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Boundary-Blow-Up Problems in a Fractal Domain 
J. , Matero 

Abstract. Assume that ci is a bounded domain in R" with N 2, which satisfies a uniform 
interior and exterior cone condition. We determine uniform a priori lower and upper bounds 
for the growth of solutions and their gradients, of the problem tu(x) = f(u(x)) (x e ci) 
with boundary blow-up, where 1(t) = e' or 1(t) = t P with p E (1,+oo). The boundary 
estimates imply existence and uniqueness of a solution of the above problem. For 1(t) = 
with p E (1,+oo) the solution is positive. These results are used to construct a solution of the 
problem when ci C R 2 is the von Koch snowflake domain. 
Keywords: Blow-up, snowflake, fractaLe, gradient estimates 
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0. Introduction and notation 
Let ci be an open, connected subset (a domain) of RN with N > 2. The problem to 
find positive solutions of

Lu(x) = f(u(x)) for x E ci) 
u(x)	as xaci 

where f : R+ - R is a continuous function satisfying some conditions, has a long 
history. L. Bieberbach [6] considered the problem for 1(t) = e t in a planar domain with 
a smooth boundary, inspired by a problem in Riemannian geometry concerning scalar 
curvature. Since then several mathematicians have studied problems of type (0.1). A 
quick review of the history of the problem is given in C. Bandle and M. Essén [2], 
including references. Here we mention some of these results, which are particularly 
important to our work. In 1957 J. B. Keller [9] and R. Osserman [12) proved existence 
of solutions of problem (0.1) for rather general non-linearities f. In the paper [2] by 
C. Bandle and M. Essén from 1994, the authors presented (in particular) a complete 
characterization of the boundary behaviour of solutions of problem (0.1) in domains 
with C 2-boundary. Recently, C. Bandle and M. Marcus [5] published results analogous 
to those of C. Bandle and M. Essén, with the Laplacean replaced by a more general 
uniformly elliptic second order differential operator defined on a Riemannian manifold 
ci with a sufficiently smooth boundary. 

The problem (0.1) has applications in physics. In particular, if ci is the interior of 
a hot metal sphere and if 1(t) = e', then u represents the electromagnetic potential in 
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(see [7: p. 838]). Further connections with physics may be found in the references in 
(2].

The underlying idea of the technical calculations in this paper is the following. 
Assume that 92 has some kind of boundary regularity, e.g. that 09 satisfies a uniform 
interior and exterior cone condition (the definition is given in Section 2). We find a 
solution Uk of the equation Lu = f(u) with boundary value k (k E Z+) and conclude, 
by the maximum principle, that the sequence {uk}kEZ+ thus obtained is increasing. 
Next, we solve the problem (0.1) in an interior cone. Finally, a maximum principle 
argument shows that every function Uk is bounded from above (in the cone) by the 
interior cone solution and a compactness argument proves the existence of a solution u 
of the problem (0.1), since the interior cone condition is uniform in ft 

Typically, upper bounds for the growth of the solution u = u(x) of problem (0.1) 
as x approaches the boundary of n are obtained from the interior cone condition, while 
lower bounds are obtained from the exterior cone condition. However, there is a rescaling 
argument (Section 7) which transforms the problem of determining the boundary blow-
up rate of Vu to the corresponding problem in an infinite cone, which uses the interior 
cone condition only. It turns out that this rescaling argument provides both upper and 
lower bounds of u too. 

The results proved by the above technique (Sections 1 - 7) are adapted to solve the 
problem (0.1) when 9 is the bounded domain whose boundary is the von Koch snowflake 
curve. A crucial geometric property in this context is that there exists a dense subset 
of ai which meets a semi-uniform interior and exterior cone condition (Section 8). 

The solution of the problem (0.1) is unique when Q meets a uniform interior and 
exterior cone condition, but our uniqueness proof fails when Q is the von Koch snowflake 
domain. The proof technique is taken from [2]. Uniqueness results for the problem 
(0.1) in certain non-smooth domains have also been obtained by A. C. Laxer and P. J. 
McKenna [10], and by M. Marcus and L. Véron (11] who also proved blow-up estimates 
for f(t) = tI' with p E (1, +oo). 

Throughout the paper we use a result from (5], which we state here. First we have 
to introduce some notation and assumptions. For functions u E C2 (Q) fl C(1l) we define 
the semilinear second order differential operator L by 

Lu(x)= > aii  
k=1 

where u 1 denotes differentiation with respect to the i-th component of x E Q. It is 
assumed that L is uniformly elliptic with a, 7 = aji and as,, bk E C(l) for some 

E (0, 1). Consider the problem 

Lu(x)=g(x,u(x)) forxecz}	
(0.2) 

u(x) -' 00 as x -+ 

where ôS1 satisfies a uniform interior and exterior sphere condition and g is continuous in 
its domain of definition. Suppose that there are two continuous functions I :	- 
and h: 0 - R such that the following four conditions (G) 1 and (F) 1 - (F)3 hold:



Boundary-Blow-Up Problems in a Fractional Domain	421 

(G) 1 lim -) = h(x) uniformly in fl. 

(F) 1 I e C'(R+), 1(t) — oo as t -p +00, and f(t),f'(t) ^ 0 for t 2 i' 2 0 for some t'. 
Define

to = inf {T > t': 1(t) <f(r) for every t r}. 

Condition (F) 1 implies that to < 00. Let F denote the primitive function of jr with 
F(to) = 0. The third conditionis the follwing one. 

(F) 2 W(t) 
= 100 

[2F(s)] 112 ds exists for all t 2 t0. 

Finally we assume 

(F)3 lim 'P(pt) > 1 for all 6 E (0, 1). 
i—+oo 

Then the following theorem holds. 

Theorem 0.1. Assume that conditions (G) 1 and (F) 1 - (F)3 hold. Then there 
exists at least one solution of problem (0.2). Let 4 denote the inverse of T. Then the 
boundary behaviour of any solution of problem (0.2) is given by 

U(X) lim =1	 (0.3) 
z—.81 

uniformly in Q. Here *5(x) denotes the distance from x E ci to the boundary Oci, in the 
metric ds 2 = bj(x)dxdx, where (b13 (x)) is the inverse matrix of (a,(x)). 

1. Solutions of Au = uP in an open cone 

Let N 2 2 and let ciN_l be a domain in 5N with a C2-boundary, where 5N-1 
denotes the unit sphere in Ri". For x E R' let (r, ) denote the polar coordinates of x, 
i.e. r = Ixl and 0 E 5N-1 

Definition 1.1 (see [3]). Let 11N1 be as above. We call a set C defined by 

C = 11 E RN . x has polar coordinates (r,9) with r > 0 and 0 E SI N _l} 

an open cone in RN. 

In this section we are interested in solutions of the problem 

(P) Au(x) = u P (x) for x E C 
u(x) —+ 00 as x — 

for p E (1, +oo). In particular we prove the following
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Theorem 1.2. Let 1 <p <+00 if N = 2 and let 1 <p < NN if  >, 3. Then 
there exists a positive solution u(x) u(r,9) = rTa(9) of problem (P), such that 
a(9) solves the problem 

Lea(9) = (P(9) + CN,p - a(9) for 9 E ciNl } 
—i

	

	 (1.1)
00 as 9 -+ 9ciN_l 

where CN, = — P 2 1 .(2-N+ 	and Ae denotes the Laplace -Beltrami operator on 
the unit sphere SN-i of RN. 

