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Hausdorif Dimension Estimates 
for Invariant Sets of Time-Dependent Vector Fields 

A. Noack and V. Reitmann 

Abstract. In this paper we are concerned with generalizations of the results of A. Douady 
and J. Oesterlé [4] on estimates for the Hausdorif dimension of sets on Riemannian manifolds 
being negatively invariant with respect to a map. The main theorem that we derive for maps 
allows a number of corollaries which generalize several other results of A. V. Boichenko, F. 
Ledrappier and C. A. Leonov (see [2, 7, 8)). We extend the concept on differential equations 
and the corresponding vector fields on Riemannian manifolds. To obtain upper bounds for 
the Hausdorff dimension we formulate conditions for the eigenvalues of the symmetric part 
of the covariant derivative of the vector field. Modifications of the eigenvalues by the choice 
of an apropriate Riemannian metric will be of great importance. Besides the investigation 
of dimension of negatively invariant sets we are interested in the convergence behaviour of 
autonomous differential equations on Riemannian manifolds. We propose also a general.form 
of the Bendixson-Dulac criterion for the non-existence of non-trivial periodic orbits of vector 
fields on compact Riemannian manifolds. 
Keywords: Riemannian manifolds, Hattsdorff dimension estimates, dynamical systems, global 

convergence, Bendizson-Dulac criterion 
AMS subject classification: Primary 58 F 12, 58 F 39, secondary 58 B 20, 58 C 25 

1. Introduction 

In the papers [2, 81 generalizations of a theorem by A. Douady and J. Oesterlé [4] 
about estimations of the Hausdorif dimension of negatively sets invariant with respect 
to a map are obtained by requiring weaker conditions for the ma k under consideration. 
Lyapunov functions are introduced to modify the Jacobian matrix of the tangent map. 
That includes naturally a change of the singular values of the Jacobian matrix. 

In Section 2 of this paper we show that the results published in [2, 81 follow directly 
from a generalization of the theorem of A. Douady and J. Oesterlé for Riemannian 
manifolds. With slightly stronger assumptions such kind of generalization is quoted in 
[7].

Supplementary to the results of [2, 4, 7, 8] in the present paper we give estimates 
of the Hausdorif dimension for sets which are negatively invariant with respect to , shift 
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maps of differential equations on manifolds. This is done in Section 3 of the paper. The 
differential equations are considered to be generated by time-dependent vector fields 
and the estimates -are based on conditions for the eigenvalues of the symmetric part of 
the covariant derivative of the vector field. 

-In" the last Section 4 the number of closed orbits for autonomous differential equa-
tions is estimated from above in form of a Bendixson-Dulac criterion for Riemannian 
manifolds. For the derivation of the results properties of the Hausdorff measure as 
obtained in Section 2 play an essential role. 

2. Hausdorif dimension bounds for invariant sets of maps 

For a linear. operator T: E . -- E', where E and E' are Euclidean spaces of dimension n, 
we write T a . : E' - E for the adjoint operator of T. The singular values of T, i.e., the 
eigenvalues . of the positive operator (TT) 1/2 : E -* E, ordered with respect to its size 
and multiplicity we denote by (T) (i = 1,... ,n),.i.e. a i (T) > c 2 (T)	an (T). 

For an arbitrary k E {0, 1,. . . , n} we define 

Wk(T)
'a j (T) . Qk(T) for k > 0 
=(2.1) 
1 for k=0. 

More generally, for an arbitrary real number d E (0, n] written in the form d = d0 + s 
with d0 E 10, 1,... , n - 11 and s E (0,1] we introduce the notion 

Wd(T) = -d 0 ( T ) 1	-do +l(T)'.	 . (2.2) 

Obviously this can also be interpreted as 

Wd(T) = II A' 0 T11' -' 11 Ad04.l T113 
where ii A  T il stands for the norm of the k-exterior power of T, i.e. the norm of the 
linear operator AcT: A k E	AkE. 

Remark 2.1. Let = (i) be the realization of the linear operator T when fixing 
a basis {e} in E and a basis {e} in E. Further, let us define the metric tensors 
by the matrices G	((eI,eJ ) E ) and G' = ( ( e,e'j)E'). The adjoint operator T of  
is represented by the matrix G_ ITG I1, where by T we mean the transposed matrix. 
Then the singular values are nothing else than the eigenvalues of the matrix //dT 
or, what appears to be the same, they are the eigenvalues of the matrix G_TG1. 

Before we pay attention to estimations of the Hausdorff dimension of compact neg-
atively invariant with respect to a map sets on Riemannian manifolds we start with a 
short introduction of the notation of the Hausdorif dimension. 

