Zeitschrift fur Analysis und ihre Anwendungen
Journal for Analysis and its Applications
Volume-15 (1996), No. 2, 475-493

On Optimal Regularization Methods
for the Backward Heat Equation

U. Tautenhahn and T. Schroter

Abstract. In this paper we consider different regularizafion methods for solving the heat
equation u; + Au = 0 (0 < t < T) backward in time, where A : H — H is a linear
(unbounded) operator in a Hilbert space H with norm || - || and z° are the available (noisy)
data for u(T) with ||2% — u(T)|| < 6. Assuming [[u(0)|| < E we consider different regularized
solutions g5 (t) for u(t) and discuss the question how to choose the regularization parameter
a = a(é, E,t) in order to obtam optimal estimates sup||qa,(t) —u(t)|| < E'"F6F where the
supremum is taken over 2° € H, ||lu(0)|| < E and ||2* — u(T)|| < 6.

Keywords: Backward heat equation, optimal parameter choice, optimal error bounds, regular-
ization methods
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1. Introduction o

In this.paper we consider different regularization methods for solving the heat equa-
tion backward in time in which the temperature ¢(t) = u(z,t) (¢t € [0,T)) has to be
determined while temperature data z(z) = u(:r T) are glven and u(z,t) satisfiés the
evolution equation . . .
u¢+Au=0v (0<t<T) oo (1)

with a linear, densely defined, “self ad_]omt and positive definite opera.tor A D(A) -
H — H with elgenva.lues A (1 € N)

0< A <X < .. with Ai =00 for 1 = o0 -

and eigenelements u; (2 € N) that form an orthonormal basis in a real Hilbert spéée
H with norm || - || and inner product (-,-). One simple example for-(1.1) is the one-
dimensional heat equation . -

Ut — Uz = 0 for (I,t) vE (0,71') x (O,T) } (12)

u(0,t) = u(mt).= - for t€[0,T}]
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in which the elgenvalues A; and eigenelements u; of A: Hg(0,7)NH*(0,7) C H - H
with H = L2(0 ) are ngen by

, N
N =12 .and ui = | —siniz (e N),
respectively.

Let us formulate the above backward heat equation problem as an operator equation

K(t)q(t) = =. (1.3)
By Fourier method one has the usual ‘forward solution’

oo

u(z,t) = Z (q(O), ui) e~ Nt Uy

i=1

of problem (1.1), consequently, (¢(0),u;) = (q(t), ui)e** = (¢(T),u:)eNT , which gives
(g(T),ui) = (q(t),ui)e=*{T=Y and shows us that for any fixed ¢ € [0, T) the operator
K(t) : H— H of problem (1.3) has the representation

K(t)q(t) = Z (q(t),ws) e-*-‘<T-'>ﬁ.

Consequently, K(t) : H — H is a linear selfadjoint compact operator with eigenvalues
ki(t) = e7%(T=1 and eigenelements u; . Since the eigenvalues x;(t) of the operator K(t)
decay exponentially fast we realize that problem (1.3) is a severely ill-posed problem.
The ill-posedness becomes worse as t decreases. The numerical treatment of linear ill-
posed problems in which the solution ¢(t) of problem (1.3) does not depend continuously
on the data requires the application of special regularization methods. For the general
regularization theory for linear ill-posed problems we refer to (1, 2, 5, 6, 8, 11, 18,
21); special regularlzatlon methods for the heat equa.tlon backward in time have been
considered, e.g. in (3, 7, 10, 13, 14, 17).

We suppose that instead of z = u(T') noisy data z% € H are a.va.llable a.nd assume
throughout this paper that .

(Al) ||z — z5|| < )
(A2) |lg(O)]| <

with known bounds é and E. Let, for any fixed ¢t < T, q(t) the solution of problem
(1.3). Then, since g(t) can be represented by

a(t) = Z(,i(l:')) Z(:(’g))'n;(t)r‘-—r u (1.4)

1=1 1=1

we obta.i'n t.ha.t. . L
q(t) = K()? ¢(0) with p = T/ 7 (1.9)
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From the source representation (1.5) for the exact solution ¢(t) of problem (1.3)
we realize that (for any fixed t € [0,T)) condition (A2) can be reformulated into the
condition ¢(t) € M, g where the source set M, g is given by

) t
= . = P = ———
Mpe = {at) € H : o(t) = K, DI < B, p=7—}.
Any operator R(t) : H — H can be considered as a special method for identifying the
solution g(t) of problem (1.3) from noisy data 2® € H ; the approximate solution to (1.3)
is then given by R(t)2®. We introduce the worst.case error A(6, R(t)) for.identifying
q(t) from z® € H under the conditions ||z — z%|| < § and ¢(t) € M, £ by

