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Local Solutions 
to Quasilinear Parabolic Equations

without Growth Restrictions 
V. Pluschke 

Abstract. The paper deals with quasilinear parabolic boundary value problems where the 
nonlinear coefficients and right-hand side are defined with respect to the unknown function 
u = u(x; t) only in a neighbourhood of the initial function. The quasilinear parabolic problem 
is approximated by linear elliptic problems by means of semidiscretization in time. Itis proved 
that the approximations converge uniformly although the data are not continuous functions, 
and the limit turns out to be the weak solution of the parabolic problem for sufficiently small 
time t. The crucial points of the paper are L,0 -estimates to ensure that the approximations 
belong to the domain of non-linearities and uniform estimates of the discrete time derivatives 
in a Lebesgue space in order to obtain uniform convergence. 
Keywords: Semidiscretization in time, quasilinear parabolic equations, local solutions, L,,,-

estimates 
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1. Introduction 
In this paper we want to prove existence of a weak solution to the 'parabolic i nitia1 

	

boundary value problem	 .	 .	.	. . 

Du+'A(t,u)u f(x,t,u)	in QT  

u(x,t) = 0	 on r	 (1.2) 
u(x,0) = (.I0 (x)	inenskip G	 (1.3) 

where
N	 au	N	 au 

	

A(t,v)u
=	

- (aik(xtv-_) + >aj(x,t,v)-

au 
D tu=--- 

by means of approximation by the Rothe method. Here we denote. by Cc RN (N >2) 
a simply connected, bounded domain with boundary ÔG E C', I = 10, T, QT = C x .1 
and r=3GxI. 
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We point out that the coefficients of the operator A depend on the unknown function 
u. The Rothe method was applied to rather general nonlinear differential equations 
especially in the papers of Kaëur (see [2 - .5]). In these papers convergence of the 
approximations usually is obtained by means of compactness arguments. In the present 
case we will estimate the convergence order and error of the Rothe approximations. 
In some papers (see, e.g., [3]) the Cauchy sequences of Rothe approximations were 
estimated for a monotone operator A. We will do this without assuming monotonicity 
of A. Our proof of convergence is based on an a priori estimate of the time derivative 
derived by means of some nonlinear Gronwall lemma. 

Furthermore, we present L,,.-estimates for the approximations to the quasilinear 
problem (1.1) - (1.4). This allows to omit any growth restriction of the coefficients and 
the right-hand side with respect to u. In addition, assumptions like Lipschitz condition 
need only be supposed on a bounded set. For the proof of the L,,,,-estimates we use 
the technique of Moser [7] and Alikakos [1], where estimates in L-norms are obtained 
by a limit process p - . This technique was used by the author to deal with the 
Rothe method for semilinear parabolic problems in [9] and problems with degenerating 
coefficient in [10]. 

2. Preliminaries 

In the following II li p denotes the norm in L(G) and (.,) the duality between L(G) 
and L(G) ( + = 1). W"P (G) and W"(G) are the usual Sobolev spaces, the last 
one being normed by Iluji l,p = JIVull p . Fort E land v E C() the operator A(t,v) from 
(1.4) generates a bilinear form on W''(G) x W0 '' (G) denoted by A(j,)( . ,). Moreover, 
we use C(I, V), C°"(I, V) and L(I, V) for the sets of continuous, Lipschitz continuous, 
and L-integrable mappings I - V, respectively. By c we denote generic constants 
which may be different on different places but are independent of the subdivision and 
of p if it is variable. Furthemore, by N and No we denote the sets of natural numbers 
beginning with 1 and 0, respectively, i.e. No = N U {0}. 

In order to solve problem (1.1) - (1.4) by semidiscretization in time (Rothe method) 
we subdivide the time interval I by points i3 = jh (h > 0; j = 0,.. . , n) and replace 
(1.1) -(1.3) by the time discretized problem (in weak formulation; j = 1,... ,n) 

(öu,,v) + A,(u,v) = (f3 , v)	for all v E W( (G)	 (2. 1)j 
u = 0	on aG	 (2.2), 

= U0	 S	 (2.3) 

where

StLj -
	- 

-	h	f = f(x, t,	A(.,.) = A(j,	)(). 

Starting from (2.3) 0 thus we have to solve a set of linear elliptic boundary value problems 
(2.1),,(2.2), to obtain the approximations u 3 . By interpolation with respect to time 
this yields the Rothe functions 

t i - i	 ttj-I ü ' (x,t) = ---uj_ i (x) +	
h	

u(x)	(t € [i 1 ,tJ)	(2.4)
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and

	

(u(r)	iftE(t'_i,tl 
=

	

	 '	
'	 (2.5) 

1((Jo(x) ift<O. 

For given U0 E C() and R> 0 we define the set 

MR(UO ) = { (x,t,u) E R' 2 : x E G, t E I, I  - Uo(x)I R} 

and the ball
BR(UO) = {u E C(): I ju - UoIIc() R}. 

We will show that the approximations i' and ü' and hence the solution u of our 
problem belong to 13R(Uo) for sufficiently small t. Therefore, we suppose the following 
local conditions. 

Assumptions. For given R > 0 let a,,, a, and I be Carathéodory functions defined 
onMR(Uo). Then ifr>N and z<v< rN (i=1,2,3)with<p1,t-<2 
and 2r+N-2 </23, we suppose the following: 

(i) U0 e W0" (G) and A(0,U0 )Uo E Lr(G). 