Proof. We have

ô2u(r,9)	N - 1 au(r,9) +	Leu(r,O). =	+ -- .u(r, 9)	
r	8r	r2 

Suppose u(r, 9) = r q - o(8) solves our problem. Substitution in (P) gives 

r	- [q(q + N —2) . a(9) + Loa(9)] -	- a(9). 

With the choice q = -2--j- the r-dependence vanishes and the remaining equation is 
exactly the equation of problem (Li) I 

Let us investigate some properties of problem (1.1). First, note that the Laplace-
Beltrami operator te is uniformly elliptic in 11N.1. Next, we see that the right-hand 
member of our e'uation may be written as g(a(9)), where g(t) = t+CN,-t for all t > 0. 
The function g satisfies limj...., = 1. Hence our equation satisfies' the conditions 
(G) 1 and (F) - (F) 3 with f(t) = ti' for all t > 0, and Theorem 0.1 allows us to conclude 
that there exists an a(9) with the desired properties. 

Note that g(t) is allowed to be negative for t T, for some finite T, since in the 
proof of Theorem 0.1 the maximum principle is used close to the boundary of Q, where 
u is large enough for g(u) > 0 to hold. 

In view of an' elementary calculation of the function 1 corresponding to 1, 'we get 
from Theorem 1.2 and Theorem 0.1 the following 

Corollary 1.3. The"solution u(x) u(r,9) = rT -a(9) of problem (P) given by 
Theorem 1.2 satisfies for every r > 0

2 

lim	u(r,9). (
)	

-r '-' . 6(9)=1	 (1.2) 
N 88-I 

where 5(9) denotes the'distance from 9 E ciN_i to c9czpj_ 1 in the metric of the unit 
sphere SN_I of RN. 

Of course, the idea to separate variables in a cone as in the proof of Theorem 1.2 
is well-known. For example, C. Bandle and H. A. Levine 141 used this technique when 
solving a reaction-diffusion problem in a sectorial domain.
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Notice that although we cannot construct a solution of problem (1.1) with separated 
variables when p >	-'-, it is easy to find a supersolution of this form, with the 
boundary behaviour (1.2): Pick a(9) which solves	c(0) = crP(9) with boundary
blow-up. Theorem 0.1 says that such a function exists. 

Next, we will prove a result (Proposition 1.8) which may be used to study problem 
(0.1) in more general domains than an open cone C. However, first we have to state 
another definition and prove some preliminary results. 

Definition 1.4. Let R> 0 be given and let C be an open cone in R". Define a 
cut-off open coneCR in RN by 

CR = {xEC: r=IxI<R}. 
Lemma 1.5. Suppose that 0 E C 2 (CR) solves the problem 

Lq5(x)<qY'(x) for xECR'1 
O(x) —, oo as x --+ 3CR.	

(1:3) 

If ii E C 2 (CR) fl C°(C,) is any solution of the problem 

Lu(x) = u"(x) for x E CR, 

then we have u(x) < (x) for all x E CR. 

Proof. Let v = u — 0. Suppose there is a point x0 E CR such that v(xo) >, 0. Since 
v(x) — — oo as x — 3CR, this implies that there must be a point yo E CR where v 
attains its positive maximum. Hence there is an open neighbourhood B(yo) of yo such 
that v(y) > 0 for all y e Be(yo). So we have 

v(y) = Lu(y) — )LO(y ) ^! u(y) — q5P(y) > 0 

for every y E Be(y), and v is subharmonic in B(yo). Hov.ever, this contradicts the 
fact that v attains a maximum in y. Thus there is no x0 E CR such that v(xo) > 0 
and the lemma is proved I 

Clearly, Lemma 1.5 still holds when CR is replaced by any bounded domain 11. An 
obvious modification of the proof allows us to treat the case u E C 2(). with boundary 
blow-up. 

Lemma 1.6. Assume that the bounded domain Q C R' (N > 2) satisfies an 
exterior cone condition. Let 

K = { E C°() fl C2,-(Q) : v J&IJ = k and v o} 

where k E Z. Then there exists a unique solution u E K of the problem 

Au(x) =&(x) for xefl	 14 
u(x)=k for xEOfl	J	S
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where p E ( 1 , + 00). 

Proof. The proof is based on a theorem of K. Akô [1]. Let v E K. Consider the 
problem

Luo(x) = v'(x) for x € ci 
u(x) = k for x E an.

(1.5) 

According to [8: Theorem 6.13/Pzob1em 6.3] there exists a unique u 1, E K which solves 
problem (1.5) (this result is called Lemma D in [1]; we have to refer to [8] since in [1) the 
domain is nicer than our domain ci). Define T: K - K by T(v) = u,,. The functions 

i 
and a supersolution of problem (1.4), respectively. By [1: Main Theorem] there exists 
a fixed point u € K of T, i.e. u solves problem (1.4) U 

Lemma 1.7. Assume that ci C RN is a bounded domain which satisfies an exterior 
cone condition. Then there exists an increasing sequence { Um}=i of positive C 2 (1l)-
functions such that

Lurn(X) = u(x) for x € ci 
lim um(x) = 00 for x E ôci (	

(1.6) 
m —. +oO	 ) 

Proof. Let rn E Z. By Lemma 1.6 there exists a unique, positive solution Urn E 
C2 (fl) fl C°(Z) of problem (1.4). By the maximum principle (use the argument in the 
proof of Lemma 1.5) Urn um+1 holds throughout Q. Hence { Um}i is a sequence as 
stated I 

Proposition 1.8. Let CR be a cut-off open cone in R' (N > 2). There is exactly 
one positive solution u of the problem 

Au(x) = u"(x) for x € CR	
(1.7) 

u(x) — x	asx — OCn.J 

For N = 2 and for N 2 3 with 1 <p < NN the boundary behaviour of this solution is 
controlled by the formula

ii (r, 8) :5 u(r, 8)	ü(r, 8) + v(r). 

For N > 3 with p 2 4 2 the upper bound still holds. The boundary blow-up of the 
functions i and v satisfies

( 
lim i 8) (r	_______	 T(8) = 1 

(r,8) — OCR	 2(p+ 1)) 

limv(r) . (j 1 )	•(R-r)=1 
r—R 

where (r, 8) are the polar coordinates of x € CR and 6(9) denotes the distance from 
0 € ciN_l to OciN_I in the metric of the unit sphere SN—i of Rh'.
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Proof. If N = 2 or N > 3 with 1 <p < let i denote the restriction to CR of 
the solution of problem (P) in the open cone C which is given in Theorem 1.2. If N > 3 
and p ^! N N 2 , instead pick as i the supersolution with the same boundary behaviour. 
Let v denote the (radially symmetric) maximal solution of the problem 

Lv(x) = v)(x) for x E B(0) 

v(x) - - as x - SBR(0) 

as in [2]. Now define 

U(x) =ii(x)+v(x)	for x  CR flBR(0) = Cft. 

Then

AU(x) = u(x) + AV(X) < up(x) + V P (X) < (ü(x) + v(x))" UP(X) 

for every x E CR . Hence U is a solution of problem (1.3) in Lemma 1.5. By an argument 
given in [9: Theorem III] and applicable because of Lemma 1.5, Lemma 1.7 and the 
monotonicity of the right-hand member of our problem, we may conclude that there 
exists a solution u of our problem: Pick an increasing sequence {m}. 1 of positive 
solutions of problem (1.6). By Lemma 1.7, such a sequence does exist. Lemma 1.5 says 
that this sequence is uniformly bounded from above by U. As in [9], this fact and the 
conditions (F) 1 and (F)2 on 1(t) = t" imply that there exists a solution u E C2 (l) of 
problem (1.7). By construction, u(x) U(x) for every x E Q. So, Corollary 1.3 and [2: 
Theorem 2.61 yield the desired upper growth control of u(x) as x - 5CR. 