CAGRM) = sup IR - g0
. q(t)EM, g 3%€H )
NK(e)a(e)-s811<86

where the side condition ¢(t) € M, g can be replaced by the equivalent condition (A2).
This worst case error characterizes the maximal error of an arbitrary method R(t) if the
solution ¢(t) varies in the set M, g. Now we ask the question concerning the magnitude
of the worst case error A(6, R(t)) for ‘optimal methods R(t) : H — H. From [21] we
have the result that .

inf A, R(t) 2 E#*T §75 = E'"T 6T ' (1.6)

(where the infimum is taken over all methods R(t) : H — H) provided £ € o(K(t)?*?)
where o(K(t)) denotes the spectrum of mapping K(t). Note that condition £ e

o(K(t)P*!) can only hold (for sufficiently small 8) provided problem (1.3) is ill-posed,
which means in the compact selfadjoint case that the eigenvalues x;(t) tend to zero.
For well-posed problems (1.3) condition % € o(K(t)P*!) can never hold for sufficiently
small §, hence this condition excludes the class of well-posed problems.

From (1.6) we realize that there exists no method R(t).: H — H which guarantees
an error bound ||[R(t)z® —g(t)]| < E'~T6T. On the other hand it is well known (cf. [11,
17, 20]) that there exist special regularization methods Rq(t) (where Rq(t) : H — H
denotes a continuous operator depending on a posmve regularization parameter a > 0)
which guarantee the ‘optimal‘ estimate

IRa(t)z® — q(t)ll < ETH 675 = E'~F §*F (1.7)
which means (together with (1.6)) that the best possible worst case error for identifying
q(t) from noisy data 2z° € H under the conditions (A1), (A2) is given by ¢

‘w(§,t) = EVF T (i-8)

We note that it has long been known that problem (1.3) can be stabilized by imposing
condition (A2). By the concept of logarithmic convexity it can be shown (cf. [2, 14,
17)) that under the a priori assumption (A2) there holds ||q(t)|| < E'~ T ||g(T)||* which
means that g(t) depends in a Holder continuous way on the (unperturbed) final data
g(T). Thanks (1.6) and (1.7), (1.8) the following definition make sense, which is due to
Vainikko et al. [21]: -
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Definition 1.1. Parameter dependent regularization methods R4(t) in which reg-
ularized solutions g} (¢) for problem (1.3) are defined according to a8(t) = Ra(t)z® are
called , ' : _ .

(i) optimal on the set My g if A(6, Ra(t)) < w(é,t) for a given parameter choice
a=a(b), - : '

. (ii) order optimal on the set My g if A(8, Ra(t)) < cw(§,t) for a given parameter
choice a = a(é) where ¢ > 1 is a constant independent of 6. .

For a discussion of optimality of parameter dependent regularization methods Ra(t)
we refer to [11, 15, 16, 19, 20]; concerning order optimality we refer to [1, 2, 11, 21)."

In this paper we are interested in optimality results for heat equation problems
backward in time. We consider regularization methods of the general form

.

¢5(t) = Ra(t)2® = Y pla, mi,t) (28, ui) s (19)

=1

and ask the question how (for given filter factors p = p(a, k,t)) to choose the regular-
ization parameter > 0 such that (1.9) becomes an optimal regularization method. A
special optimal regularization method for backward heat equation problems (1.3) has
been derived by Seidman [17]. This method is characterized by (1.9) with filter factors

‘ 1 ey o
p = min {-—m(t) T (?) } : S (1.10)
where k,(t) = e=M(T=0 are the eigenvajues of K(t) € L(H,H) (cf. also Rem.a.rl.( 3.3).

2. Optimality for a general regularization scheme -
From (1.9), (1.3) and (1.5) there follows .
9(t) = ga(t) = q(t) = Ra(t)z + Ra(t)z'— Ra(t)2*

_ (2.1)
I - Ra(K () K(£)°4(0) + Ra(t) [z —2*],

con'sequently-We théin from Lemma 221n (19] (<f. also, [A12] and [4]) the félldwing
result. ‘ '

Lemma 2.1. Let ¢3(t) = Ra(t)?? the regularized solution (1.9). Then for the
mazimal error A(8, Ro(t)) there holds - : :

A6 Ra) = it |5 K1 - RaloKF + 2 Ra()

" e

where p 1s given by (1.5).
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In our following considerations we consider special regularization methods (1.9): For
any fixed t € [0, T) we define an approximate solution ¢’ (t) for problem (1.3) according
to : .