Let (X, p) be a metric space and let B, W = { i E Xp(,ij) < e} denote the closed 
ball in X with center and radius e. For an arbitrary compact subset K C X and for 
real numbers ci> 0 and c > 0 we consider the Hausdorff premeasure at level e and of 
order d of K.	 .

(K,d,e) =infr
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where the infimum is taken over all finite covers U j B( 1 , r) D K with balls of radius 
r- e. For fixed d and K the function p(K, d, e) is monotone decreasing. Hence, the 
outer Hausdorff measure of order d of K can be defined as 

p(K, d)	urnz(K, d, e) = sup p(K, d, e). 

Since the relation
(K, d + 6, c)	e 6 t(K, d, e) 

holds for every d > 0, e > 0 and 6 > 0, as can be easily verified, it turns out that there 
exists a unique number d(K) with the property 

(o	for d>d*(K) 

I. +oo for d<d*(K). 

This critical value dH(K ) := d(K) is called. Hausdorff dimension of K. 

Let now (M, g) be a Riemannian manifold without boundary of dimension ri and 
class C', let U C M be an open subset and let us consider a map U —i M of class 
C'. The tangent map of V at a point u E M is denoted by du V  TM - T()M. 

The following theorem generalizes the results of Doüady and Oesterlé [4] for Rie-
mannian manifolds. 

Theorem 2.1. Let d E (0,n] be a real number and K C U a compact set which is 
negatively invariant with respect to w, i.e. (K) D K. If the inequality 

SUP wa(da) < 1	 (2.3)

uEK 

holds, then dH(K) < d. 

Remark 2.2. Let u E U be an arbitrary point and consider charts x and x' at u 
and cp(u), respectively. We introduce the matrices G.= (g13 (u)) and G' = (g(p(t))) 
that realize the metric fundamntal tensor g in the canonical bases of TM and T()M, 
respectively. The tangent map of W in u written in coordinates of the charts x and x' 
is then given by the matrix 1 = D(x' a W o x')(x(u)). From Remark 2.1 there follows 
that the singular values of the tangent map dp : TM - coincide with the 
singular values of the matrix 

The proof of Theorem 2.1 is postponed to the end of this section. Now we proceed 
with some corollaries. The first one concerns a result which has been formulated in [2, 
81 for the case M = R' using slightly stronger conditions for the map. 

Corollary 2.1.1. Let Kc U be a compact set satisfying W(K) D K. If for some 
continuous function p: U - R+ and for some number d E (0,n] the inequality 

SUP Wd / P(tP(tL))d) <1	 (2.4)

uEK •\ P(u)
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holds, then dH(K) <d. 

Proof. On the open set U C M we, introduce a new metric tensor j by 

= p2(u)g1. 

It is easy to show that this is really a Riemannian metric equivalent to the given one 
on compact subsets of M. Since K is compact the new equivalent metric does not alter 
the value of the Hausdorif dimension of K. 

Let us now consider an arbitrary point  E K and two charts x and x' around u and 
(u), respectively. Suppose that C = (g1 (u)) and C' = (g,((u))) are the realizations 

with respect to the canonical bases in TM and T()M of the metric tensors g and g', 
respectively. As indicated in Remark 2.2 the singular values of the tangent map dco in 
the new metric are the singular values of the matrix 

= p((u))/7p(u)' 1 i?T 

Thus, condition ( 2.4) guarantees that in the new, metric the 'inequality ( 2.3) is valid and 
Theorem 2.1 can be applied I 

The next corollary provides a method for estimating the Hausdorif dimension with-
out explicit computation of the singular values. It serves further as a basic tool to 
derive frequency domain conditions for feedback systems to receive upper bounds for 
the dimension [15]. 

Let us remark that for a linear operator T: E - E' where again E and E' denote 
Euclidean spaces both of dimension n, the absolute value of the determinant is defined 
as IdetTi = (detT*T)l/2. 

Corollary 2.1.2. Let K C U be a compact set which is assumed to be negatively 
invariant with respect to . Let 9 : U - R+ be a continuous function and let d E (0, n] 
be a real number such that the conditions 

(a) ([(do)*d]v,v) 9(u)2 v 2'f0r all  E 	and v E TM 

(b) detdI 

are satisfied. Then dH(K) < d. 

Proof. From condition (a) for the singular values a 1 (u) of the tangent map d,,p 
we obtain the inequalities 

o ,(u)? 9( u )	for all u E K and i=1,2,...,n. 

Thus, for any k E {O,1,. . . ,n} and u E K with cxo(u) := lit follows that 

c i (u) . . . & k (u)9(1L)n_k < a i (u) . . .	= IdetdI.
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For d = d0 + s with d0 E {0,1,... ,n - 11 and .s E (0,1] the last relation together with 
condition (b) of the corollary leads to 

	

ai(u) . .. aao(u )a 0 +i(u) = (ai(u). ado ( U))	(ai(u). . . ad0(u)aao+1(u)) 

<	detd,,''	1 detdI5 
- 9(u)(Tdo)(1_3) 9(u)(io_1)3 
- IdetdI 
- 
<1. 