A. C. Lazer and P. J. McKenna proved in [10: Theorem 2] that problem (0.1) has at 
most one positive solution if Q is a domain bounded star-shaped with respect to some 
point. Hence the above constructed solution is unique. Furthermore, when N = 2 or 
N > 3 with 1 <p < the uniqueness proof of A. C. Lazer and P. J. McKenna gives 
the lower bound ü(r, 9) of u(r, 9), and the proof is complete I 

Remark 1.9. Let r > 0 be fixed. As 9 E clpq.. 1 approaches oclN..I, r (9) tends 
to the N-dimensional Euclidean distance dist(x, OCR), and the boundary behaviour of 
ü coincides with that of a solution of problem (0.1) in a smooth domain, calculated in 
[2: Theorem 2.6]. 

2. Solutions of Lu = uP in a domain with a non-smooth 
boundary 

Let ci be a bounded domain in R' with N > 2. The following definition is very 
important in the present paper. 

Definition 2.1. ci is said to meet a uniform interior cone condition if there exists 
a fixed number R > 0 such that for each z E Oci there exists a cut-off open cone CR C ci 
with z E OCR fl Oft If z is the vertex of CR, then the cone is denoted by CR(Z).
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In particular, the uniform interior cone condition means that there is a fixed subset 
11 N-1 of SN_i such that for each z E aci it is possible to construct a cone with the 
desired properties from R and a suitably rotated copy of ciNI. 

With obvious changes in Definition 2.1 we may define a uniform exterior cone con-
dition. 

Assume that ci meets a uniform interior cone and a uniform exterior sphere condi-
tion. We determine an upper bound for the growth as x , ôci of positive solutions of 
the problem 

(P)' u(x) = uP (x) for x E ci
u(x) -	as x -+ ac 

for p E (1, +oo). The technique developed by C. Bandle and M. Essén in [2) immediately 
yields a lower bound for the growth of u(x) as x approaches 311. 

Let C. ) (z) denote a cut-off open cone with cut-off radius y(e) > 0 and vertex at 
z E 311, such that C.y(e ) (Z) C Q. By our uniform interior cone condition, there exists 
such a cone for every z E 311 and for every cut-off radius 7(e) E (0, R). With this 
notation we are ready to state and prove the following result. 

Theorem 2.2. Let u be a positive solution of problem (P)'. Then for any e > 0 
there exists a 7(e) > 0 such that for every x E UzEaciC. )(z) C 11 the estimates 

2 

P i .	Ix — zI	>1—c	(2.1) 
U(X). (2(;+1)) 

/	1	 2 
u(Ix—zIO)., )	. IxzHT.T ( e)< 1 + e	(2.2) 

hold. 

• Proof. The lower bound (2.1) of the growth of u(x) as x approaches 311 is derived 
by copying the proof using the uniform exterior sphere condition discovered by C. Bandle 
and M. Essén in [2]. 

The uniform interior cone condition gives the upper bound (2.2) of u. Let z E 311. 
Pick an e > 0 and pick a cut-off open cone C.Y ( E )(z) C 11 with cut-off radius y(e) E (0, R) 

to be determined later, and vertex at z E 311. Let 11 NI C S' 1 denote (the possibly 
rotated copy of) the subset of the unit sphere which defines the interior cone CR(z) 
with vertex at z; this subset also defines C.,. ) (z). By Proposition 1.8, there is a unique 
solution U of problem (P) in this cone. Lemma 1.5 implies that ti is dominated by U 
throughout C ) (z). Thus Proposition 1.8 gives the estimate (2.2) in the cone C7()(z) 
if -y(e) is chosen small enough. z was chosen arbitrarily on the boundary of Ii, and by 
Proposition 1.8 the same y(e) works for all z, so the upper bouhd for u is proved I
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3. A partial result in a more general domain 
Let ci be a bounded domain' in R" with N 2 2, which satisfies a uniform interior 
cone condition. We establish an upper and a lower bound for the growth as x -* 
of positive solutions of the problem (P)' in Section 2, with cias above. For technical 
reasons, if N 2 3, the lower bound holds for "small" values of p only. 

With the notation of Section 2, we state the following result. 

Theorem 3.1. Suppose that the domain ci C R' (N 2 2) satisfies a uniform 
interior cone condition. Let u be a positive solution of problem (P)' with p E (1, +oo) 
if N 2 and pE(1, T/!_ ) if  23. Then for any  >0 there exists a7(e)> 0 such 
that for every x E UZE89C .r(e)( z ) C ci the estimates 

u(x). (
	

(2_N+)),Ix_ ZIP- 2 i—€	(3.1) 

u (I x — z I, 9 ) .	 . Ix — z	. (0)	1+e	(3.2) 

hold.
Proof. The upper bound (3.2) of u follows from the uniform interior cone condition: 

The existence of a -yj(e) > 0 such that (3.2) holds was proved in Theorem 2.2. 
Normally, the lower bound (3.1) would follow from e.g. a uniform exterior sphere 

condition, but actually we use the interior condition again. However, the best lower 
bound for the less general domain in the next section is obtained from a uniform exterior 
cone condition. 

To prove (3.1), pick an e > 0. Let z e 3S1 and choose R > 0 such that the set 
ÔBR(z)flci is non-empty, where BR(z) denotes a ball of radius R centered at z. Because 
of the uniform interior cone condition, R may be chosen independently of z E ôci. For 
r>0,define

v(r) = (_CN,p) T	 (3.3) 

where CN,p was defined in Theorem 1.2. Note that (_(7N , p) T is the constant in 
(3.1). An elementary calculation gives 

Lv(r) = v"(r)	(r > 0).	 (3.4) 

Here the restriction on p for N 2 3 is needed, since —CN, P must be positive. Now put 

	

t5(r) = v(r) - (—CN,p) P -' . RT	for r E (0, R]. 

Then i3 > 0 in the ball BR(0) and 3(R) = 0. Finally define 

vi(x)= 5 ( I x — z I)	for xEBR(z)flcirr:Q'. 

It is a consequence of (3.4) and Lemma 1.5 that v 1 (x) 5 u(x) for all x E W. Since R 
does not depend on the choice of z E 5ci, there is a 72 (e) > 0 such that the lower bound 
(3.1) holds in C12( )(z) for every z E t3ci. Choose -y(e) = min (-yi(e),-y2(E)) I
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Remark 3.2. It is of course desirable to choose the constant in equation (3.3) 
as big as possible. If (_CN P ) +r is exchanged for a larger number, the equality sign 
in equation (3.4) is transformed into an inequality sign. Unfortunately, the resulting 
inequality goes in the wrong direction for Lemma 1.5 to give the desired conclusion 
V1 <U in il'. 

Note the slightly annoying fact that the constant in the lower bound (3.1) is strictly 
less than the constant in the upper bound (3.2). There is no reason to believe that 
the lower bound is the best possible for every domain satisfying a uniform interior cone 
condition. In fact, if we impose on ci a uniform outer cone condition, we are able to 
find a technique (Sections 4 and 7) which gives a better lower bound. 

4. An improved lower bound 

Assume that ci meets both a uniform interior and exterior cone condition. Then we are 
able to construct a better comparison function than in the previous section. First we 
prove a proposition, in which we assume that R > 0 and clN1 C S"'' is a domain 
with C 2-boundary. Furthermore, let CR denote the corresponding cut-off open cone. 

