‘(G)) for n— oo _ ;- _ (410)
with convergence order O(h(1 N/' '\)/2)

Proof. a) We start with the proof of (4.10). Therefore we apply the Nlrenberg—
Gagliardo interpolation inequality .

Ivllera@y < cllbllf ol for ve W5 (6)  (A+ 2 <o<)
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to the difference v = @™ — 4". Because of the boundedness (4.5) and estimate (4.8) we
get

sup”ﬁ"‘(',t) _ f‘n("t)"c*(a) < c(hm + hn)(l‘N/"")/"’,
el
This yields property (4.10). Then the sequence {@"} is also bounded in C(I,C*(G)):

SUP"{""(’)t)"cA(E) < ¢, (4.11)
tel .

which will be used in the next step.

b) The assertion of Lemma 3.2 implies
”ﬁn('vtj) - ﬁn("tk)”c.(ﬁ) < a |tj - tkl)‘l
if t; and t; are subdivision points. Then

< 3N e - M (4.12)

”v’-‘"(" t') - ’:‘_n(’*t")”c@)

for arbitrary points ¢, " € I and arbitrary natural n. In fact, let first ¢ and " belong
to the same subinterval [t;_;,t;]. Then

’ it 1) = (-t
a"(',t’)—ﬁ"(',t"?z(t"—t')u Gty 1,)% e, ’),
hence

; N o
”u"(',l') - un("tu)llc(ﬁ) < —l h I Clh:“ < alt’ - t'|’\‘
. - n

because of |t —t'| < h,. If now tx_; < t' < tx < tj_; <t < tj, then formula (4.12)
follows from the triangle axiom :

() = @Gt o
<lant,t) - @Gl e

+ "ﬁ"("t") - ﬂn("tif—l)HC(E) + “ﬂ"("ti—l) - ﬁn('1t“)||0(6)'

Thus in view of (4.11) and (4.12) the approximations are Holder continuous with respect
to the space variable z for fixed ¢t € I, and with respect to the time variable ¢ for fixed
z € G, with uniformly bounded Hélder constants. Then also ||ﬁ"||col(5r) < ¢ for all
n with @; = min{\,;,A}. By the compact embedding C"‘(Grf) C C"(@;) for a < a
there is a subsequence {@"*} that converges in C*(Q3z). Since this means in particular
uniform convergence on Q7 the limit of each convergent subsequence coincides with
the limit function u from (4.10) and (4.6), hence the whole sequence {#"} converges to

u e C*(Qz) N :
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Note that Lemma 3.2 also implies
[@°C,t) = @G Bl ey < Hlus = vimilley < chat
: Rt W Blle@ = 1%~ Himtlle@ = “"n s
hence besides
Th, 0" — u uniformly for all (z,t) € G,}: (4.13)
holds, too.

The limit function u of the Rothe approximations ™ turns-out to be a weak solution
of the initial boundary value problem (1.1) - (1.3). We summarize the results in the
following statement.

Theorem 4.1. Suppose Assumptions (i) - (iii). Then there is an interval [ = [O,f]
and a number a > 0 such that problem (1.1) — (1.3) has a unique weak solution u €

Loo(1,Wy'"(G)) N C*(Q5), with Dyu € Loo(I, L,(G)) fulfilling the relation

/i(D,u, v)dt + /;A(,,u)(u, v)dt = /i(f, v) dt (4.14)

forallv e L, (f, Wol’r,(G)). The Rothe approzimations u™ and 4" have the convergence
properties

" —u  in CYQz)NC(I,C}G)) (4.15)
" —u  in Lo(I,CXG)) (A<1-%) . (4.16)
i —u in Le(L,WMP(G) (p<r) (4.17)
" a" =y in Leo(I,Wy"(G)) (4.18)
D™ = D in Loo(I,L(G)) © - (419)

as n tends to infinity.