() = ga(K(B*7) K(t)*+ 2 (2:3)

with s > — 3. Here, ga(x): [0,%1] = R is a family of (piecewise) continuous functions
depending on a positive regularization parameter a > 0 and go(K(¢)) is defined accord-
ing to ga(K(t))g = 302, 9a(%:i)(g, ui)u; where ; with k; > k2 > ... are the eigenvalues
and u; the eigenelements of the linear compact operator K(t) € L(H,H). Note that
(2.3) has the general form (1.9) with

pla,kit) = ga(2¥2) a2t o (24)

Example 2.2 (Tikhonov fegﬁlarization). This regularization method is character-

ized by the choice go(x) = Ki —. The computation of the regularized solution (2.3)

requires in this case to solve the linear operator equation

(K(t)“+2 + aI) ¢ = K@)+ (2.5)

Example 2.3 (Regularized singular value decomposition). This regularization
method is characterized by the choice

(%) k7! for kK > a
da(K) = o )
e : a kP! for k< a

with some additional fixed parameter p € (0,00). The computation of the regularized
solution (2.3) can be done by one of the following equivalent representations

, .
) Ui 1
() = Z (_‘E_u_)ui + — Z PHGRDET
*+i>q i @ K?'+’<a
. (2%, u;) | 1 : (26)
= Z T — {K(t)‘9 s _ Z n?(zé,ug) u.}
' K?c+2$a . Ki: . @ . .K?-+2>a .

with 8 = 2u(s + 1) — 1, where the second representation requires only the computa.tioh
of a finite number of summands in the above sums.

Example 2.4 (Asymptotical regularization me.thod)v.v In this method the regularized
1“;‘/“ , hence, there holds ¢4 (t) =

solution g5 (t) is characterized by (2.3) with ga(x) =
y(L) where y(7) is the solution of the initial value problem

D KO(n) = K@ for re (o, i]} o en
y(0)=0 |
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- Example 2.5 (Iterated Tikhonov regularization). In this regularization method
g5 (t) is obtained after performmg m steps of the method of Tikhonov regularization as
discussed in Example 2.2, i.e. there holds ¢4(t) := ¢, where gm is obtained via

g0 =0
, _ (2.8)
Gk+1 = gk + (K(t)z‘f+2 +al) K (1)** (2 — K(t)ax) (k= 0(1)(m - 1)).-

Cdnsequently,.qg(t) can be 'represented in the form (2. 3) with 9a(r) = [1 - (35%= )m]/K

Example 2.6 (Quasireversibility method). In this regula.nzatlon method the reg-
ularized solution qa(t) = u(t) is obtained by solving (backwa.rd in time) the regularized
problem

N

ur + Au(r) — aA?u(r) = 0 for t<t<T
o () (r) s T . . (2.9)
u(T) = 2
Since u(r) (v € [¢,T)) can be represented by -
u(r) = Z e('_"'\-?“\-")(TA—')(‘z‘s,u.‘) u;
.= . - A - (2.10)
= Zn' T+ (2%, ui)u; A -

1

we find that the regularized solutlon g4(t) can be represented in the form (1.9) with

alnx
pla, ki t) = n_l T=T| or equivalently, in the form (2 3) where in case s = —3 there
holds ga(x) = x~1 %27 - - B

Now we introduce for 0 < & < 0o and 0 < & < o the functions g : [0,00) —» R and

h: [0,00) = R according to
9(k) = agalax) - 'a_nd' h(k) = 1-rg(x) \ (2.11)

and assume that g and h are independent of the regula;nza.tlon parameter a. Note that
(2.11) is satlsﬁed for Examples 2.2 - 2.5 but violated for Example 2.6. We easily find
that g(k) = 5 for Exa.mple 2. 2

k™! fork>1 o -
= = 2.12
g({c) . { k#71 fork < 1 ) - ( )

for Ekmﬂplé 2:3, g(k) = =2~ for Exa;nﬁle 24 and g(x) = [1 - (335)"1/~ for Exa.mple

2.5.

For regularjzation methods (2.3) satisfying (2.11) we obtain from Lemma 2.1 in

analogy to the proof of Theorem 3.1 in [20] (cf also Theorem 2.3 in [15]) the following
result.



On Optimal Regularization Methods 481

Theorem 2.7. Let g and h the functions defined by (2.11) and p the parameter
given by (1.5). If

(i) the equation h(k) = Hp has a unique solution k¢ and
(ii) & is chosen by a = ‘l—o (-%)ﬁ‘_,
then for ¢4 (t) = Ra(t)2® defined in (2.3) there holds the error estimate

A6 Ra(t) < ET 675 sup {f(x)} = E'"F 6% sup {f(n)}}  (213)
. 0€Kx<oo 0<x<o0 : .

with ' o S
f(x) = (1+p) (_>+ W(x) + 1“;%’ ()T Kgin) . (214)

Remark 2.8. Theorem 2.7 shows that regularization methods (2.3) satisfying
(2.11) are optimal if sup,gjo,o0) f(x) < 1. If f(x) > 1 for some x € [0,00) and
[0,€] € o(K(t)) (e > 0), then method (2.3) is not optimal for any parameter choice
a = ofb) provided § = §(¢) is sufficiently small. For the proof of some non-optimality
results we refer to (11, 19, 20).