Proposition 4.1. If p E (1,+) when N = 2 or if  E (1,-) when N 2 3, 
then there exists a positive solution v of the problem 

Lv(x) 2 v(x) for x E C 
v(x)—* oo asx—aCR \{xECR : l x I=R)	 (4.1) 
v(x)=0 for xE{xECR:IxI=R}. 

Furthermore, for any e > 0 there exists a -y(e) E (0, R) such that for every x (r, 9) E 
C..y(e) the estimates

(1 - e) . ,a(9)	v(r, 9) . rT <a(9)	 (4.2) 

hold where c(9) > 0 denotes the solution of problem (1.1) in clN_1. 

Proof. First we construct v satisfying problem (4.1). Let 3(r,9) = rT . c(9) be 
the restriction to CR U {x e OR ixI R} of the solution of problem (P) in C, given in 
Theorem 1.2. For (r, 9) e CR define 

v(r,9) = 5(r,9) - RT . a(9). 

Hence v(R, 9) = 0 for every 9 E ciN_i, v(r, 9) 2 0 for every (r, 9) E CR and v(r, 9) -+ oo 
as (r, 0 ) -+ 5CR if r < R. It remains to check that Lv > vi'. Let (r, 9) e CR . Then 

Lv(r,9) = f2 . (r - P 
2 
1 - R- Pl . P(9) - CN, . R- P 2 1 . r	(9) 

-2	__2_	__.2__ r	(r p-i - R	. a'(0) 

since —CN, P 0 for N and p as in the proposition. Here the restriction on p for N 2 3 
is necessary. Furthermore, 

-2	_2	 2	 2	 2 r . (- T - RT) 2 (rT -
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for every r E (0, R I . Hence, fv(r, 8) ^! vP (r, 8) for (r, 8) E CR and v(r, 8) solves problem 

Next, we prove that our v meets estimate (4.2). The lower bound holds in C 1 () if we 

choose 7i (e) such thaty (e) R T-1i	e. The upper bound of v(r, 8) follows from our 
construction: W, 8) is dominated by i3(r, 8). But this means that for any 72 (e) > 0 the 

- inequality v(r,0) r -' < a(8) holds for every r E (0,72 (e)), since v(r,8) . r"-' = a(8). 
Define y(e) = mm (71(e),72(e)). Then equation (4.2) holds in C.7()I 

An immediate consequence of Proposition 4.1 and Corollary 1.3 is the following 

Corollary 4.2. For every e > 0 there is a cut-off radius R'(e) E (0, R) and a 
7(e) > 0 such that

p-i 
1—ev(r,8) (! 1 )	. r . (8)<1+e	(4.3) 

for every(r,8) E CR'(e) satisfying (9)	7(C). 

The natural idea to subtract R . c(8) from ti(r, 8) to obtain v(r, 8) in the proof 
of Proposition 4.1 does not work if p is larger than N N (when N > 3), since in this 
case the inequality v(r, 8) ^! vP (r, 8) will not hold in CR. 

Using Proposition 4.1 it is not difficult to prove the next Theorem 4.4, providing 
boundary-blow-up control for solutions of our problem. Denote by ',_i and Q,_, 
the subsets of S" 1 defining the interior and the exterior cones. Recall that by C7(z) 
we understand the inner cone with vertex at z E all, which is defined by a (possibly , 
rotated) copy of	and cut at the distance > 0 from Z. 

Theorem 4.4. Suppose that the bounded domain Q C R" (N > 2) satisfies a 
uniform interior and exterior cone condition. Let u be a positive solution of the problem 
(P)' with p E (1, +00) if N = 2 and  E (i , L) if N? 3. Then for any -E >0 there 
exists a 7(e) > 0 such that for every x € UZ EaciC.()(z) C Q the estimates 

u (I x — z I, 8) , I x — z I) — ) >(1—e)13(9)	 (4.4) 
u(Ix_zI,8) , Ix_zI T	(1+e) . (8)	 (4.5) 

hold where c(8) and /3(8) denote the solutions of problem (1.1) inQ'N _ j and SN \ 
cl_ . If N > 3, estimate (4.5) holds for p ^: - too, if a(8) denotes the supersolution 
of problem (1.1) as in Proposition 1.8. 

Proof. Pick an e > 0. The existence of a 7i(e) > 0 such that' the upper bound 
(4.5) holds was proved in Theorem 2.2: The upper bound was proved using the uniform 
interior cone condition. 

To deduce the lower bound we use the uniform exterior cone condition. Define 
WN_i = S'1 \fl e _I and w_ = ci_ 1 . Pick a z E Oil. In accordance with the 
uniform interior and exterior cone condition, we may choose an R > 0 which is inde-
pendent of z, such that the cut-off open cone C(z) with vertex at z, defined by R and
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a (possibly rotated) copy of	is a subset of Q. The cone CR( z ) defined by R and 
WN_1 contains C(z) and w CC WN_1 . By Proposition 4.1 there exists a v which 
solves. problem. (4.1) in CR( Z ) . Lemma 1.5 implies that u v in CR( z ) fl, in particular 
this is true in C(z). Hence the lower bound for v, given in (4.2), is. ,a lower bound 
for u'too. Thus, Proposition 4.1 says that there exists a 72( e ) > 0 such that equation 
(4.4) holds in C 72 (e)(4 where 0(9) solves problem (1.1) in WN_1 . This estimate is 
independent of zE ffl, so the theorem follows if we choose y(e) = min(-yi(e),-y2(e)) I. 

5. The equation Au. = eu	. 

Two problems of type (0.1) in domains with regular boundaries have been the subject 
of a lot of research since L. Bieberbach's survey [6] from 1916. These are the cases 
1(t) = tP (p e (1,+00)) and 1(t) = e t . It turns out that the methods of Sections 
1 - 4 may be applied also when 1(t) = et. We prove results analogous to Theorem 
1.2 and Proposition 1.8. Then, for a domain satisfying a uniform interior and exterior 
cone condition and condition (I), the proof of Theorem 4.4 may be copied to obtain the 
desired growth control for the solutions of our problem. 

Let C be an open cone in RN (N > 2). Explicitly, the problem we are interested 
in for the moment is  

(P) 1 Au(x) = e u ( z ) for x E C	 .	.	. 

	

u(x) - oc as x —i ôC	 . . . - 

Theorem 5.1.' There is a solution u(x) u(r,8) = a(9) - 2 log r 'of problem '(P)1 
such that c(9) solves the problem	 . .	. 

Aoc(9) = 2(N - 2) +e° for 9 E clN_1.l 	(5 1 
as9-OQp'.	 . J 

Proof. We have 

Lu(r,9) =+ N 
	(_2) +

	..oa(9) 

	

r2	r	r	r2	 r2 

if and only if o(9) solves problem (5.1). The right-hand member of (5.1) may be written 
as g(a(9)) where'g(t) =2(N - 2) + e (t > 0). Hence lim t ..,o 21 =1 and g(t) satisfies 
the conditions (G) 1 and (F) 1 - (F) 3 with f(t) = e , (t > 0) (Section 0). Theorem 0.1 
implies that there exists an (9) with the desired properties. This concludes the proof I 

Corollary 5.2. The, solution u(r,9) = a(9) - 2logr of problem.(P) i given by 
Theorem 5.1 satisfies for every r > 0.	 '	.. 

urn . [u(r,9) + 2log(r 8(9))]'= log 2.'  