Now, the only thing left to do is to apply Theorem 2.11 

For the proof of Theorem 2.1 we need some auxiliary results. Let E be an ellipsoid 
in an Euclidean space E of dimension n and let a 1 (E) 2 ... 2 a(E) denote the lengths 
of the half-axes of E ordered with respect to its size. For an arbitrary real number 
d E (0,n] written in the form d = d0 + s with d0 E {0,1,...,n —1) and s  (0,1) the 
definition of the value wd(E) for E is provided by formula (2.1) where a(T) is replaced 
bya 1 (E) (i=1,...,n). 

In the first place we quote a result from [4] necessary for the proof of Theorem 2.1. 

Lemma 2.1. Let us consider numbers d E (0,n] (written as above),k >0, in > 0 
and i > 0 and assume k	md. Let E be' an ellipsoid in E such that a i (E)	in and 

< k. Further we take a ball B(0, i) of radius 77 in E. Then the set E + B(0, ij) is 
contained in an ellipsoid E' which satisfies

	

mdo\I	1d 

Wd(E')< 
[+ u --	

i j k. 

Let us come back now to the Riemannian manifold (M, g) and consider the expo- 
nential map exp : TM - M at an arbitrary point u E M. Then the set exp(e) is 
the image of an ellipsoid E in the tangent space TM centered at 0 under the map exp. 
We recall the definition of another outer measure concerning covers of such images of 
ellipsoids in tangent space and then are interested, in the relation between the outer 
Hausdorff measure and this ellipsoid measure. 

Let K C U be a compact set, let e > 0 be a sufficiently small number and fix a 
number d € (0, n]. The outer ellipsoid premeasureat level e and of order d of .K is given 
by

(K, d, e) = .inf	Wd(E) 

with infimum is taken over all finite covers Uexp,(Ei) D K, where u 1 E M and 
Ei E T,M are ellipsoids satisfying wd(E1)'/' e. Now we show the equivalence of both 
the Hausdorif premeasure and the ellipsoid premeasure in a similar way as it is done in 
[4].	 .
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Lemma 2.2. For an arbitrary, number d E (0,n] written in the form d = d0 +s 
with d0 E 10, 1,..., n - 11 and .s E (0,1] we define the numbers Cd = 2d0(do + 1)du/'2 arid 
Ad = v'do + 1. Then for a compact set K C U and for every sufficiently small e > 0 
the inequality

	

,u(K, d, e ) > (K, d, e) 2 Ci(K, d, Ad e)	 (2.5)


holds 

Proof. In a number of technical details the proof differs from the one given in [4]. 
Therefore, at least in short we show some of the essential steps. 

In analogous manner as in [4] it is established that for sufficiently small e> 0, for 
an arbitrary u E K and any ellipsoid e c TM satisfying wd(e) u/d e the relation 

j.t(exp(E),d,Aa €) 15 C,jwj(E)	 (2.6) 

is valid. Let us now fix a finite cover of ' K consisting of sets {exp.(E1)}, where 
wd(ei) i 'd < e holds for all indices i. The properties of the measure then guarantee 
the relation  

(K, d, Ad c)	( U exp.(-I ), d, Ad	:5	(exp, E), d, Ad e). 

Using (2.6) we obtain /L(K,d,Ade) ( Cdid(E)and since the cover 'was, arbitrary 
among all those satisfying the restriction for wd we have p(K, d, Ad e) < Cd (K, d, )I 

Lemma 2.3. Let K C U be a compact set and consider a map p: U - M of class 
C 1 . For a number d E (0,n] we assume that sup n wd (dU ço)	k. Then, for every

1 > k there exists a number Eo > 0 such .that for every e E (0, e0] 

	

p((K),d,Ad lu/d€)	Cd1(K,d,c) 

holds, where Cd and Ad are defined as in Lemma 2.2.  

Proof. In a first step we show for sufficiently small numbers e > 0 the inequality 

	

((K), d, II /
 . 
df)	l(k, d, c).  

Obviously it is always possible to find an open set 'V C U containing K which itself lies 
inside a compact set K C U with the property  

k'	sup Wd(dcO) <1. 
uEK 

We choose a number rn > 0 such that k' <md and' '	'	' 

SUP ll dp II	m	'•''	'	••)"	( 28) 
u E K
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hold. Further we can find a number i > 0 satisfying 

 1/s 

+ 

(Mdo

	

-i:;-)	17] k * 	 (2.9) 

We take e > 0 small enough such that 

p(u,u')	and 
'EU\V 

for : all. u, V E V with p(u, v) E. By p( . ,.) we mean the geodesic distance between 
the points of M and by i-,' we denote the isometry between TM and TMdefined by 
parallel transport along the geodesic for points lying sufficiently near to each other. 