(ii) a1k( • , t , u ) : I x 13(Uo) - C() and a1 ( . ,t,u) : I x BR( UO) -* L(G) are 
bounded mappings which fulfil the Lipschitz conditions 

alk( . , t, u) - a k( • , t', u' )M	:5 11 (I t - t' + lu - u'II) 
t, u) - a(., i',	 ) IIA2 	12 (I t - t + lu - u)Il) 

for all t, t' E I and u, u' E 8R(Uo) as well as the ellipticity condition 

>aik(x,t,u)eiek 

for all (x, t, u) E M R( Uo) and E R N , a > 0 being some constant. 

(iii) f( . , t, u): I X 13R(Uo)	Lr(G) is bounded and fulfils the Lipschitz condition 

11 f( . , t, u) - f( . , t U I 

)IIIA3 :5 13 (I t - t'I + II u - u)II) 

for all t, t' E land u, u' E 13R(Uo). 

Example. We consider the equation 

	

(1—	\	 1 
Uj _V1 u2 

Vu) +b(x,t) (tan u), =eu 

in C = {x E R N : IxI <1} with homogeneous boundary condition (1.2) and initial 
function Uo =	The coefficient b = b(x,t) will be defined by 

IA(I!t.\ for t>0 b(x t) =	/ 
lo	for t=0
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where	.- R is a Lipschitz function with supp 0 C [0, 1]. If a < 1 and 0 < $< 2() , one can choose N <r <	and	</12< •. Then for 	this
problem fulfils the above Assumptions (i) - (iii) if ii and /23 are choosen in such way 
that -E-	

r-f-N-2 

Note that the coefficient b = b(x,t) in the example does not fulfil any Lipschitz 
condition with respect to tuniformly in x E G. Moreover, for (s) = max 11 — s,0} 
the smallest pointwise Lipschitz constant L = L(x) =- 1 does not belong to LN/(G), 
however the second Lipschitz condition in Assumption (ii) is fulfilled for /12 = 

For a given function i MR(U0) — R we define the cut function OR by 

Ii(x,t,u)	 for (x,t,u) E .A4n(Uo) 

(x,t,u)= l(x,t,Uo(x)+R sign(u — Uo(x)) otherwise. 

For the following calculations we replace the coefficients aik and a 1 in A (see (1.4)) 
by aR and a, respectively, and the right-hand side f in (1.1) by jR Obviously,ik

 these functions fulfil Assumptions (ii) and (iii) globally for all u E C() instead of 
U E BR(Uo) . In Theorem 3.1 we will prove that the argument u = u 3 _ 1 belongs to 
8R(Uo) for sufficiently small t E I, therefore we may identify a R and a with a and 
a 1 , respectively, and 1R with f . For simplicity we drop the superscript R from the 
beginning. 

Starting from the given U0 in (2.3) there exist unique solutions u3 E WT(G) of 
the truncated equations (2.1) for all h < h 0 (j = 1,2,... ,ñ) (sec [11: Corollary 7.4]). 
Since r> N this implies uj e CA() (A = 1 —) and II u ,II = IIUjIIc(). 

We list some auxiliary assertions which we need for the estimates. 

Lemma 2.1. Let u,v E W(G) (r > N) and u',u" e C(). Moreover, define 
W = Jul (12) / 2 u for p? 2, and suppose Assumption (ii). Then 

	

u I 2u E Wr(G)	with V(I u I" 2u ) = (p — 1)Iu!2Vu 

and it holds: 

II	= IIuII ;_ 1	and	lkL'112 = 11 u 11	( +	= 1)	(2.6)

and

	

A(j,')(u, u[' 2 u) 2 k iI w II2 - k2IIuII P	 (2.7) p 

	

A( t )(v, IuI12 u)	c II v IIi,r IHII1,2 IIwII 7_2) h1	(2.8) 

	

(A(',) — A(t",'))(v, I u I 2u )	c (I t ' - t" + M I	II u — u II) 

	

X lk'lIi,r 11141,2lw"s 
(p-2)/p	(2.9) 

	

-	 U 

_ with  < r in (2.9), Ic1 - (2,2k>	k2	and s < 2N 
- p2___ - p
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Proof. The proof that u I 2u belongs to W0iT(G) and that of relations (2.6) and 
(2.7) is given in [8: Lemmas 2 and 3]. In order to prove relations (2.8) and (2.9) we 
estimate a bilinear form generated by an elliptic operator A with coefficients ã1 k E 
L.\ , (G) and ii i C LA 2 (G), where 1 < A,, A2 < +00. By means of 

V( I u I" 2u ) = (p– 1)IuI"2Vu 

= (p - 1)IuI	22 (IuI_ 2) /2 Vu) 

=	ui	2)/2 V(IuI'2'2u) 
P 

= 2— wl 2V Vw 
P 

we obtain 
IA(v, uI(_2)u) 

<c max IakI VV	 + c	f	Vv IuI' dx 

<C max	IãkI IVI IVwI wl 2IP dx + c max J ad IVvI w1 2(1)1 dx. 
k c 	G __ "-- '-------

A, A3 A 3	A4	 B, B 2	Ba 
First let p> 2. We now apply the Holder inequality with exponents a, and fli to the 
integrals with factors Ai and B; , respectively. Especially we choose 

ai = .X,	a2 = r,	a3 = 2,	a4 = PS 

,31	A27	32 = T	/93	
Ps =	with s < 

2N 
2(p–l)	 N-2 

Hence 
A(v, IuI 2 u)	c(n	II aikIk,II Vv IIr II Vw IIz IIwIIT 

+ Max II a iItA2 IIVvII.IIwII 
(2p-2)/p\ 
$	)	 (2.10) 

< c(max IäikIIA, + Max Ii(2 IIiA) II v IIi,r IIwI112 IIwIIP_2)/P - 

In the last estimate the continuous embedding W'2 (G) C L 3 (G) was used. In order to 
eiisure.. 1	= 1 and	/9.1 = 1 the Lebesgue exponents A 1 and A2 in (2.10) 
have to fulfil the conditions	. 

prN	 prN' 
A 1 >	 and	A2 >	 .	(2.11) 

p(r - N) + r(N - 2)	 p(2r — N) + r(N - 2) 
Since the right-hand sides in (2.11) are bounded from above for all p	2 and ä 1 k = 
a1k( . , t, u') E L,(G), a, =	t, u') E L,(G) this yields relation (2.8). 