Proof. "A computation of the function 4 corresponding to f(t) = e', -Theorem 0:1 
and Theorem 5.1 gives (5.2) 1'.'



Boundary-Blow-Up Problems in a Fractional Domain	431 

Remark 5.3. The solution in Theorem 5.1 need not be positive, not even when r 
is small. Indeed, if C is a sector of opening angle 2s with s E (*ir,ir), then (8) is 
symmetric under reflection in 8 = s, i.e. for 8 < s we have c(8) = a(2s - 8), and 

	

f\	 /ir9\ 
a(8) = log	

2 

(-) - 
2log sin ( -

) 

for 8 E (0, s) (see [2)). 

By using the technique of the proof of Lemma 1.5, we prove the following 

Lemma 5.4. Suppose that 0 E C 2 (CR ) solves the problem 

q5(x)< e	for x E CR	 -	
(5.3) 

(x)-400 asx-4aCR. J 

	

If U EC2(C) fl C°( j ) is any solution of	- 

Au(x) = e'	(x E CR), 

then we have u(x) <(x) for all x E CR. 

Again, Lemma 5.4 remains valid when we replace CR by any bounded domain l, 
and a slight modifléatinof the proof allows us to consider u E 

C20.1 w - ith boundary 
blow-up. 

Before proving the following Proposition 5.7 which is the analogue of Proposition 
1.8, we need two more lemmas. 

Lemma 5.5. Assume that the bounded domain Q C R N (N > 2) satisfies an 
exterior cone condition. Let 

K= { V e C°(2)flC2'() : ' v laci	k} 

where k E 7L. Then there exists a unique solution u E K of the problem 

Au(x) = e'	for x € Q	 ( 
u(x)=k for xEôZ. .J. 

Proof. Let v K. The proof is based on the before mentioned (see Section 1) 
theorem by K. Akô [1]. Consider the problem 

Lu 0(x) =e'	for x E c	•' ( ) 
u(x)=k for x'€8l.	J 

According to [8: Theorem 6.13/Problem 6.3] there exists a unique u, E K which solves 
problem (5.5). This result is called, Lemma D in [1]; we have to refer to [8] since in [1)
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the domain is nicer than our domain ft Define T: K -i K by T(v) = u i,. In 121 it is 
shown that the maximal solution of the problem U(z) = eU(x) in the strip 

H5 = { (x 1 ,... , XN) x  RN: 0 <x 1 <2s} 

depends on x 1 only. In fact, U(x) = U(x i ) enjoys U(x i ) = U(2s - x 1 ) and 

f 2\ 
U(x i ) = log	- 2log sin 

for x 1 E (0, s). Since f is bounded, we may pick a strip 115 containing Q such that 
U(x i ) < k throughout QflH5 . Thus, 1 (x) U(x i ) (x E ) and 2 (x) = /c (x E ) 
are a sub- and a supersolution of problem (5.4). By [1: Main Theorem] there exists a 
fixed point u E K of T, i.e. ü solves problem (5.4)1 

As in the case /.0 = u, Lemmas 5.4 and 5.5 prove the following result. 
Lemma 5.6. Assume that Q C R N is a bounded domain which satisfies an exterior 

cone condition. Then there exists an Increasing sequence {um}._ 1 of C2(Q)-functions 
such that

Lum(x) = eiz	for x E l 1
(5.6) hmum(x)=oo for xEOftj 

Proposition 5.7. Let R > 0 and put c(N, B) = max {o, log	} + log 2. There
exists a unique solution u of the problem 

Au(x) = e'	for x E Cn 1 
u(x) -4 00 as x -, OCR. J	

(5.7) 

The boundary behaviour of u is controlled by the formula 

i(r, 8) 5 u(r, 8) <i(r, 8) + v(r) + c(N, R) 

where v(r) — — i og 4NR2 
(fl2,.2)' (r E [0,R)) and the boundary blow-up of i satisfies 

urn	[i(r, 8) + 2 log (r . 45(8))] = log 2. 
(r,6)—OCR 

Proof. Let ü denote the restriction to CR of the solution of problem (P) 1 in the 
open cone C which is given in Theorem 5.1. The lower bound is proved as in Proposition 
1.8, using Lemma 5.4 instead of Lemma 1.5. 

To prove that there exists a solution of problem (5.7) and to deduce the upper bound 
for this solution we suggest the following argument. Define v(r) = log (r e 
[0, R)). A simple computation shows that v is a radially symmetric solution of the 
problem

v(x) < e'	for z E BR(0) 1 —	
(5.8)

v(x) - oo as x — 8BR(0). j
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As usual BR(0) denotes a ball of radius R, centered at 0. Define 

	

U(x) U(r,9) := ü(r,9)+v(r)+c(N,R)	((r,9) E CRflBR(0) = CR). 

Then, by (5.8), 

	

LU(r, 9) = Li(r, 9) + Lv(r) < e 6 "0 + &'(') < eu(r,O)1 + ev(Tc2	(5.9) 
where

= log  + max {0, log 2 + 2 log R}	and	c2 = max {o, log 2 + log 

and thus c i + c2 = c(N, R). Furthermore, it is not difficult to prove that 

	

v(r) + c2 2 v(0) + c2 = log	+ c2 log  

ü(r,9)+ c1 = c(9) - 2 log r + c1 2 log  
for every (r, 9) E CR . In view of these inequalities, inequality (5.9) implies 

LU(r,9) <	 =	 (5.10) 

for every (r, 9) E CR . By the argument in the proof of Proposition 1.8, replacing 
Lemma 1.5 and Lemma 1.7 by Lemma 5.4 and Lemma 5.6, inequality (5.10) is enough 
to prove that there exists a solution u of problem (5.7), which is bounded from above by 
u + v + c(N, R). The boundary behaviour of i is an immediate consequence of Corollary 
5.2. The uniqueness of u follows from [10] where .a. uniqueness proof for star-shaped 
domains is given U 

Proposition 5.7 is the main tool in the proof of Theorem 5.8, providing growth 
control for solutions of the problem Au = e' in a domain satisfying a uniform interior 
and exterior cone condition. As in Section 4, denote byand c1,J _ the subsets 
of S'_ 1 defining the interior and the exterior cone. Now we introduce the following 
condition: 
(I) If Q is such that whenever z E ô1 is a corner and C(z) is the open cone which 

defines the exterior cone C(z), then Ce(z) fl c = 0. 
Theorem 5.8. Suppose that the bounde1 domain Q C R' (N 2 2) satisfies a 

uniform interior and exterior cone condition as well as condition (I). Let u be a solution 
of the problem 

(P)', Au(x) = e'	for x E S1 
u(x) - oo as x - 511. 

Then for every sufficiently small -y > 0 and for every x E Uz€8C.1 (z) C 11 the estimates 

0(9) <u(rO)+2 log r<a(0)+lo(2 
4NR2 

2)2	 (5.11) 

hold where a(9) and 6(9 ) denote the solutions of problem (5.1) in 1Z_ and SN_i\

r = Ix - zI and R is the (uniform) cut-off radius of the interior cones. 

Proof. Copy the proof of the upper bound in Theorem 4.4, but use Proposition 
5.7 instead of Proposition 1.8. The lower bound is proved by choosing R so large that 
the cone Cji( z ) with vertex at z E 511, which is defined from S i"' \fl contains Q. 
Proposition 5.7 and Lemma 5.4 give the desired lower bound I
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Condition (I) may be omitted without changing the statement of the theorem. This 
will be proved in Section 7. 