3. Optimality for special'regularization'mef;hods

On the basis of Theorem 2.7 it is possible to obtain optimality results for different
regularization . methods discussed in Examples 2.2 — 2.5. Let us start to consider the
method of Tikhonov regularization (Example 2.2 wlth s = 0). In this method the
functions g and h from (2.11) are given by g(x) = 737 and h(x) = 5. The equation
h(x) = p+1 has the unique solution ko = p, hence, the functlon f from (2 14) attains
the form . ' a +p);c’ 1+ p)n

f) = v ¥ e (31)

Since siip.g(o,00) f(#) < 1'for all p € [0,2] we obtain from Theorem 2.7 and (1.5) the

well known result that for the a priori parameter choxce a = —( )T the method of
Tikhonov regulanzatlon (Example 2.2 w1th s=0)is optzmal for p €'[0,2], hence there

holds )
Theorem 3.1. Let, for any fized t € [0,T), qg(t)'= Ro,.(t)z:‘s the re_qulan'zed Aolue

Tt
tion (2.5) with s = 0 where a 1s chosen by a = -7%(-%)2—7_ Ifte [0, %T], then the
‘error estimate L. o o
A(6,Ra(t)) < E'"T 6T ‘ (3.2)
holds. o |
In analogy to Theorem 3.1 it is possible to derive optimality results for further

regularization methods. Some of the results which can be deduced from Theorem 2.7
can be formulated as follows:
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(i) The method of Tikhonov regularization with s = —1 (cf
optimal for any fixed ¢ € [0, iT] if a is chosen by a = T=t(£)™™

(i) The method of -asymptotical regularization- with st =0 (cf. Example 2.4) is
optimal for p € [0,7.12], i.e. for all ¢ € [0,0.887T) if « is chosen by a = (E) T/[ln =)

(iii) The method of iterated Tikhonov regularization with s = 0 and m = 2 (cf.
Example 2.5) is optlma.l for p € [0,3.58], i.e. for all t € [0,0.78T] if & is chosen by
a= YTt (£ )2‘7—
.~ VT-VT—1\E

The following Table 1 contains the optimal values a,p¢ of the regularization param-
eter and the corresponding #-ranges for which the methods of Tikhonov regularization
(Example 2.2), iterated Tikhonov regularization with m = 2 (Example 2.4) and the
method of asymptotical regularization (Example 2.5) are optimal.

cf. Example 2.2) is
T

Regularization Tikhonov iterated Tikhonov - asymptotical
method regularization | regularization with m = 2 regularization
- v . 1@'__ v -1 v

Uopt %(’16?) T \/t—_,(%) [ln %] (%)
s=-0.5 0:0.382 0:0434 0:0.511
s= 0.0 0:0.667 » 0:0.782 _ 0:0.877
s= 0.5 0.051: 0.750 '0.078 : 0.857 " 0.146: 0.932
s= 1.0 | 0.196:0.800 0.265 : 0.889 0.399:0.955
s= 1.5 0.329 : 0.833 . 0.416 : 0.909 A 0.564 : 0.966
s= 20 - 0.432:0.857 |, 0.525 : 0.923 0.669 : 0.974

Table 1. -;—,-ra,nges of optimality, v := 2(s + 1)17‘,—‘

Note that outside of the %-ranges given in Table 1 the corresponding regularization
methods are not optimal, hence, there appear saturation effects. Such saturation effects
have already been known in case of order optimality (cf. [5]). For example, Tikhonov
regula.nzatlon w1th .s = 0 is order optimal for the parameter choice & ~ §2(1~ ¥ provided
% €[0,2]; for £ > 2 Tikhonov regula.nzatlon with s = 0 is not order optimal.

In our followmg consxderatlons we discuss the method of regularized singular value
decomposition (cf. Example 2.3). The next theorem shows that for this method opti-
mality can be guaranteed for arbitrary values £ € [0,1), hence, there doesn’t appear
any saturation effect.

Theorem 3.2. Let, for any fized t € [0, T), a3 (t) = Ra(t)2° the regularize:f solution
(2.6) where a is given by
(?)
a=|=
t

If the constanta p and s-are related by 1 < 2u(s + 1) < 2, then for any t € [0 T) the
optimal error estimate (3.2) holds.