To prove relation (2.9) we choose à,k = ak( . ,', u') — ak(.t",u"), a, analogously, 
and A 1 = 1\2 = /12. Then (2.11)is fulfilled for 2 < p r in view of the restrictions 
on p i . Estimation of (2.10) by means of the Lipschitz conditions (ii) yields (2.9): 

Finally, if p	2, then the term A4 disappears. Hence we set a4 . = 0 and have 
a1 = r-2	a2 = r and a3 = 2...Obviously, the assertion holds, tool .
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An essential tool in our investigations is the Nirenberg-Gagliardo interpolation in-
equality (see [6: pp. 80 - 84]). Let 1	q	p < s and 1 < + . Then for all
u E Wd"(G) we have

1_!

	

q	3 

	

H u ll, < c ill u ° ll u lJ)°	with 9 = 1	1	1.	(2.12) 

If q = 1, then 9 <8 1. As a corollary of this inequality we get 

Lemma 2.2. Let 2 s < 2N and u eW' 2 (G). Then for e > 0, a >0 and 
1	q 2 there holds

llull	E l u ll 12,2 + ce llull q2 fl	 (2.13) 

where we distinguish the following cases: 

a)If0<a<1, then 0<13<[3<a and cee 
-s 

'-a. 

b) If a = 1, then 8 = 1 and ce e with a <a < +00. 
--c)If1<a<a, then a</3<fl<+00 and ce 

with

	

-__±_	
a	--	2N(s-q) 

	

or	1+(1-a)ã'	aq[2N_(N_2)s 

If q = 1, then the choice /3 = /3 and a = a is excluded. 

Proof. We start with (2.12) for p = 2 and obtain for a 54 1 by means of the Young 
inequality

	

llull° 
!^ c l u ll ° lI ull)°	C II U ll	+ c 1lulI1 

provided that aO < 1. This yields the condition 

• -
	1	 -	2N(s-q) 

	

a<a:=-=	with 9= 

	

8	.	s[2N-(N-2)q) 

from (2.12), which is restrictive only in case c). Moreover, c -	 Defining 
/3 = /3(8) :=	we obtain j-	=	Since 8 may be chosen within the interval 1-00-  
[9,1) we i - investigate the range of /3 on [9,1) using the derivative 3 (8) = (1 aO)2• In 
case a) the function /3 0(9) is monotonically degreasing on [0, 11 with 0(0) = a and 
/3(1) = 0. Hence, 0 < 3 < /3 with /3 = 6(9) and /3 < a. In case c) the function 
/3

 
8(8) is monotonically increasing on [0, ) with 0( 0) = a and a pole in 8 = 

Hence, /3 /3 < +00 with /3 = /3(9) and now /3> a. 
It remains to regard the case a = 1. Applying the Young inequality to (2.12) it 

follows that 3 = 1 and c = e. Varying 9 in [9,1) we get a a < 00 
with a = 

If s = q = 2, then 9 = 0. However, the validity of formula (2.13) is obvious in that 
case even for the choice /3 = /3 = a and a = U = 01
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Remark. If we choose j3 = /3, then the exponent	=	in c tends to ü
for a - 1. 

For estimation of the discrete time derivative to the discretized quasilinear problem 
we need a nonlinear Gronwall inequality (see Willett and Wong [12]) instead of the 
well-known linear one, which is used in the linear case. We use the following discrete 
version. 

Lemma 2.3. Let d, (i = 0, 1,2,.. . , n) be non-negative real numbers, K0 > 0 and 
c 1 ,c2 ,h,/3 > 0 constants with 0 0 1. Then the inequality 

d1 K0 + c 1 E hd + c2 E hdf	(i 0,1,... ,n) 

implies that 

eid'
- 
< K

0'	+ ( 1 - /3)c2	he])	 (i = 0,1,... ,n') 
( j=1 

with e, = (1+ c i h). Here one has to choose n	n in such way that the condition 
(1 - 13)c2	he'	< KO	is not violated. 

Proof. The assertion of the lemma is a specialization of Theorem 4 in [12] with 
u(i + 1) = d1 (i = 0,. . . , n), v(i) = c 1 h and w(i) = c2 h (i = 1,.. . , n) I 

Remark. If h < h0 < f-, then the sum	hd, may be replaced by	hd,j=O

where the assertion holds with i°h and I—c,h0 instead of K0 and Ck (k = 1, 2), 
respectively. 

Since ih = t j and 1 > (1 +c i h) > e' ih = e' ti we have the following corollary. 