6. Existence and uniqueness results 

In the present section we prove existence of unique solutions of our problems in a 
bounded domain satisfying a uniform interior and exterior cone condition. To obtain 
such results we need Lemmas 1.7 and 5.6. 

Lemma 6.1. Assume that ci C R N is a bounded domain which satisfies an exterior 
cone condition. Then there exists an increasing sequence {urn}_ i of C2(cZ)-functions 
such that

L ,-m(x) = f(urn(x)) for x E ci)
(6.1) limurn(x)=c for xeaci j 

where either f(t) = t" .( > 1) or 1(t) = e t . The functions Urn are positive if 1(t) = t'. 
The existence part of the following theorem is a simple consequence of Lemma 6.1. 

Theorem 6.2. Assume that ci C R N is a bounded domain which satisfies a uniform 
interior and exterior cone condition and let either 1(t) = t" •(p> 1) or 1(t) = e . Then 
there exists a unique solution of the problem 

Lu(x)=f(u(x)) for xEcl 

u(x) , oo as x
	 (6.2)

-  

In the case f(i) = t', u is positive. 

Proof. Pick a sequence {urn}'=j of functions as in Lemma 6.1. Define 

u(x) = (x e ci). (6.3) 

We claim that this is a well-defined function. Let K C ci be a compact subset of Q. 
The uniform interior cone condition makes it possible to cover ci by interior cones. In 
each of these cones CR, Proposition 1.8 (or Proposition 5.7, depending on the choice of 
1) provides a comparison function 4' which solves the problem 

L(x) = f((x)) for x E.CR }

	
(6.4)1(x) - oo as x - oCR. 

By Lemma 1.5 (or Lemma 5.4) every function in the increasing sequence {urn} is 
bounded by in CR. Hence, in K the sequence {um} 1 is uniformly convergent. This 
proves our claim. The function u belongs to C 2 (9) and solves Lu(x) = f(u(x)) (x E ci) 
(see [7: pp.787)). By construction, u(x) blows up at the boundary. 

To prove uniqueness, we use the a priori bounds in Theorems 4.4 and 5.8. Note 
that by Corollaries 7.4 and 7.7 the extra conditions in these theorems may be omitted. 
We consider the case 1(t) = t" only, since that of 1(t) = e t is treated similarly. Assume
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that u 1 and u 2 are two solutions of problem (6.2). Let a E (0, 1). Then, by Theorem 
4.4

u1(X) - lim	1.	 (6.5) z-.8fl u 2 (x) - 
Hence au  < u 2 close enough to the boundary of Q. Furthermore 

= au(x) ^ (cxu i (x))"	 (6.6) 

so au 1 is a subsolution of problem (6.2). Lemma 1.5 implies 

au i (x) <u 2 (x)	 (6.7) 

for every x E Q. Letting a - 1 proves the inequality 

u(x)	U2(X).	 (6.8) 

Exchanging the roles of u 1 and u 2 in the above argument proves the reverse inequality 
of (6.8). Hence u 1 = u 2 and the proof is complete I 

Remark 6.3. The technique used in the existence proof of Theorem 6.2 is due to 
J. B. Keller (see [9: pp. 504 - 505]), and the uniqueness part follows C. Bandle and M. 
Essén [2]. 

7. Boundary blow-up of the gradient 

C. Bandle and M. Essén [2] found a resealing argument which allowed them to determine 
the boundary behaviour of the gradient of a solution of our problem (0.1) when 1(i) = t) 
or 1(t) = e t , in a domain ci with C 2 -boundary. C. Bandle and M. Marcus [5] were able 
to adapt this argument to problem (0.2) with the Laplacean replaced by a more general 
second order semilinear differential operator L. 

It turns out that the resealing argument applies to our situation too. Again, we 
perform a separation of variables and use the results in [2] (for R 2 ) and in [5] (for R" 
with N 2 3). For the sake of convenience, we restrict ourselves to the planar case. It 
is obvious from the proof how the results in [5] can be used to obtain corresponding 
results, at least for 1(t) = t i), if ci C RN with N 2 3. Therefore we state the theorem 
in this case without proof. 

We would like to mention that in [2], the rescaling argument is used in interior 
spheres instead of in interior cones as in our case. The authors of [2] stress the fact 
their resealing argument flattens the boundary of ci. We do not use flattening of the 
boundary, since this would remove the corners of Q. 

As a corollary of the main theorems of this section, we are able to improve the lower 
bounds for the growth of our solutions. The condition on p for N 2 3 in Theorem 4.4 
and the condition (I) in Theorem 5.8 may be omitted without changing the conclusions 
of these theorems. 

Suppose that ci C Rt ' is a bounded domain which satisfies a uniform interior and 
exterior cone condition. Let z0 E ôci and let CR(zo) denote an interior cone with vertex
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at z0 and cut-off radius R. Let L0 denote the symmetry axis of CR( zo). Now, let 
c E L0 fl Q and pick an R' E (0, R) such that aB ft' (c) fl L0 C Q (this is a two-point 
set if R' is small enough). Denote by a0 the point in aB ft' (c) fl L0 which is closest to 
zo . Finally, introduce the cone C2R'(ao) with vertex at a0 and which is congruent to 
CR(zO) . Figure 1 shows the above described construction. 

7. -

z0 

Figure 1 

Take ao to be the origin of a new Cartesian coordinate system with the x1-axis 
parallel to L0 and directed towards c. Hence, the coordinates of c are (R', 0,. . . , 0). Put 

D(fl) = C2R'(ao) fl {X =(x i ,x'): 0< x 1 <201_v and Ix)I <01_v}	(7.1) 

where /3 > 0 and ii E (0, ). Rescale the coordinates by 

1
(ei,e ' ) = - . (Xi, X')

/3 

and choose 3 = lao — zol . Then we have the equivalence 

(X i , x') E D(/3)	(1C) E .O(f3)	 (7.2) 

where
D(0) = C2R'/$(ao) fl 2(a)	 (7.3) 

with
2(fl) = { = ()): 0< e <2/3v and	</3}. 

Define the two boundary sets 

aC2R'(ao) fl ÔD(0)	and	'(/3) = aC2R1$ (UO) fl ôO(13). 

For x E ci, let (r, 9) denote the polar coordinates of x in a coordinate system with origin 
in z0 . The following proposition is an immediate consequence of the definitions made 
above (cf. [2: Proposition 3.1]).
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Proposition 7.1. Let C(zo) denote the open cone with vertex z0 , which has the 
same symmetry axis and the same defining subset of SN_i as C2R'(ao). Then: 

1. If f3 </32, then ñ(132 ) C 15([3 1 ), and D(f3) -+ C(zo) as 0 - 0. 

2. If  E D(f3) and z =(r,9),then /3 r < 3/3i_z+/9. 

3. If z E I'(i3) and x = (r, 9), then —* 1 as 0 —, 0. 

Proposition 7.1 tells us that the (Euclidean) distance from x to 1'(fl) tends to the 
distance from x to aC(zo) as /3 —* 0. This means that essentially, we have transformed 
our problem to the problem of determining the boundary behaviour of IVul (close to 
z0 ) in the cone C(zo). This is the rescaling argument of C. Bandle and M. Essén 121, 
modified to our situation. 

Proposition 7.2. Let C be an open cone in R 2 , i.e. a sectorial domain, and let 
1(t) = t" (p > 1). Then the boundary behaviour of the gradient of the unique solution 
u(r,9) = r- P- I . a(9) of problem (0.1) in 	is given by 

P1 P+1 ±i lim	IVu(r,6)I .	. r n- ' . 5"-' (9) = 1	 7.4 
(r,O)-.SC	 2a 

where a, = (/_1)T and 8(9) denotes the (arc)- distance of 9 from the end-points 

of the subarc Q, of the unit circle, which defines C. 