(3.3)
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Proof. We apply Theorem 2.7 with function g given by (2.12) and prove that

supc>o f(5) < 1if p < % < 2u holds, where f(x) is given by (2.14). Let h the

function defined by (2.11). Then, since the equation h(x) = — with p given by (1.5)

has the unique solution x¢ = (,7+ . we obtain that f(«) is given by
f(x) =
1——2
() oo ezt o0
1-
(1+p) (m)ﬂ‘_’ KT (1 - k)% + (%2) T sk for g < 1

First we note that sup, f(x) < 00if 0 < ;37 < 2u holds. Let 0 < 3= < 2. Then
f(K.) is monoton decreasing for x > 1. Furthermore fQ)<1is satxsﬁed for Bs -
Hence it remains to prove that for p < ;37 < 24 there holds supg¢,<; f(%) < 1. For

0 <y <1 there holds y?(1 — y) < [l+p] [!+p] consequently, for 0 < x* < 1 there
holds the inequality

GQ%@_MyLS(JLyﬁ(J_Y%

1+p 1+p
which gives

1+p/ p+1
We use this inequality and obtain from (3.4)

cd < (L)W(L)ﬁu_u‘)—nfm .

1 2— 1 ml'f'_lj_l . 2—
f(K) € (1 +p)' " T0F0(1 - k#)? 7O 4 (L) BN CY Eaa)

1+p
for 0 < x#* < 1. One shows that the right-hand side of this inequa.lity attains its
maximum for k# = whlch yields the result supy<,.<; f(x) < f((Hp ) =11

" Remark 3.3. Recommegdatxons for the choice of s and u in Theorem 3.2 are values
with 2u(s +1) =1 (e.g. s = — and p = 1) since in this case the number of summands
to be computed in the finite sums of (2.6) is ‘small‘. In this case we obtain immediately
from Theorem 3.2 that for the regularized solution

) = Y o ’“') wi + —{ - Z(z‘,u.-)u;} (3.5)

8 >a Ki2a

with

T~t
T /6\ T
i = Ki(t) = =2(T-1) = =—| =
Ki=ki(t)=¢ | a.ed er a(t) T \E
there holds (for any fixed t € [0,T)) the optimal error estimate (3.2). Note that the
representation (3.5) is equivalent to the representation (1.9), (1.10) from the paper of
Seidman (cf. [17]). Furthermore note that for smaller ¢t-values a smaller number of
summands in the finite sums of (3.5) is needed.
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4. Optimality for quasireversibility methods

If the eigenvalues and eigenelements of the operator A of equation (1.1) are available,
then the method of regularized singular value decomposition as proposed in Example
2.3 is definitely to be recommended since it appears to be

(a) very cheap concerning the computational amount of work if one decides to use
the representation (3.5) and

(b) optimal for any fixed t € [0,T) (cf. Theorem 3.2 and Remark 3.3).

However only in very special circumstances — constant coefficients and simple geometries
for example - it will be possible to compute the eigenvalues and eigenelements of a partial
differential operator A analytically. Generally the eigenvalues and eigenelements of A
will not be available. In this case the method of regularized singular value decomposntlon
becomes very expensive concerning the computational amount of work. -

The methods discussed in Examples 2.2, 2.4 and 2.5 do not require the knowledge of
the eigenvalues and eigenelements of the partial differential operator A, but they have
the disadvantage that they are not optimal for all t € [0,T) and they have the difficulty
that

(i) the generation of the (discretized) operator K(t) is quite expensive and
(ii) the (discretized) operator K(t) is dense, even if A is sparse.

Of course, these disadvantages can be overcome if one switches over to the concept of
adjoint equations from control theory which does not require to generate K(t). It is
clear that, e.g. for integer values of 2s + 1, the element K(¢)?**!2% can be computed
without to generate K(t) explicitely. Also for the realization of (2.5) it is possible to
use iteration methods which do not require to generate K(t) explicitely.

We note a further disadvantage of the methods that fit into the framework of Theo-
rem 2.7. This disadvantage appears if the solution ¢(t) is searched not only for one fixed
t€[0,T) but for all t € [O,T) Then the considered methods have to be applied for a
series of t-values 0 = tg < t; <...< t, < T and it is not clear how to use the information
of qa(t )in order to ‘compute an optuna.l’ regularized approximation ¢&(t;— 1)

A very cheap method from the point of computational amount is the method of
quasireversibility proposed in [10] (cf. Example 2.6). A generalization of this method
can be described as follows: search for ¢5(t) = u(t) by solving (backward in time) the
regularized problem

ur(1) + ga(A)u(r) = 0 for t<r<T } (@1)

w(T) = 2°

with a function gio, to be chosen appropriately. Note that go()) = A — aA? for Example
2.6. Since for any fixed t € [0, T) the solution g5(t) = u(t) of (4.1) can be represented
b . ,

qi(t) = Z e9o (M) (T-1) (25,1‘..) u; (4.2)

=1



On Optimal Regularization Methods 485

we find that ¢4 () can be represented in the form (1.9) or (2.3), respectively, but (2.11)
will generally be violated such that Theorem 2.7 cannot be applied in order to find
optimality results for method (4.2).