Let usfix a finite cover with. balls {B(u,r,)}, of radius r 1 !^e of K. Then every 
ball B(u 1 ,r 1 ) satisfying B(u 1 ,r 1 ) fl K 0 is entirely contained in the open set V. The 
Taylor formula for differentiable maps provides that for every v E. B(u ; , r,) 

exp ) (v) - du(exp.1(v)) 

wEB(u,r	
. Iexp.'(w)II	

(2.10) 

holds. Thus, for every ball B(u 2 ,r 1 ) of the- cover with B(u,,r 1 ) fl K 0 0 for the image 
under the map W we have the inclusion 

cp(B(u 1 , r)) c exp,(	(d
u cp(BT.M(o,r)) ± $T().M(0,17ri)) .	(2.11) 

The notions BT,.M(0,rI) and B;(,)M(0,77r) stand for, balls in the tangent spaces 
T.M andT ()M, respectively. Obviously the set d(BT,.M(O,r)) is an ellipsoid 
with half-axes of length ra,(u), where a(u,) denote the singular values of the linear 
operator dca (Z* = 1,... , n). Concerning the definition of k' we may conclude 

rk'.	 (2.12)!

With (2.8) it follows
a1 (du P(BT M(o;ri))) <mr.	 : (2.13) 

Further by using (2.9), (2.12) and (2.13) and by Lemma 2.1 there can be found an 
ellipsoid E containing exp;' ((B(u,r))) and satisfying w(E) 

We can resume that every finite cover of the compact set K with balls .{B(u 1 , r)} 
of radius r	e such that B(u 1 ,r 1 ) fl K is non-empty generates a cover 
of (K), where E denotes an ellipsoid in T,M satisfying wd(E) lr. Therefore, we 
have

wa()	l>r.
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Since the result is valid for every such cover it must be true for the infimum as well.- So 
we have

>2wd(e) l(k,d,€). 

If at the left-hand side we pass to the infimum, then the last inequality becomes (2.7). 
Lemma 2.2 and (2.7) finally guarantee the inequalities 

l(K, d, e) 2 (o(K), d, 111d) 2 C,i ((K), d, Ad 111d )• 

But this is exactly what we wanted to proof I 

Proof of Theorem 2.1. The essence of the proof of Theorem 2.1 is contributed by 
Lemma 2.3. The lemma claims' that the Hausdorif premeasure defined on a Riemannian 
manifold exhibits the same properties concerning the effect of a map p of class C 1 as 
it has in R'1 . When applying Lemma 2.3 the statement of Theorem 2.1 follows directly 
from arguments that agree with the last steps of the proof of Theorem 1 in [411 

The next theorem provides another important result the proof of which follows 
directly from Lemma 2.3 using the same arguments as in [2]. 

Theorem 2.2. Let the manifold M be compact and let M — M be a map of 
class C 1 . Suppose that sup EM Jd(du) < 1 holds for a number d E (O,n]. If for a 
compact set K C M the condition p(K,d) < no is satisfied, then 

= 0. 

3. Time-dependent vector fields 

Let (M, g) be a Riemannian manifold without boundary of dimension n and of class C2, 
let U C M be an open subset and Ii C R an open interval with 0 E 1i - We consider 
a time-dependent vector field f : Ii x U —' TU of class C' and the corresponding 
differential equation	-	 - - 

= f(t,u).	 (3.1) 
Suppose that for a point (t, u) E I, x U the covariant derivative of the vector field f 
is Vf(t,u) : TM — TM. We assume for (3.1) that there can be found an open set 
D C U and an open interval I C Ii such that the solution ( . ,u) of equation (11) 
starring at u E D for t = 0 exists everywhere on I. For every t E I we define the 
t-shift operator	D —+ U by t (u) = (t,u). In case the differential equation (3.1) 
is autonomous the faily {ç0t}j of all .those t-shifts is a lodal flow.	- 

Since the vector field f is continuously differentiable the same holds for the t-shift 
operators ç (t E I). For an arbitrary point u E D the tangent map dco solves the 
variation equation  

- Y, = Vf(t,rp'(u))y	 (3.2) 
with initial condition du4....o = idT,M. Here the absolute derivative y' is taken along 
the integral curve t '—	(u) in the direction of the vector field 1. Let us denote
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the eigenvalues of the symmetric part of the covariant derivative Vf(i, u), i.e. of the 
operator

S(t, u) = [Vf(t, u) + Vf(i, u)] 

by ),(t, u) (i = 1,. . . , n) and order them with respect to its size and multiplicity, i.e. 
A 1 (i, u) 2 ... 2 An (t, u). The divergence divf(t, u) of the vector field I at (t, u) E 1i x U 
is the trace of the linear operator Vf(t,u) : T0 M -+ TM and therefore 

divf(t,u) =trVf(t,u) = )i(t)u) ± - + .X(t,u) 

holds. 