Corollary. Suppose the assumtions of Lemma 2.3 with j3> 1. Then 

d < (K' - (/3 - 1)c2 t 1 e c t _1)t) —1/(-1) ecl ti (2.14) 

holds for all t 1 with 0 < t < t where t > 0 is determined as the solution of the 
equation (/3 - 1)c2 t edI($)t = K0 1 .
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3. A priori estimates for the discretized problem 
We start with L.-estimates for the solutions u 3 of the discretized problem (2.1) - (2.3) 
based on L-estimates followed by a limit process p —* +00. For positive constants 71 
and 72 we define

ir' .ifO<T<1	 . 

	

Q., 2 (r) =	- - 
1T2 ifr>1. 

The first lemma yields some tool for performing the limit process. 
Lemma 3.1. Let { m 1,}EN0 , {0v}EN and {pz' }pENo be sequences of non-negative 

real numbers with 

	

o<<i,	fle=fi>o,	p=p0Au (>1) 
V= 1 

satisfying the recurrence 

ML, < (clp2r(m:i +m)h/	(uE N) 

for 0 T T where c 1 and c2 are some positive constants. Then 

Moo lim sup m <cQ,2(T)m 

where 

-	.-	-	I/9	ifin1,<1	 1 
= H ,	with j3 =	 ,	7 =	,	Ti = /972. 1	if M " >1	 po(.X— 1) 

Proof. Applying the definition of /3k, we estimate 

rn < (ci p12y)l/P mf.1 

^	p2)	

(3.1) 

<fl(c i p 2 ) h /Pi	 .m'th. 

The first product converges since	- 

11C2/Pj 
= flp c2/(POA) A C2Z/(pQ) = (c2/P0 	A(c2/po • I/A:) 

is bounded. The exponent of r may be estimated by 

flI<I n j<—=:72. 

	

1=1	1=1 Pt 
j=i+1	1=1 

Finally, fl	/, = > 0 is convergent because of i9 <	1. Passing to the limit 
ii - +00 in (3.1) this yields the assertion I
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For doing estimations in the next lemma remember that aik, a, and f at the moment 
mean the truncated functions which fulfil Assumptions (ii) and (iii) globally. 

Lemma 3.2. Let k e {O, 1,... , n} be fixed and suppose II U klllr C independent 
of the subdivision for this solution Uk of problem(2.1) k ,(2.2) k . Then there are numbers 
) > 0 and A2 > 0 such that the estimate 

Jj Uj - uklc(5	cQA,,A 2 (t - t k)	for all t3 E [tk,Tj 

holds. 

Proof. We define z3 = u3 - for k <j <ri. Then zj E W" (G) fulfils 

(äzj ,v) + A3 ( z3 ,v) = (f, v) - A3 (uk,v)	for all v E W"'(G) 

for j = k + 1,... ,n with zk = 0. We insert the test function v = l z . I 2z, for p	r,
use the abbreviation w3 = lzl (p-2)/2z and obtain by means of Lemma 2.1 

ll z ll	-	,_ i lz	 ll z Il'' + kh iIWiili,2 

<k2 h ll z ll + h llfjllr i ZjII l) + h I Ai(uk, lzI2z) 

which yields with the Young inequality applied to the second term, with k 1 , k2 

ll z II'= lw, 1 22 and IlL hr	c the estimate 

II,hI - lI v i 112 + ch llwiIl,2
(3.2) 

<ch ll w lI + cph llWjll2r(;_1)/p +ph I Ai(u k, IzjV'2zi)I. 

We estimate the last term on the right-hand side of (3.2). Application of the Young 
inequality to formula (2.8) of Lemma 2.1 yields because of the assumption II UkII1,r C 

C	
2(p-2)/p	 (3.3) A,(Uk, izjI"2z)	e II W i.1112,2 + - llwjIl, 

Let now

1+(1—a)ã =
	 .	 (34) 

be the exponent / corresponding to a =	'defined in Lemma 2.2. Applying case a)
of this lemma with ë = L2 to the last term of (3.3) we obtain 

Aj(uk I z I 2z )1	C	 + ce ll w lI"	(c ,	 -

with 1 <q 2. Observe that

___	p(25+1)-2ã 
cr=cr(p)=2	+1=	 :5 am. 

1 —a	 p+2-
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remains bounded as p - +00. 

Since the first term on the right-hand side of (3.2) can be estimated in the same 
way by Lemma 2.2/b) and the second one with the help of the continouos embedding 
W''2 (G) C L2 r1(r_2)(G) by

2(p- 1)/p 2(p—I)/p	< C ll Wjll 2r/(r_2) —< c ll w Il1,2 iiwii	
2)/p

2r'(p—l)/p lw3	- 2r/(r-2) 

leading to the same term as in (2.8), we may continue to estimate (3.2) by 

11 Wi1122 - ilwj_1 11 22 < c h ll w,1l + c hpM 

where e = with small 8> 0 was fixed. Summing up these inequalities for k +1  
and rewriting into terms of z = u - Uk (k j <n) we obtain 

Ilzll,) 
< chpc >	(11Zi11)qi2 + 1IZ11pq/2 ) 

j=k+1	 (3.5) 
< cpc (t 1 - ik) ( max iizjii p 2 + max 

k<j<i	pq/	k<j<i 1k3 IIpq/2 )' 

hence

	

Max li z II	cpc (t - tk) ( max IkiIIq /2 + max 

	

p	 k<j<i	 k^j(i 
lki 'Ipq/2 

for every p > r. In order to estimate the limit limp.. Il zj lip = Ilzi Iloo we fix q E (1,2) 
and choose the special sequence pv = r() ' (ii E No). Defining 

m = max Il z.7II,	and	/3k, =13(p-) k<)<I 

we get the recurrence 

M, < (cp:(tj_tk)(rnl+m:)V1	(vN). 