In our following considerations we ask the question if it is possible to find some
optimality results for method (4.1). Since Theorem 2.7 cannot be applied we start our
examinations by applying Lemma 2.1 and obtain the following

Lemma 4.1. Let, for any ﬁzéd t €[0,T), ¢5(t) = Ra(t)z® defined by (4.2). Then
for the mazimal error A(6, Ra(t)) of (1.8) there holds

A8, Rq(t)) =
I %))

E? 2 §2
inf  sup 4 ——e2(T-0) l_etgo(x)-x)(T—:)} + 292 (AT —1)
€€(0,1) ag[r,00) L €

where p i3 given by (1.5).

In order to derive optimality results in an unified manner we introduce the two
functions g : {0,00) =+ IR and h: [0,00) — IR according to

o) = age(d) and k() =1- %Y (4.4)

and assume that g and h are independent of the regularization parameter a..Let us

discuss some examples.

Example 4.2 (Quasireversibility method of Lattés and Lions, cf. [10]). In this reg-
ularization method the regularized solution ¢5(¢) = u(t) is obtained by solving (back-
ward in time) the regularized problem (4.1) with g,(A4) = A — aA?. Consequently, this
method is characterized by (4.2) with go(A\) = A — a)?, hence, (4.4) is satisfied with
g(A) =X =A% and h(X) = A

Example 4.3 (Quasireversibility method of Gajewsks and Zacharias, cf. (3]). In
this regularization method the regularized solution ¢4 (t) = u(t) is obtained by solving
(backward in time) the regularized problem

0
a—T[u(T) +aAu(r) + Au(r) =0 for t<T<T } . (4.5)

u(T) = 2%

Since the regularized solution ¢4 (t) = u(t) of problem (4.5) can be represented by
5 ad A: (T -1 5
@)=Y e e (2%, ui) (4.6)
i=1

it follows that g% (t) has the representation (4.2) with go(A) = Hﬁ Consequently (4.4)
holds with g()) = 1+A and h(}) =
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- Example 4.4 (Quasireversibslity method of degree n, cf. [13]). In this regulariza-

tion method -the regularized solution ¢5(t) = u(t) is obta.xned by solvmg (backward in
time) the regularized problem

ur(r) + Au(r) —a"'A"u(r)= 0 for t<T<T } (a7

u(T) =

where n > 2 is an integer (note that n = 2 corresponds with Example 4.2). It can be
shown that the regularized solution ¢5(t) = u(t) of problem (4.7) can be represented
by (4.2) with go(A) = A — a”~1A", hence, (4.4) is satisfied with g(A\) = A — A" and
h(A) = A1,

For regularization methods (4.2) satisfying (4.4) we obtain from Lemma 4.1 with
the substitution y = a) that

o AGR() < prsrh fel(r;fl) sup  {f(6.v. @)} (48)
: y€(0,00)
with
f(E’y’a)=
EYEARGE S [1—-ei(9(y)‘y’<T-‘>]2+—1 BN agrog 49
ENE 1-¢\E) |

From (4.8) we realize that method (4.2) is optimal provided'

inf ~ su a <1
0<€<10<y3wf(£,y, )

holds for a special choice of the regularization parameter. In order to determine an opti-
ma.l regula.nzatlon parameter we sea.rch for a statlona.ry point of the function f (¢,y,a).

Lemma 4.5. Let g(y) : [0,oo) - R dzﬁerent;able and p given by (1.5). If the
equation

. ptl
h(y) = (+1) T—F (4.10)
) s
has a solution yo, then
1 yo(T —t)(p+1)
) ) = ] 3 4.1
(fo Yo 010) (p-i-l_ Yo . ln'% ( 1)

is a stationary point of the function f(£,y,a). Furthermore there holds

f(fo,yt;,ao) =1. : - - : (4.12)
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Proof. One shows that the three equations ff =0, f, =0and f, = 0are eqmva.lent
to the nonlinear system

(%)2 X2e3(pH0)u(T-0) _ (16;5)2 (1-X)?

p(1- X) + lg'(y) — 1] X = 1—;—‘ "W)(1 - X)

yp(1 - X) + [o(y) — ¥ X = l—gé o(y) (1 = X)

where X stands shortly for X = 9= We realize that the last two equations
are satisfied for the choice

1 ' ' p
= — d X=——. . 4.13
(=13 o = G

Consequently it-remains to solve the two equations

% — e EHNNT-0 g mihWT-n P (4.14)

r+1

where h is given by (4.4). From (4.13) and (4.14) we obtain that (4.11) is a staticnary
point of the function (4.9) where yo is the solution of the equatlon (4.10). We substitute
(4 11) into (4.9) and obtain that (4.12) holds’ l

Now we substxtute €0 and « into (4 9) and obtain together with (1 5) the followmg
result. .