The next theorem is the main result of this section and extends a result of [17] to 
Riemannian manifolds. The proof is given at the end of the section. 

Theorem 3.1. Let d e (0,n) be a real number written in the form d = d0 + .s 
with d0 E {0, 1,... ,n - 1) and s E (0,1] and let K C D be a compact set satisfying 
cp'(K) D K for a certain T E In R. If the condition 

sup J [i (i, to) +	+	0 (t, t(u)) + S d 0 +i (t, t(u))] di < 0	(3.3) 
oEK

0 

holds, then dH(K) < d. 

Remark 3.1. We consider an arbitrary u E U and a chart x around u. In local 
coordinates of x and in the canonical basis ô i (u),.. . , 9,(u) of the tangent space TM the 
vector field of (3.1) then becomes f(t,u) = f'(t,u)ô1(u) and the covariant derivative 
Vf(t,u) TM - T,M : v -* V f(t , u ) is given by V o f(i,u)	V1f'(i,tz)v'ôk(u), 
where v = v'31 (u) is an arbitrary vector in TM and	 0 

= 

Here by [' the Christoffel symbols in the chart x corresponding. to the metric tensor 
g are denoted. The symmetric part S(t, u) of Vf(t, u) in the canonical basis of TM is 
realized by the matrix

[G"7'c+]	 (3.4) 

where G is as in Remark 2.2 and OP = (V.1 k) The expression for the variation equation 
(3.2).in the chart x is	.	

0	 0 ki =	+ r,f'y' = V,f'y'. 

Let us define g3jV1f and consider the quadratic form e, = [f.,, + Then 
e, i is related to (3.4) in the sense that the eigenvalues of this quadratic form, i.e. the 
solutions of det[e 3, - Ag31 ) = 0 coincide with the eigenvalues of the matrix (3.4). Let us 
now by means of the notion c 3 = gI' 3 f8 introduce the derivative of the metric tensor
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g in the direction of the vector field 1' by jk = [ck + Cki]. Then the quadratic form 
can be written as

	

1	afk afk 

	

Cs: =	9.,k	+	+ ge,. 

Before we devote ourselves to the proof of Theorem 3.1 we add some corollaries. 
The first one generalizes a result of [2, 8] formulated there for the case M = R" and 
under slightly stronger conditions. Keeping in mind the second method of Lyapunov 
which is often used in stability theory that result is in [2, 81 referred to as "introduction 
of a Lyapunov function iii Hausdorff dimension estimates". In our point of view that 
approach can be treated as an introduction of a new metric tensor on the manifold. 

For a differentiable function v U — R the map ti : Ii x U — R defined by 
t)(i, u) = dv f(t, u) is the derivative of v in the direction of the vector field f. 

Corollary 3.1.1 Let K C D be a compact set such that ço'(K) D K is true for 
some T E In R. Let v : U —' R be a differentiable function and denote by A,(t,u) 

^ .X,(i,u) the eigenvalues of S(t,u). If for a real number d E (O, n] written in the 
form d=do+s with d0 E 10,1,...,n— 11 and s E(O,1] the condition 

sup f [A i (t, (u)) +	+ Ad. (t, (U)) 
uEK

0	
(3.5) 

+ SAd0 +1 (t, cot(u)) + (t, ça t (u))] dt 

<0 

holds, then dH(K) <d. 

Proof. We introduce on U a new metric tensor = p2 (u)g1 , by means of some 
function p U —, R+ of class C'. Let us fix a point u E U and consider a chart x 
around u. Further, let the metric tensor g and the vector field f be expressed in the 
canonical basis of TM by g1, and f, respectively. The symmetric part of the covariant 
derivative Vf(t, u) at u E U with respect to the new metric is then determined according 
to Remark . 3:1 by the matrix representation 

[G''G+ ] +:Id.	 (3.6) 

If, in particular, we choose p(u) = e	(u E U), then (t, u) = p(u)!	implies that

the eigenva.lues A i of (3.6) are related to the eigenvalues with respect to the original 

o 
metric g by the formula ) = ) +. Finally 

A + . + A 0 + s a0+,	Al+ ... + A d (, .+ sAdi + V 

guarantees .(3.5) and therefore (3.3) of Theorem 3.11	.
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To verify the conditions of Theorem 3.1 we need to compute the eigenvalues of the 
symmetric part of the covariant derivative. The next two corollaries are variations of 
this theorem using conditions on the divergence of the vector field of (3.1). Similar 
results for the case M = can be found in [17). Unlike [17) the proof given below 
follows directly from Theorem 3.1. In [2, 8, 171 these results form a part of statements 
which are fundamental for an effective realization of dimension estimates by using the 
solvability of special matrix equations. 