In order to apply Lemma 3.1 we state by means o((3.4) that 

is convergent since
CO 

2(5+1) 2(5 + 1) v) I 
p + 25 

converges. Hence, by Lemma 3.1, 

M. cQ., , .12 (t1 - t k) M o	with 0 </3 /3 1.	 (3.6)
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It remains to estimate m0 maxk<<1 II ZjIIr . To do this we start from (3.5) with p = r 
and q = 2, and obtain due to a	1 + a 

	

< ch(i—k)+ch	11 
z11 

j= k+ 1 

The discrete linear Gronwall lemma (Lemma 2.3 with c2 = 0) yields for h < h0 

c h (j - k) e''' = c (t, - t k) e'1 —ik) 

hence m0	c(t i - tk) h / ec(_tk). Finally, inserting this into (3.6) we get 

k 
Max II z II	c Q . , . 2 (t1 - t k) (t1 - tk)1' eC_t 

Since 4 depends on the subdivision we replace it by /3 if (t - t k) < 1, and by 1 else. 
This completes the proof with A I = 7i + = r(2—q) and A2 = 72 + = r(2—q) 

A simple conclusion of Lemma 3.2 is the local boundedness of the approximations. 

Theorem 3.1. Suppose Assumptions (i) - (iii) with some R> 0. Then there is a 
time T with 0 < T T, independent of the subdivision such that the solutions u 3 of 
problems (2.1),,(2.2) belong to 13 R(Uo) for all tj E I = 10,T1. 

Proof. We choose k = 0 in Lemma 3.2 and obtain due to II UoIIi,r = C 

Il u, - UoI!c() < cQA1A2(t). 

Since QA,,A2( 0) = 0 there is a I > 0 such that cQA1,A3(t) 5 R for all t	I. Then
T=min{I,T}U 

The assertion of Theorem 3.1 means that the solutions u, E W"(G) of the trun-
cated problem are solutions of the non-truncated original equations (2.1), for all t, ( T. 
From now we only regard this interval I = [0, T]. 

Theorem 3.1 especially implies 

II u,II	< C1	and	1 1fj 1jr <c	for all i, E I.	 (3.7) 

Since ui E W01 r (G) fulfils the elliptic equation A,u, F, with F, = I, - we can 
use an a priori estimate for weak solutions of elliptic Dirichiet problems (see Simader 
[11: Theorem 6.3)) and obtain by means of (3.7) 

Ikhjlli,r	cihi Filir + C2II U,hhr !^ C (1 + 11 6U,hlr)	for all i, E I.	(3.8) 

This inequality is applied in the next lemma that yields boundedness of the discrete 
time derivative.
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Lemma 3.3. Suppose Assumptions (i) - (iii). Then for h < h 0 there is a time 
interval [0,T*] C [0,T] such that the estimate 

IIjIIr 5 , C2	for all t j E [0,T]	 (39)

holds independentll, of the subdivision. 

Proof. We take the difference (2.1), - (2.1)_ (j = 2,.. . ,7i) and testing it with 
=	 we get 

(ou —öu, i , I 6u jI' 2öu j) + hA3 (öu j , I6uI'25u) 

= —(As T A_ 1 )(u_ 1 , I6UI r_2 U) + ( I - li-I ' I8UIr_26U). 

This relation may be estimated by means of Lemma 2.1 and Assumption (iii), where 
Ljj= I6uI (._2)/2 öu. Hence 

II &L jII, - II 5 ji lIr II 6 II r-1 ,	+ k 1 h lw' 2 ill ,2 

k2 h lISuj 11 r + c 	(1 + 116u i ll) II U j_1lll, r 11LUjI11,2 IILjll_2)/r 

+ 13 h ( 1 + II8ui - i II) IIjIIr-1) 

From (3.8) and the Holder inequality there follows 

2 
11 6u Ir - I5u_I + k1hr IIwiIil,2 

ch (i +11 6U , ll + ll öU jIl ( r_l ) +	 11 r
(3.10) 

+ (i + II 5u 1 lIv) (1 + Il 5u -1 lIr) 11-i 111,2 iwi' (r-2)/r \ '3	J. 
(*) 

We estimate the last line (*) of (3.10) separately and get 

(*)	(1 + II SU j_i lIr) 11"jI1I,2 IIwlI2" 

+ II öu j_l Il 11-j J11,2 IwII2)" 

+ löU j_ ip ll 6U j_ III r I L jII1,2 IIwjII2" 

Further, applying the Young inequality with exponents Pi = r, P2 = 2 and p	to 
the first two items and with exponents p ) > r, p2 > r, p3 = 2 and p = r22(	= i)
to the last one we get 

(*)	cllwIh 
2 
1,2 

+ C (1 + IIiIl + + II 6ujiIl + II s 1II:) + Il&4J1IIr )..
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Now if we rewrite It5uI = IwI 2 / r , then 

	

II Suj i lI r - U	2 -	- 1W3_1 112v/r,	lI tL jlI $ (r_I) = II'iII2p(rl)/r '	II SUJIIr = II"jII 

where	= .s 1 and 2(r-1) =	are less than	because of the conditions on ii and
P3, respectively. Thus we obtain from (3.10) for small fixed E > 0 

II"jII2 - Il wj_1 112 + h II"iIIi,2
2	12p1/r	2p2/r\ S c h (1 + Ilwj	+ II'jII + 1w_	+ 11Qj-i fl3	+ Il wi_1 112	) 

Depending on s < we fix now a, = - such that the conditions of Lemma 2.2/c) 
are fulfilled with q = 2. Then a2 = > 1 is also fixed. Application of this lemma with 
q = 2 to the items 11wjJ1,2, II wji II 2 and I1, I 11 .,2p, /r yields 

II wjII - II w,_i II + ch IwjI 2 1,2

	

2	2$\ (11_jii
	+ II—I 111,2) + ceh (i + IWj II + IIj-1 112 + ll wi_1 112 ) 

with fi = max{ 1 , 2 } > 1. Summing up these inequalities for j = 2,... ,i we obtain 
for sufficiently small 6 

	

IwiII + c  >	wjII 2 1,2 
j=2 

- t + h II w i 111,2 +	h II w II +	h iiwiii)	

(3.11) 
< 1 _ 1 11 +	

( j=1	j=1 

for i=2,...,ñ. 