Theorem 4.6. Let (4.4) hold, g(y) : [0,00) = R diﬂ'eréntiablc and p given by
(1.5). If o

(i) the equation h(y)=(p+1) In a'—;;—l/ln £ has a solution yo and .

(ii) a is chosen by a = yo(T —.t)(p +1)/ln &,
then for qa(t) = R, (t)26 defined by (4.2) there holds the error estimate

A Ra(t) < phst e (0} )

'(p+1);(§)"_zﬁ(’° | ;-f(i)%““z*]’f.%{‘(%)?ﬁ[‘-f#}‘awliHf(}'lé_)
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Remark 4.7. Theorem 4.6 shows that regularization methods (4.2) satisfying (4.4)
are optimal if supgcy<oo f(y) < 1 where f(y) is given by (4.16); this in turn depends on
the ratios # and £- An analytical examination of the function f shows that following

properties are valid:
(i) f(yo) =1 where yo is the solution of the equation (i) in Theorem 4.6.
(i) f'(y0) = 0.
2
(iii) f"(y) = (l—%ys (M) [z2 — 4z + 2] where z = h(yo) + yoh'(y0), p is given

Yo
by (1.5) and h(y) is given by (4.4).

(iv) f"(yo) < 0 if and only if

2-V2 < h(yo) +yoh'(y0) < 2+ V2 . (4.17)

Unfortunately we cannot conclude from (i) - (iv) that for %-values satisfying (4.17)
the function f in (4.16) has a global maximum at y = yo. In order to check for which
7-values yo is a global maximum of (4.16) (i.e. for which 7-values quasireversibil-
ity methods (4.2) are optimal) it seems to be necessary to examine f(y) numerically.
On the other hand, (4.17) gives us a hint in which range optimality can be expected
since we know that outside of the (%, %)-ra.nge defined by (4.17) the corresponding
quasireversibility methods (4.2) are not optimal.

5. Optimality for special quasireversibility methods

In this section we consider the special quasireversibility methods discussed in Examples
4.2 - 4.4 and ask the question for which values of -% and 7 the corresponding methods
are optimal provided the regularization parameter a has been chosen properly. In order
to answer this question we will apply Theorem 4.6. Let us start to discuss the methods
described in Examples 4.2 and 4.4. In these regularization methods the regularized
solution g} (t) is obtained from (4.7) with integer values n > 2. Consequently, for the
functions ¢ and h of (4.4) we have g(A) = A — A" and A()) = A""1. We suppose
that § < E holds, then we find that the equation h(y) = (p + 1)In P#/ln £ (compare
Theorem 4.6) has the unique positive solution

In 2+1 T
yo={(P+1). } - (51)

E
IIIT

Hence, the regularization parameter o given in Theorem 4.6 (which leads to optimal
error bounds (3.2)) has to be chosen optimally according to

T ThhT T
= 5:2
*T hE {(T—z)ln%} (5:2)
where we have used that p is given by p = =*—. In order to apply Theorem 4.6 we have

to examine the function f given by (4.16). From Remark 4.7 we know that f"(yo) < 0
if and only if (4.17) holds. It can be shown that (4.17) is equivalent to the inequality
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(B <5< (™

Since outside of the (%, £)-range defined by (5.3) the corresponding quasireversibility
methods (4.7) are not optimal it follows that f(y) has only to be examined numerically
inside the range defined by (5.3). In order to check for which (%, %)-values Yo is a
global maximum of (4.16) we have executed numerical experiments (for different integer
values n > 2). We have found that for (%, %)-va.lues that belong to the ranges given
in Figures 1 - 3 there holds sup,5, f(y) < 1. Note that the ranges defined by (5.3)
are something larger than the ranges of Figures 1 — 3 for which the corresponding
regularization methods (4.7) are optimal. Summing up we have found the following
results.

Theorem 5.1. Let ¢8(t) = Ra(t)2z% the reqularized solution defined in Ezample 4.4
withn = 2, n = 3 or n = 4, respectively, where the regularization parameter a is chosen
according to (5.2). If (%., %) belongs to the range given in Figure 1, Figure 2 or Figure
3, respectively, then there holds the optimal error estimate (3.2). .