Corollary 3.1.2. Let K C D be a compact set such that ço'(K) D K holds for 
some r E I fl R+. Assume that for a continuous function 9: I x U —, R and for some 
d E (0, n] the conditions 

(a) (S(t,u)v,v) > -9(t,u)11v11 2 for all t E [0,7],u E U and v E TM 
r 

(b) sup J [divf(t,cot(u)) + (n — d)9(t,t(u))]dt <0 
uEK

0 

are satisfied. Then dH(K) < d. 

Proof. From condition (a) we have for the eigenvalues ), of S(t, u) 

A(i,u) ^: —9(t,u)	for all (t,u) E [0,r) XU and i = 1,... ,n.	(3.7) 

Thus, if k E {0,1,... ,n}, t E [0,r], u E 	and Ao(t,u) = 0 are arbitrary, then 

.X i (t,u) + . . . + )t,(t,u) — (n — k)9(t,u)	trS(t,u) = divf(t,u).


This implies 

.\ i (t,u) + ... + ) d,(t ,u) + S.\d0-f1(t,u)	divf(t,u) + (n — d)9(t,u). 


By using condition (b) and Theorem 3.1 the proof is complete I 
Corollary 3.1.3. Consider (3.1) on an open set U C R". Suppose that system 

(3.1) possesses a compact set K satisfying co'(K) j K for some r E In R+. Further, 
assume that there exist a number d E (0,n), an (n x n)-Matrix H = HT . > 0 and a 
continuous function 9 : I x U —, R such that the condition (b) of Corollary 3.1.2 and 
the inequality 

[HD2 i(t, u) + D2 f(t, u)TH] ^! —9(t, u)H	for all (I, u) E [0, r] x U	(3.8)


are satisfied. Then dH(K) < d. 

Proof. We introduce in U a new metric by means of the matrix (g 13 ) H. From 
Remark 3.1 it follows that the eigenvalues A(t, u) of S(t, u) with respect to the new met-
ric agree with the cigenvalues of the quadratic form corresponding to (3.4). Therefore, 
they satisfy the relation

[HD2 I(t,u) + D2 f(t, u)TH] = (t,u)H. 

Using this and (3.8) we obtain (3.7). All further steps can analogously be done as in 
the proof of Corollary 3.1.21
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In the proof of Theorem 3.1 given below several properties of linear operators in 
exterior products of Euclidean spaces [5, 6, 18] are used. Let E be an Euclidean space 
of dimension n and let T: E - E be a linear operator. For any number k € {1,... ,n} 
the k-th derivation operator Tk	

k 
A E - A kE is defined by 

	

k = T	[AidE+ sT)]

	

I	0 

For any points i,... , Ck E E this operator satisfies the equation. 

	

Tk(eiA ... Aek)=TelAe2A ... Ak	
(3.9)


+eiATe2A ... Aek+...+iAezA ... A TG-

If .\ 1 (T),... , A,(T) denotes the complete system of eigenvalues of the operator T, then 
the corresponding complete system of eigenvalues of the operator Tk consists of the () 
numbers A 11 (T) + ... + )(T) with indices 1 i1 < ... < ij < n (see, for example, 
[11]). In case T is selfadjoint all the eigenvalues of T are real and can be ordered in the 
way ) 1 (T) ':?: ... > .X,(T). The operator Tk is then also selfadjoint and it follows 

Amin(Tk) = An_k+l(T) +	+ A(T)
(3.10) 

Amax(Tk) = A, (T) + ... + Ak(T). 

Proof of Theorem 3.1. Let us fix an arbitrary u € K, a number k E (1,... , 
and arbitrary Vi,. . . , Vk € T,, M. For every t € [0, ,r] we introduce 

	

W(t) = du co tv i A ... A duc,tvk	
M 

Applying the variation equation (32) and formula (3.9) we achieve for every t in [0, T] 

the equation 

(t) = 2( [S(t, t( U) )] k (d t vi A ... A d t vk ) , dvi A ... A dUtvk) 

With (3.10) for every t € [0,r] this leads to 

2 [A.—k+1 (t, t (u)) +... + x (t, ço t (u) )] w(t)
(3.11)


	

(t)	2 [A (t, t(u)) +... + Ak (t,	 (u))] w(t). 