In order to apply Lemma 2.3 it remains to estimate 11 W, 11 2 + h 11 w 1 Il?,2 . To do this 
we insert v = I6u 1 I T_2 6u i into relation (2.1) getting 

II Ou iII,+ hAi(8u i, I 6u iI" 26u i) = (fi, l5u i I' 2 6u i )—A i (uo, louiI'2oi) 

and obtain by means of (2.7), Assumptions (i) and (ii), and (2.9) 

lI Ou i II	 2 Ir + k1h lI w i hi,2
r-1 S 11° - A(0, Uo)UoIh,. II OtL I	+ Ill' - fo 11". lI Ou i IIg1'3(r_1) 

+ch Ih ou ihI,r +	- A 1 ) (U0 , I6u,Ir_2Sui) 

S	fo - A(0,Uo )Uo II r + (1_ ) ioUii 

+ c 	(1 + lI U lII ( r_l ) + II UOIII,r IIwiIIi,2 IIw1II_2)1r).
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From this in the same way as above using the Young inequality and Lemma 2.2/b) the 
boundedness

UW1 I + ch I Wi 11,2 

ho - A(o)uohI + c  
1— cho	<K	 (3.12) 

for all It < h0 follows. Therefore, (3.11) provides 

t	 i—i 

Ik)hI < 1110 - A(0)UoII, + ct 1 + c > h hIwjhI + c>2h 
112fi 

) 112 

j=) j=1 

for i = 1.... iii and h < h0 . Hence, Lemma 2.3 applied to this nonlinear Gronwall 
inequality with dg = hlw I62 yields (cf. also remark and corollary added to this lemma) 

hIWihI2 = lIb
U, 11 r < 

where M(t i ) is defined as the right-hand side of (2.14). Since /9 > 1 the bound M(t) 
has a singularity at t = i, therefore assertion (3.9) follows for every fixed interval 
[O, T1 C [O,t*)n[O,T]I 

By the above lemma the time interval I may be reduced once more. For simplicity, 
however, we write I = [0, T] fl [0, T'] again. 

Concluding this section we present two estimates (3.13) and (3.14) which are an 
immediate consequence of Lemma 3.3. First applying Lemma 2.2 to w 3 = uj (r_2)/26uj 

we get
116_j 11
 

ii2 t 2 
c hI 5u z = hIw.iii, - E hIWjlhiz + JIIr 

and obtain from this estimate by means of (3.11), (3.12) and (3.9) 

1h118uj11 <c	with U 
< N-2	

(3.13) 
j= I 

Finally, in view of the a priori estimate (3.8) Lemma 3.3 yields the boundedness 

Ikjlhi,r C3	for all tj E 1 (3.14) 

of space-like derivatives.
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4. Convergence and existence result 

In this section we deal with approximations of the solution u of problem (1.1) - (1.3) 
defined on the cylinder Q . Therefore we interpolate the solutions uj of the discretized 
problem (2.1) - (2.3) with respect to tin the way given by (2.4) and (2.5), respectively, 
and obtain the piecewise linear and piecewise constant functions u"(x, t) and u'(x, t), 
respectively. These interpolations turn out to be approximations of the weak solution 
u of the problem (1.1) - (1.3). Moreover, using the notation 

ThU(X,t) = u(x,t - h) 

we write
I" = f( . , ', r,,ü")	and	A'( . ,.) = A(jn,rhun)(.,.) 

with " = t' if t'_ 1 < t	t'. Now piecewise constant interpolation of (2.1), over 1
yields

I	 I	
(4.1)

I 

for all v E L 1 (I, W01 " (G)). The results of Section 3 may be rewritten in the following 
form:

u'(.,t), ü"( . , t) e !3R(Uo)	 (4.2) 

ID tü(, t)II,.	C2 and 11
ü )( . , t) - u"( . , t )IIr	C2 h	 (4.3) 

Ju( . , t) - ThtL,t)II di	c 	 (4.4) 

II)(, t )IIi,	C3 and II u )2 (, t )IIi,r	C3	 (4.5) 

for all t € I. Next we prove convergence of the Rothe approximations. 
Lemma 4.1. The interpolations ü" of the solutions u 3 of the discretized problem 

(2.1) - (2.3) converge in C(I, Lr(G)) to a limit function u and the error estimate 

	

Il u - U IIC(JL ( G )) ^ Ch 12	 (4.6) 

holds with some positive constant C4. 