Proof. By Theorem 1.2 there exists a unique solution u(r,9) = rT . c(9) of 
problem (P), where a(0) solves the problem

, aci	 ,'	2' 
—(9) =&'(9)_ 

	

with a(9) — _- as 9 —	Corollary 1.3 gives the boundary blow-up control 

lim a(9) . -- . 6T(9) = 1.	 (75)
a 

Theorem 3.2 in [2] says that (clearly, this result is valid in the one-dimensional case too) 

lim	.	. 5+(9)	1.	 (7.6) 

	

e-.aci, dO	2a 
A simple calculation shows that 

	

IVuI2 = (a)
2 + -	(a)2	

2	 (7.7) 

	

r2	ao

2	—2	( 
=	

.	p-i a (9)+r '-'ao ) 

The equations (7.5) - (7.7) yield the following boundary behaviour of the gradient of U: 

2 .	r 
(p — 1)2	

2+ . 5 2+ 

	

lim 1vu1	 (9) 
4a	

8 

	

=	
+ ()• (p-i)2 52+(9)) =1. 

The statement of the proposition now follows from (7.8)1
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One of the main results of the present section follows from Propositions 7.1 and 7.2: 

Theorem 7.3. Assume that the bounded domain Q C R 2 satisfies a uniform in-
terior and exterior cone condition. Let u be a positive solution of problem (0.1), with 
f(t) = t (p> 1). Then the boundary behaviour of the gradient of u is given by 

urn IVu(x)I	dist(x,ô)	1	 (7.9)
X an 2a 

where a = ( 
• /2(p+I) 

Proof. Copy the proof of [2: Theorem 3.2], but use Propositions 7.1 and 7.2 instead 
of the corresponding results in [2] U 

Recall the condition in Theorem 4.4, giving a 'good' lower bound: p E (1, It 
is an immediate consequence of the proof that this condition may be omitted. Clearly, 
this is true also when N > 2, since the resealing argument still works for u itself: The 
only problem in the above proof for N > 2 is how to deal with the gradient of u. Thus 
we have	 . 

Corollary 7.4. Theorem 4.4 holds for all p E (1) ). 

Remark 7.5. In view of Corollary 7.4, Theorem 7.3 holds in R' with N > 3 
too. There is one minor technical difficulty only: In Proposition 7.1, the function 
a(9) (9 E S') solves a Laplace-Beltrami-type problem (see Theorem 1.2). To control 
the boundary blow-up of the gradient in this case we use [5: Theorem 3.1]. 

Using the same technique as in the proof of Theorem 7.3, we may easily prove the 
following 

Theorem 7.6. Assume that the boundd domain Q C 1R 2 satisfies a uniform inte-
rior and exterior cone condition and condition (I). Let u be a solution of the problem 
(0.1), with f(t) = e t . Then the boundary behaviour of the gradient of u is given by 

	

lim IVu(x)I . dist(x,a) = 2.	 •	( 7.10) 

Of course, the proof of Theorem 7.6 gives a corresponding corollary as in the case 
1(t) = 

Corollary 7.7. Theorem 5.8 holds without assuming the condition (I) to hold. 

Theorem 7.6 can not be proved in WY with N > 3 without some extra effort. This 
is due to the fact that in [5], C. Bandle and M. Marcus did generalize the gradient 
boundary-blow-up results in [2) for the case f(t) = t' (p> 1) only. We have not inves-
tigated the possibility to prove Theorem 7.6 for the case f(t) = e t in higher dimensions.
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8. A planar domain with fractal. boundary 

As an application of the results in the previous sections we study our boundary-blow-up 
problem in the bounded von Koch snowflake domain. Our approach is based on the 
observation that the domain in each step of the construction of the snowflake satisfies 
a uniform interior and exterior cone condition. 

The snowflake domain of von Koch is constructed from a sequence of polygonal 
domains. The sequence starts with an equilateral triangle A of sidelength 1. In the first 
step (n = 0), we add an equilateral triangle of sidelength 1 . 1 to each middle-third of 
the edges of A. The result is a regular polygonal domain Qo with edges of sidelength 

. In the next step (ii = 1), we add an equilateral triangle of sidelength ()2 to each 
middle-third of the edges of Qo and get a regular polygonal domain ci 1 with edges of 
sidelength ()2. Repeat this process, for n = 2,3,4,... to get a sequence	}	of 
regular polygonal domains. The snowflake domain Q is defined as = lim. Q,

Thus, in the n-th step of the construction of the snowflake domain we add , 3 . 4" 
equilateral triangles of sidelength 3_(n+1) to cln.. i . The distance from a corner z of L 

(which is also a corner of ci,,) to the closest corner w 0 z of ci,, is d,, = 

Figure :2 

We shall construct a sequence	of polygonal domains ci cc ci,, such that 
ci, Cc ci 1 and limn_ c,o ci = ci:	 0 0	 0 

• 'Pi ck an' e > 0, with 'E < , shy. Let n € 7Z^. For each triangle	(k = 0,1,. ..
Sh 

i k = 0, 1,. . . , 3 . 4k) which is used in the definition of ci,,, we denote by i(rz) the
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unique triangle which has the following four properties: 

1. i(ri) is congruent to 

(k)	 (k) 2. / (n) has the same center of mass as
Sk 

3. The corners of L(n) are separated from the closest corner of	by the 
distance	d1. 

4. C 

The set fZ'1 is obtained by extending two edges of	to connect it with the appro-
priate	1)() (define	:= Lx). Figure 2 should explain how	is constructed. It 
is obvious from the construction that the sequence f Q n 100, has the desired properties, 
since for every n,	(n) CC '& (k) (n + 1) (k = 0,1,..., TI; 2 k = 0,1,..., 3 . 4k), and
4 - 0 as n - 

By Theorem 6.2 there exists a unique solution of the problem 

Lu(x) = f(u(x)) for x E ci 

	

u(x)oo asxô	
(8.1) 

where f : lR -	is defined either by 1(t) = t' (p> 1) or by f(t) = 

We prove two auxiliary results: Lemmas 8.1 and 8.3. 

Lemma 8.1. Let {u} 1 be a sequence of functions such that Un solves problem 
(8.1) in Q n (n > 1). Then, for every n E Z, 

u(x) > u i (x) > u,, 2 (x) ^! ...	for all x e ci.	(8.2) 
Remark 8.2. Note that for every n e Z the set Q 4. 1 contains c. Hence the 

statement of the lemma makes sense. 

Proof of Lemma 8.1. Pick a u. Close to Ô1 we have <u, and is 
finite on Ôl. Lemma 1.5 (or Lemma 5.4) proves that this inequality actually holds 
throughout fl. The statement now follows by induction. 

The following lemma is obvious when looking at Figure 3. 

Lemma 8.3. Let z0 be a corner of a11 Q for some no E Z. There exists a polygonal 
domain K 0 which has less than 2n 0 +5 corners, such that Q C K 0 and ôK 0 flô1l = zo. 
Furthermore, it is possible to find a cut-off outer cone (i.e. a sector) C R(0) (zo) C K0 
with vertex at z0 , whose opening angle is — C with E E (0, ) arbitrary. Here, only the 
cut-off radius of the sector depends onno.
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Figure 3 

We could say that Lemma 8.3 states that the von Koch snowflake domain satisfies 
a semi-uniform outer cone condition. This is the key to our existence theorem. The 
idea is to define u(x) = lim_u(x) for every x E Q. By Lemma 8.1, the sequence 
{is decreasing on compact subsets of ci and Lemma 8.3 together with Theorem 
6.2 give us a uniform lower bound, with boundary blow-up, of {u} 0 on compact 
subsets of Q. Hence there exists a solution of our problem in the snowflake domain. 