Therefore we conclude 

doT vi A... A duo'vkM A k	M 

IviA. AvkIIAkTM	 (3.12)


x exp I/ [A(t , t (u)) + ... + Ak(tt(u))]dt}.
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We apply the Courant-Hilbert-Fischer Theorem to the product of the squares of the 
first k singular values of dcp T and use (3.12) in order to receive that 

(r, u). a(r, u) = A 1 (Ak [(dT)*d2T]) 

	

= sup	A AkT M 
UUAkTMI

2 
=	sup	ducorvl A ... A ducorvk 

oET.M 
IIlTM=1 

exp {21 [A1(t,t(u)) + ... + Ak(t(u))]dt}. 

This last inequality and the assumptions of Theorem 3.1 finally guarantee 

SUP wd(dcpT) 
uEK

	

il—s	 S 

= sup c 1 (r,u) .	d0(TU)j	1(r,u)... 
uEK

	

Ir	 (3.13) 
sup exp J [i (t, t (u))+:.. + A d 0 (t, (u)) + SAd0 +l (t, '(u))] di
uEK	

0 

<1. 

This shows that for the map W r the assumptions of Theorem 2.1 are valid U 
Remark 3.2. The inequalities (3.11) can be interpreted as a generalization of Li-

ouville's truncated trace formula for linear differential equations in Euclidean spaces 
[17]. In particular from (3.11) by setting k = n and indicating that 

A 1 (t,t(u)) + . . . + A(t,(u)) = trVf(i,t(u)) = divf(t,'(u))	(3.14)

we obtain Liouville's trace formula in the form 

(I detdu t I) =divf(t,rpt(u))l detd cai I	for all I E (0, -r] and u € K.	(3.15) 

For a point u and a chart x in the neighbourhood of this point let again gj, 1' and 
represent g, f and V t in coordinates of the chart x. Then formula (3.15) agrees locally 
with 

where y stands for det(g,). 
For a Lebesgue measurable set S1 C D of finite volume we denote the volume of t(ç1) by V. Then the formula (3.15) provides the transport lemma [1) for Riemannian 

manifolds in the form
• vt=J	divfdV.


p)
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4. Convergence for autonomous vector fields 

We now consider compact Riemannian manifolds (M, g) without boundary of dimension 
n and of class C2 . Let on M be given a vector field 1: M --+ TM of class C' and the 
corresponding differential equation

ü=f(u).	 (4.1) 

We assume that the global flow ço : R x M - M of (4.1) exists. As in the previous 
section we denote by )q (u) ^! ... ? A,(u) the eigenvalues of the symmetric part 5(u) 

[Vf(u) + Vf(u)] of the covariant derivative Vf(u) TM -' TM of f at a point 
u e M. 

The main result of this section is Theorem 4.1 which can be considered as a general 
formulation of the Bendixson-Dulac criterion for Riemannian manifolds of dimension 
n. Certain generalizations of the original Bendixson-Dulac criterion for differential 
equations in R" (see [2, 3, 171 or for vector fields on the flat cylinder [9, 10]) can be 
derived from that theorem when adapting it to the particular situation. 

In the following the dimension of the 1-homology group H, (M) of M is denoted by 
b,, i.e. the first Betti number of M. 

Theorem 4.1. Let the manifold M with Betti number b, be compact and suppose 
that for the eigenvalues of the symmetric part S of Vf one of the inequalities 

(a) A, (u) + A2 (u) <0 

(b) A n _ i (u) + A,, (u) > 0 

is valid on M. Then the system (4.1) possesses on M at most b, non-trivial periodic 
orbits. 

Proof. We only consider the case of condition (a), the other one can be performed 
in a similar fashion by considering the negative time evolution of the flow-of equation 
(4.1). We first take b, = 0 and show that every closed orbit is constant. Suppose that 
(4.1) has a nontrivial closed orbit . Let S be a surface (membrane) in M of minimal 
two-dimensional Hausdorif measure 0 < j4S, 2) < oo with boundary . Notice, that 
such a surface as solution of the Plateau problem for Riemannian manifolds [6, 131 in our 
situation exists: The properties of the flow ensure that for arbitrary t > 0 the set t(S) 
is again a membrane in M with boundary 7. Due to Theorem 2.2 and condition (a), 
for sufficiently large t > 0 we have 4u(c,t(S), 2) < p(S,2). But this is in contradiction to 
the fact that the membrane 5 was taken to be of minimal two-dimensional Hausdorff 
measure. 