Proof. We follow the proof of Lemma 6 in [8), therefore we only give an outline 
of the corresponding estimates. We want to show that {u'1 } is a Cauchy sequence in 
C(I, Lr(G)). Therefore we estimate the difference u rn , n = urn - ü'. Analogously, we 
define ii ,,n = u m - iin and D m,n = lüm,nI(r_2)/2ürn,n 

First of all we state that 

DIIum"1(.,t)II, 
r = r (D L Ü mI , umfhT._2umn) 

(Dum'n, jjjm,njr-2iirn,n) 
+	 (4.7) 

+ c(hm + h)T + C(hm + h)r/2
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because of the inequality 

u m,t I 7_2 u m,m - If m,IT_2um 

-	\
	jjm,n 11r <(r —1) (II mf hI + lumn

 lir) 
r_2
 Iumn - 

<(r i) (2 Il)llr + C2 (hm + ha ))	C2 (hm + he), 

the Young inequality and the second inequality (4.3). Now we take the difference of 
the relations (4.1)m and (4. 1)n for two different subdivisions into in and n subintervals, 
respectively, and insert the test function

if 0< t <io 
v(.,t)=	

o	 ift>io 

into this difference (4.1) m - (4 . 1) 1 . The resulting equation is used to replace the first 
term on the right of (4.7) after an integration of (4.7) over I E [0, to]. Then we obtain 

+ rJAn (umn, umf,2umn)dt 

to 

<r J (An - Am ) (um ümnlr_2ümn)di 

to 

	

r J 
1
11m - JIIM3 Iu m)Ir	di 

+CJ lIumdt+c( hm + 

In view of (2.9) and the boundedness(4.5) we have 

	

(A - Am )(um , m,_2Üm	 •0 

c((h + h) + llThu" - Th utm ii) iumii1, lI)lI12 lIm,fhl_2 

2\ 
^ I	1112 + c((h +	+ ll Thn j - Th u m II + 

Now regarding the estimates (2.7), Assumption (iii), inequality (4.4) and the Young
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inequality we continue the above estimation by 

to 

to)	+ r k1 f II(• t )II2 dt 
0 

to 

< 
J 

Il'(• t" 2 dt -	 ' )lIi,2 
0

to 

+ c 	(lI mf hI + II mf hI)dt + c(hm + 
0 

I 
2(r-1)1,:',2	2N Since s = max 1 r	-} <	we can apply Lemma 2.2/b) with q = 2 and then 

(4.3). Hence, for small > 0 there follows

to 

IIum,to)II< c(h + h a)' + cJ IIum'(,t)IIdt 
0 

which yields by means of the usual Gronwall lemma 

Iu m ( . ,t) - u '( , t)II, < ((hm + hy /2 et	for all t E I.	(4.8) 

This implies that {u"} is a Cauchy sequence in the Banach space C(I,Lr(G)) which 
converges to u. Passing to the limit m - +oo in (4.8) this yields the error estimate 
(4.6)1 

Actually, the approximations have stronger convergence than in C(I,Lr(G)). We 
may derive convergence even in Holder spaces. 

Lemma 4.2. Let ü' be the interpolations introduced at the beginning of this section. 
Then there is an a E R with 0 < a < 1 - such that 

iin —* u	in C0() for n - +oo.	 (4.9) 

Moreover, for every \ E R with 0 < \ < 1 — E it holds 

ii n — u	in C(I , C A() ) . for n —* +00	 (4.10) 

(i-N/r-A)/	. with convergence order O(h	 ). 
Proof. a) We start with the proof of (4.10). Therefore we apply the Nirenberg-

Gagliardo interpolation inequality 

V II CA () < C IIth II1r II v II°	for v E W1 "(G)	(A +	0 <1)
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to the difference v =	- ü'. Because of the boundedness (4.5) and estimate (4.8) we 
get

sup Ium ( ., t) - u'(., t)McA()	c (hm + 
tel 

This yields property (4.10). Then the sequence {u'2 } is also bounded in C(I,CA(G)): 

sup II u (, t )IIcA () < c	 (4.11)
tel 

which will be used in, the next step. 

b) The assertion of Lemma 3.2 implies 

u'( . , t 3 ) - u'2(., tk)IIc()	c1 I tj - tkl 

if t, and tk are subdivision points. Then 

u'( . , t') - fjfl(., ")IIc() < 3'" c 1	- t"'>"	 (4.12) 

for arbitrary points t', t" E I and arbitrary natural n. In fact, let first t' and t" belong 
to the same subinterval [t_1,t]. Then 

F,	 ________________________________________ u"( . , t') - u'(., tit) = ( i" - t') 
u'( . , t_1) - "(. t)

hn 

hence
It' - t"I jFI\II	 < I	t') T u"(., )IIc() -	

cih," < c 1 i" 
-hn 

because of t" - t' < h,. If now tk_i < t' < tk < t 3 _ 1 < t 1' < t, then formula (4.12) 
follows from the triangle axiom 

-

II(, t') -
	

n(., tk)IIc()
' I + Ili! - (', ik) - u"( . , ii )IL	+ Mu(, t_ 1 ) - u"(. 

4FF )IIc(). 

Thus in view of (4.11) and (4.12) the approximations are Holder continuous with respect 
to the space variable x for fixed t E I, and with respect to the time variable t for fixed 
x E G, with uniformly bounded HOlder constants. Then also 'I Ü "IIcI (t)	c for all 
n with a 1 = min{A i ,A}. By the compact embedding C" (QiO C C() for a < a1 
there is a subsequence fiink } that converges in Ca (Q). Since this means in particular 
uniform convergence on QF the limit of each convergent subsequence coincides with 
the limit function u from (4.10) and (4.6), hence the whole sequence {u'1 } converges to 
uEC()I
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Note that Lemma 3.2 also implies 

I ii ' ( . , I) - ThU'(, t) Mc()	u  - U7_1 
lC()	c 

hence besides
Th U —+ u	uniformly for all (x, t) e	 (4.13) 

holds, too. 