Theorem 8.4. Let ci C R2 be the bounded von Koch snowflake domain and let 
either f(t) = t' (p'> 1) or f(t) = e. Then there exists a positive solution u E C2(Q) 
of the problem	 - 

Lu(x)=f(u(x)) for xEcil	 (83 
u(x) - :: as x -+ dci.	J 

Proof. Let F C ci be compact. Then there is an integer no > 0 such that F C W. 
for every integer n o Let u, be the solution of problem (8.1). By Lemma 8.1, 
the sequence {u} 0 is uniformly bounded on F from above (by u 0 ) and decreasing. 
Now, let Zm e c9ci be a boundary point of the snowflake domain which is obtained in the 
construction, i.e. Zm is a corner of 0cim. Let Km be a polygonal domain as in Lemma 
8.3. Theorem 6.2 says that there exists a unique solution Vm of the boundary-blow-up 
problem

LVm(X) = f(Vm(X)) for x E Km 

Vm(X) . =: as x - aKm.
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Close to Zm, the function vm is bounded from below by the solution Vm of the problem

V,,() f(Vm(x)) for x e C(zm) 
V.(x) --+ oo asx—.ôC(zm) 

where C(Zm) is an open sector with vertex at Zm, which is complementary to the outer 
sector in Lemma 8.3. 

But Q,, CC Km for every n E Z+. Hence, close to the boundary of Q',, the inequality 
U > V. holds and Vm is finite on OQ. Lemma 1.5 (or Lemma 5.4) implies that this 
inequality is valid throughout	, so for n	no we have u(x) > Vm(x) for every 
x E F C	. Hence, {u} 0 is uniformly bounded on F from below by Vm. By the
above observations, there is a subsequence { u 1 } 1 of {u} 0 such that 

U ( X ) := limu(x) 

is well-defined on F. Our function u solves the problem u = f(u) on F. Now we may 
exhaust 0 by an increasing sequence of compact subsets F1 , and define tt by taking the 
limit of a diagonal sequence of functions 'u 1, ' as above, to get convergence on each F1. 
By construction, the limit function u is of C2-type on each set F, and it explodes as x 
tends to Zm. 

The boundary points { } form a dense subset of ÔQ and according to Theorem 
4.4 or Theorem 5.8 (depending on our particular choice of f), there exists a uniform 
lower blow-up rate of the family of functions {Vm} 1 and hence of {Vm}...1. 

If z E aci is a boundary point which is not a corner of any ci,, we use one of the 
functions

W(x) 
= (--) P

 . - zI	 (8.4)!

and
Wexp(x) = log 2— log lxi — z iII x 2 —z21	 (8.5) 

as a uniform lower bound for the sequence {u}00. In (8.5) we use the notation 
X (Xi, x 2 ) and z = (Z1, z2 ). Thus there exists a solution of problem (8.3).

	

The positivity of u is evident for f(t) =	U 0 is a subsolution of problem (8.3), 
so Lemma 1.5 implies u > U throughout Q. For f(t) = we suggest the following 
argument: Cover ci by a half disc of radius R = -L . This is actually a cut-off open 
sector CR of opening angle ir. Hence Q CC C 1 for every n E 7L+. Furthermore, the 
function

	

U(r,8) =lo ( 2 2 2 )	((r,)	(0, R] x (0,7r])	 (8.6)r sin
is the restriction to CR of the solution of problem (P) 1 (Theorem 5.1 and Remark 5.3) 
in the open sector C which corresponds to C. Now, the solution u, in ci blows up at 
Ôci and the restriction of U to 1l.is finite on Oci, so Lemma 5.4 implies that u U 
throughout ci. But from (8.6) it is' clear that ' U > 0 in CR. Hence u,. is positive and 
the limit function u cannot be negative. This concludes the proof of Theorem 8.41
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To estimate the growth of u(x) as x tends to the boundary 3ci of ci, we use Theorem 
4.4 or Theorem 5.8, depending on the choice of f(t). 

The following notation is used in Theorems 8.5 and 8.6. If z = z E ôci,2 for some 
integer n, we use the (local) polar coordinates x = (r,9) = (dist(x,z),8) for x E Q. 
Let 6(9) denote the Euclidean distance from 9 to the closest end point of the subarc of 
the unit circle which defines the largest interior cut-off open sector CR(Zn) with vertex 
at z. 

Theorem 8.5. Let ci c R2 be the bounded snowflake domain of von Koch and 
let f(t) = t' (p > 1). If u E C 2 (Q) is a positive solution of problem (8.3) and if 
z = zn E OQ for some ri, then the estimates	 - 

tim tim u(r, 9) 
r-.O 6(9)-.0 

lim tim u(r, 9) 
r—O

/ 
I P—i 
k/2(p+1) 

(p-1 
/2(p+ 1))

(r.6(9))<2	(8.7) 

(r . 8(9))	> 1	(8.8) 

hold. For a general Z E oil we have the lower bound 

tim urn u(r,9) . (___	. rT > 1.	 (8.9) 
r-.05(9)--.O	 \p- 1)	 - 

Proof. Let Zn E aQn be a corner of cm, the regular polygonal domain in the n-th 
step of the construction of the snowflake domain. The Zn form a dense subset of Oil. 
The upper bound follows from a semi-uniform interior cone condition. There exists an 
interior cut-off open sector C, (Zn) of opening angle 2 , with its vertex at z, and cut-off 
radius R = 3'. Let U, denote the solution of problem (1.7) in CR(Z), given 
in Proposition 1.8. Lemma 1.5 implies that u Un in CRn(Zn). The upper bound (8.7) 
now follows from Proposition 1.8. 

To deduce the lower bound we could use Theorem 4.4, but we shall refer to Proposi-
tion 4.1, which states that there exists a positive solution Vn of problem (4.1) in CR(zfl). 
By Lemma 1.5, V, u in Cn,(z), and the lower bound (8.8) follows if zn is the corner 
at an acute angle of il. If this is not the case, the same argument works for the cut-off 
open sector C,(z) of opening angle	. - 

Finally, if z E Oil is a general boundary point, we use the fact that the restriction 
to ii of the function W(x) defined in (8.4) is a subsolution of problem (8.3). Thus, 
Lemma 1.5 implies u W,, which proves (8.9)1 

Theorem 8.6. Let ci C R 2 be the bounded von Koch snowflake domain and let 
f(t) = e t . Ifu E C 2 (Q) is a positive solution of problem (8.3) and if z = Z E 0cm for 
some ii, then the estimates  

tim urn u(r,9) + 4 . log(rö(9)) log 	 (8.10) 
r-. O 5(0)-.O 

tim lim u(r,9) + 2 . log(rS(9)) ^! log 	 (8.11) 
r-O
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hold. For a general z E 00 we have the lower estimate 

urn urn u(r,6) + 2 log  > log 2.	 (8.12) r-.O 

Proof. Copy the proof of Theorem 8.5, but use Proposition 5.7, Theorem 5.8, 
Lemma 5.4 and Wezp(X) defined in (8.5) instead of Proposition 1.8, Theorem 4.4, Lemma 
1.5 and Wp(x)I 
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