In the second part of this section we are going to discuss optimality results for the
quasireversibility method of Gajewski and Zacharias (cf. Example 4.3). In this method
the regularized solution ¢5(t) can be represented by (4.6), hence, for the functions g

and h of (4.4) we have g(A) = h(A) = 1—_’:—'\ We suppose that

6 t\ e
— = 4
5 < (3) 6
holds. Then we find that the equation A(y) = (p + 1)In ?% /In % (compare Theorem
4.6) has the unique positive solution
(p+1)In %
Clmf-(p+1)lne

Yo

Hence, the (positive) regularization parameter a given in Theorem 4.6 (which leads to
optimal error bounds (3.2)) has to be chosen according.to

T? ln%

mE{(T-HmE-TmT} " -

a= " (5.5)

The numerical computed (4, &)-range for which sup,>o f(y) < 1 holds is given in
Figure 4. Since all points of this range satisfy the inequality (5.4) there holds the
following

Theorem 5.2. Let ¢5(t) = Ra(t)z5 the regularized solution defined in Ezample 4.3
where the regularization parameter o is chosen according to (5.5). If (%, -%) belongs to
the-range given in Figure 4, then there holds the optimal error estimate (3.2).
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In the preceeding considerations we have treated the ‘stationary‘ case, i.e. we have
worked with a fixed a-value in (4.7) (or (4.5), respectively). If the solution ¢(t) is
searched not only for one fixed ¢ € [0,T), but for all ¢t € [0,7T), then one could apply
(4.7) with the parameter choice (5.2) for a series of t-values 0 = tg < t; < ... <tpn < T
which would require to apply method (4.7) n + 1 times with n + 1 different a-values.
From the point of computational amount it seems to be much better to solve (4.7) (with
t = 0) only once and to work with a time-dependent regularization parameter. In this
dynamical quasireversibility method a regularized approximation g3(t) (t € [0,T)) for
equation (1.3) is obtained by solving (backward in time) for a given integer n > 2 the
problem

ue(t) + Au(t) — B(t)A™u(t) = 0 for 0<t<T 56
u(T) = 2° (5.6)

where f(t) denotes the ‘dynamical‘ regularization parameter. The solution of problem
(5.6) can be expressed by

. oo o (T :
gh) = Y MTON IO Ly (5.7)

=1
where J; are the eigenvalues and u; the eigenelements of the partial differential operator
A. Consequently, the solution qg(t) of problem (5.6) coincides with the solution @)

of problem (4.7) if @ and B are related by'a"_l(T —t) = f‘T B(s)ds, which, for the
parameter choice (5.2), is equivalent to

T
E
IHT

n T
T . t
ln? = /ﬁ(s) ds . (5.8)

Now we differentiate (5.8), apply Theorem 5.1 and obtain

Theorem 5.3. Let qg(t) the regularized solution obtained by solving (5.6) backward
in time with n = 2, n =3 or n = 4, respectively, where the dynamical regularization
parameter [3(t) is chosen according to

(5.9)

Then, for the t-range given in Figure 1, Figure 2 or Figure 3, respectively, there holds
the optimal error estimate

lab(t) — a0l < B oF  (510)

Remark 5.4. The choice of the dynamical regularization parameter (5.9) in The-
orem 5.3 .guarantees that we have for the solution of the regularized problem (5.6) a
well-posed propagation of the data 2® *backward in time’ in such a way that optimality
is preserved, i.e. for every.t-value that belongs to the corresponding optimality range
of Figure 1, Figure 2 or Figure 3 (in case n = 2, n = 3 or n = 4, respectively) we can
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guarantee the optimal error bound (5.10), hence, the constructed approximation gj(t)
is as accurate as possible in terms of the given information (A1) and (A2). For the
choice of the integer n in problem (5.6) we should prefer n = 2 from the computational
point of view. The larger n, the larger the computational amount for solving problem
(5.6).- On the other hand, the larger n, the larger the t-range of optlmallty for ’small’
ratios E ‘(compare Figures 1 - 3). Finally we note that the ratio E‘ can be influenced
by incorporating an initial guess g for ¢(0) into the solution process: let us deﬁne the
regularized approximation qﬂ(t) according to the followmg three steps

(i) Given § € H, solve the well-posed ‘forward problem*

u,+Au
u(0)

0 for 0<t<T
q

to obtain u = 4(t) for 0 <t < T.

(ii) Given #(T) from (i), solve the regularized problem (5.6) with z% replaced by
2% — 4(T) to obtain the regularized approximation ufg(t) for t € [0,T).

(ul) Given 4(t) from (i) and uﬂ(t) from (ii), compute the regularized a.pproxxmatlon
qﬂ(t) =a(t) + uﬁ(t) for t € [0,T). o

Then the results of Theorem 5.3 remain true where the constant E from assumptlon
(A2) has to be replaced by a constant E satisfying’||¢(0) — g|| < E.
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