The limit function u of the Rothe approximations iin turns out to be a weak solution 
of the initial boundary value problem (1.1) — (1.3). We summarize the results in the 
following statement. 

Theorem 4.1. Suppose Assumptions (i) — (iii). Then there is an interval I [0, Tj 
and a number a > 0 such that problem (1.1) - ( 1.3) has a unique weak solution u E 
L(l, W01 "(G)) fl C°(), with Du E L,,. (i, L(G)) fulfilling the relation 

jj (D
i u v) di + J A( t )(u, v)dt = I (f v) dt	 (4.14) 

for all y E L 1 (I , W01r (G)) . The Rothe approximations ü" and jin have the convergence 
properties

	

ii n —i u	in C a() fl C(I , CA(G))	 (4.15) 

in L,,.	C \ (?7)) (.X < 1 — (4.16) 

in L,,.	Wo"P(G)) (p < r)	 (4.17) 

	

U	in L,,(I,W"(G))	 (4.18) 

	

Du Th - D i u	in Loo(I,Lr(G))	 (4.19) 

as n tends to infinity. 

Proof. a) We start with the proof of the convergence properties. Formula (4.15) 
is the assertion of Lemma 4.2. Because of (4.3) and (4.6), for the approximations u' 
being non-continuous and piecewise constant with respect to t, an estimate as (4.6), 

sup Iu'( . , t) — u( . ,t)II	< ch,/2 
fEi 

holds. By the same computations as in the proof of (4.10) that yields (4.16). 
In order to proye (4.17) we take the difference of the relations (4 . 1)m - (4.1)

	

(without integration over t) applied to the test function v =	— i', which gives 

- u's ) utm — u) + Arn (u rn — u, u tm - u') 
(jrn - jn urn — u) + (A - Am )(u', utm —
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and estimate it applying (2.7) and (2.9) with p = 2.and then (4.3), (3.7) and (4.5) as 
well as the Young inequality. This leads to 

k 1 hi tm. — u "11 i2,2 

< k2 Iitm — 

+ (hlD t Ü m hI r + II Diu hr + IIJfl2IIr + If hIr)hh	- UhIr' 

+ c ((hm + hn) + IIThmU - ThUnhIP) II i IIi, hi tm - uhI 

E Iii" - U 111.2 

- Ü II C() + (hm + h,, )2+ MThmm_	 11 

2 

for all t E I. Then the uniform convergences (4.16) and (4.13) yield 

sup M'(, t) - i '( . , t )M 1 2	 as m,n - +. 
tel 

Assertion (4.17) for the sequence {i"} then follows from the interpolation inequality 

1-9' 9	91-8 IIvIl p < C II V IIr 11 v 112	(2 <p < r,	+	) 

between Lebesgue spaces applied to v = V(im - in) using the boundedness (4.5). In 
order to prove (4.17) for the sequence {u'1 } piecewise linear interpolation of the relations 
(2.1), instead of (4. 1)n has to be used to obtain its convergence in L(I,W'2(G)). 
Then interpolation as above yields the assertion. We omit detailed calculations. 

Property (4.18) follows from (4.5) because of the weak* compactness of bounded 
sequences in L(I, X). This yields weak convergence for a subsequence, however since 
the limit must be the same function u for every weak convergent subsequence the 
whole sequence converges. By the same argument, the first estimate in (4.3) implies the 
convergence (4.19). 

b) A limit process n - +oo in relation (4.1)' by means of the convergence proper-
ties (4.19), (4.18) and (4.13) and the Lipschitz conditions in Assumptions (ii) and (iii) 
immediately yields relation (4.14), i.e. the limit function u is a weak solution of the 
differential equation (1.1). The solution fulfils the boundary condition (1.2) since it be-
longs to Lc,. (j, W" (G)), and it fulfils the initial condition (1.3) due to the construction 
of the approximations i" and their uniform convergence. 

Uniqueness is proved in a similar way as convergence in Lemma 4.1. Let u and 
u be two weak solutions of (1.1) - (1.3), take the difference of the corresponding two 
relations (4.14) and insert the test function 

V(-, t) = 	i) - u**(. , t)r2 ((., t) —	'(., t))	if 0	t 

10	 otherwise
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into the resulting relatin. Using the abbreviation u = u - u" we obtain 

9 0	 to 

f (u, juI r_ ) di + I A (t,u . ) (u, ul r_2 u) di 

to 

f (i(- t, U* 	f( . , t, u"), IuIr_2u) di 

0

to 

+ 
f	

- A(j . ) ) (u", IuI r_2 u) di. 

0 

We denote w = IuI( T_2 ) / 2 u and estimate the above equation with the aid of (2.7) and 
(2.9), and with Assumptions (ii) and (iii). This leads to 

II u(, to)II+ k1r J II W II,2 di 

t o	 to 

<k2r
f 

11U11 di + 13r J II u III u II' dt 

o	 0 
to + C  II U I[v 11 U 111,r IIwII1,2 IwII 2)Ir di 

0 
to	 to 

ef IIW ,2 di + cf (II u II + II W IIv/r + IIwII)di 
0	 0 

<2e fIIw II2 di + c I IIu(.i)IIdt. 

In this estimation Lemma 2.2 with a = 1 and q = 2 was used. For small e > 0 the 
Gronwall lemma yields IU( . ,t)IIr = 0 for all I E I, which means u = u", i.e. uniqueness 
of the solution of our problem in the sense of (4.14)1 
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