Now, consider the case b 1 > 1. Suppose that (4.1) possesses more than b 1 closed 
non-trivial orbits in M. Then there are at least two orbits 7' and 72 among them which 
are homologous to each other. Let S be a surface of minimal two-dimensional Hausdorif 
measure with boundary 71 U 72• Then again, for arbitrary t > 0 the set t(S) is a 
surface in M with 71 U 72 as boundary. For sufficiently large t > 0 the same argument 
as above together with Theorem 2.2 leads to a contradiction I
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Let us now add a version of Theorem 4.1 for the case n = 2 that in principle agrees 
with the classical negative Bendixson-Dulac criterion. The difference to Theorem 4.1 is 
actually that here a modification of the vector field is, allowed in the way that products 
af are considered with a C'-smooth function a: M -, R. In the proof it is confirmed 
that the introduction of the function a can be interpreted, similar to the methods of 
the previous sections, as a transition to an equivalent Riemannian metric on M. In a 
second corollary a result of [17] is generalized to Riemannian manifolds. 

Corollary 4.1.1. Let the manifold 'M with Betts number b, be two-dimensional 
and compact. Assume that a function a : M -+ R of class C' exists such that the 
divergence div(af) does not vanish on M. Then the system (4.1) possesses on M at 
most b, non-trivial periodic orbits. 

Proof. We pass on M to the new Riemannian metric	:= a(u)g 1 ,, for u'E M.

Consider the two eigenvalues A 1 (u) > 5t 2 (u) of the symmetric part of the covariant 
derivative of f at u E M in the new metric . Then we have divf(u) = Ai(u)+.)t2(u) for 
the divergence of f with respect to . On the other hand, a straightforward calculation 
using formula (3.6) gives

ar =divf + = div(af). 

When combining relation (3.14) with the last result it becomes clear that one of the 
conditions (a) or (b) of Theorem 4.1 are satisfied if the inequality divf > 0 or divf < 0 
holds on M, respectively U 

Corollary 4.1.2. Let the manifold M with Betti number b 1 be compact and suppose 
that there exists a continuous function 6 : M -, R such that for the symmetric part S 
of Vf one of the following conditions is satisfied: 

(a) (S(u )v , v ) TM ^! —O(u)(v,v)TM and divf(u) + (n 2)0(u) <0 (u E M, v E 
T,. M).

(b) (S(u)v,v)TM	0(u)(v, v)Tu Af and divf(u) - (n - 2)0(u) > 0 (u E M, V E 
7',. M). 

Then the system: (4.1) possesses on M at most b 1 non-trivial periodic orbits. 
Proof. Again we only prove the case of condition (a). For the second case the 

same method can be applied. Analogously to Corollary 3.1.2 we obtain Ai(u)+.)2(u) 
(n - 2)6 + divf < 0 and this coincides with condition (a) of Theorem 4.11 

We want to add a further corollary for the special case that the manifold has the 
Betti-riumber b, = 0. -It demonstrates what kind of convergence behaviour a system 
(4.1) satisfying the assumptions of Theorem 4.1 in this situation necessarily exhibits. 

Corollary 4.1.3. Let the manifold M be compact and b, = 0. Let the set of 
equilibria of system (4.1) consists of isolated points only. If one of the conditions (a) 
or (b) of Theorem 4.1 holds, then every orbit of system (4.1) converges both for t -+ oo 

and for t - —oo to an equilibrium point.	 . 

In order to prove the last result we need the closing lemma by C. C. Pugh [16]. We 
denote by X'(M) the topological, space of vector fields of class C' on M generated by 
the C'-metric.	 .
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Lemma 4.1. Let p E M be a non-wandering point of system (4.1) such that 1(p) 
0. Then in every neighbourhood off in X 1 (M) there can be found a vector field f such 
that the system ü = f(u) has a non-trivial periodic orbit through p. 

Proof of Corollary 4.1.3. Again we restrict ourself to the case of condition (a). 
Consider an arbitrary integral curve cp(, q) of system (4.1) for t - . The manifold is 
compact and therefore the w-limit set w(q) is not empty. If we assume that there exists 
an element p E w(q) such that p is not an equilibrium point for (4.1), then by Lemma 
4.1 in every small neighbourhood off in X(M) we can find a vector field f such that 
the corresponding differential equation possesses a non-trivial periodic orbit through p. 

The compactness of M implies that J can be chosen such that for the first two 
eigenvalues ) 1 (u) ^: \ 2 (u) of the symmetric part of the covariant derivative of f the 
property )I(U) + A2 (u) < 0 is maintained on M. But this contradicts the statement 
of Theorem 4.1 . Thus, we can conclude that p has to be an equilibrium point of the 
original system (4.1). Remember that the set of all equilibria of (4.1) was assumed to 
consist of isolated points only. This finally gives w(q) = {p}, or with other words, the 
considered integral curve converges for i - oo to p. 

It is clear, that the convergence for t - —oo follows in analogous manner when 
investigating the a-limit set instead I 
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