Proof. a) We start with the proof of the convergence properties. Formula (4.15)
is the assertion of Lemma 4.2. Because of (4.3) and (4.6), for the approximations "
being non-continuous and piecewise constant with respect to t, an estimate as (4.6),

sup [|a"(-t) —u(-,t)||, < chl/?
tef

holds. By the same computations as in the proof of (4.10) that yields (4.16).

In order to prove (4.17) we take the difference of the relations (4.1)™ — (4.1)"
(without integration over t) applied to the test function v = @™ — 4", which gives

(Dy(a™ —a™), a™ — ") + A" (a™ - a", 2" - ")

= (fm = am - @) + (A" - Am)E", @ - "),
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and estimate it applying (2.7) and (2.9) with p = 2. and then (4.3), (3.7) and (4.5) as
well as the Young inequality. This leads to

k™ -alZ,
< kalla™ - ")) ,
+ (D™l + D™l + 1 F™ e + 177 ) a™ = &7

¢ ((hm + ba) + 170, @™ = 7, @ ) 2"+ 2™ = "]l

< ela™ - a2,

—m -n -m —_n|j2 \
+.C(||u -l + (Am + ha)? + | Thp@™ = @ I'C(E))
for all t € I. Then the uniform convergences (4.16) and (4.13) yield

sup ”12""(-,t) - 12"(~,t)||l , —0 as m,n — +00.
tel ' '

Assertion (4.17) for the sequence {é"} then follows from the interpolation inequality -

ol < cllwll vz (2<p<m

REC-

v 152)

i

between Lebesgue spaces applied to v = V(2™ — @") using the boundedness (4.5). In
order to prove (4.17) for the sequence {i"} piecewise linear interpolation of the relations
(2.1); instead of (4.1)" has to be used to obtain its convergence in Lo ( I,Wy2(G)).
Then interpolation as above yields the assertion. We omit detailed calcula.tlons

Property (4.18) follows from (4.5) because of the weak® compactness of bounded
sequences in Lw(f ,X). This yields weak® convergence for a subsequence, however since
the limit must be the same function u for every weak® convergent subsequence the
whole sequence converges. By the same argument, the first estimate in (4.3) implies the
convergence (4.19).

b) A limit process n — 400 in relation (4.1)" by means of the convergence proper-
ties (4.19), (4.18) and (4.13) and the Lipschitz conditions in Assumptions (ii) and (iii)
immediately yields relation (4.14), i.e. the limit function u is a weak solution of the
differential equation (1.1). The solution fulfils the boundary condition (1.2) since it be-
" longs to Lo (f Wy r(G)) and it fulfils the initial condition (1.3) due to the construction
of the approximations 4" and their uniform convergence.

Uniqueness is proved in a similar way as convergence in' Lemma 4.1. Let u* and

u** be two weak solutions of (1.1) - (1.3), take the difference of the correspondmg two
relations (4.14) and insert the test function

(-, t) = { Iu‘(.it). —utt ()2 (wr (L t) —ut (1) i 0<t <t

otherwise
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into the resulting relation. Using the abbreviation u = u* — u** we obtain

to to
/(u, |u|"2u>dt+ /A("u.)(u, |u|"2u) dt
0 0
to
= [ {(FCtu) = fCtum), fulm2u) dt
0
¢

0
+ / (A(t,u") - A(,lu-))(u", |u|'_2u) dt.

0

We denote w = |u|("=?)/2y and estimate the above equation with the aid of (2.7) and
(2.9), and with Assumptions (ii) and (iii). This leads to

to
et + ke [ Tl d
0
to to
< kyr / lull7 dt + lor / lull Jull 7" de
0 0

to
+C/|IuliuIIU"IIx,r llwlly,z [l 7277 dt
0

to

to
<e / lwll 2, dt + ¢ / (Hally + ewllZ, - + ol 2) s
]

0

to to
<% / lwll2, dt +ec. / (DI dt.
0 0

In this estimation Lemma 2.2 with a =1 and ¢ = 2 was used. For small ¢ > 0 the
Gronwall lemma yields {|u(-,t)||- = 0 for all ¢ € I, which means u* = u**, i.e. uniqueness
of the solution of our problem in the sense of (4.14) il
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