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Abstract. In this paper we consider different regularization methods for solving the heat 
equation u + Au = 0 (0 < i < T) backward in time, where A : H -, H is a linear 
(unbounded) operator in a Hubert space H with norm and z 6 are the available (noisy) 
data for u(T) with 11 z6 - u(T)ii < 5. Assuming 11 u ( 0 )11 < E we consider different regularized 
solutions q(t) for u(t) and discuss the question how to choose the regularization parameter 

= cs(5,E,t) in order to obtain optimal estimates sup q(t) - u(t)11 < E'+'&+ where the 
supremum is taken over z6 E H, ll u (0 )11 < E and 11 z6 - u(T)II < 5. 
Keywords: Backward heat equation, optimal parameter choice, optimal error bounds, regular-

ization methods 
AMS subject classification: Primary 65M30, secondary 35R25 

1. Introduction 
In thispaper we consider different regularization methods for solving the heat equa-
tion backward in time in which the temperature q(t) = u(x,t) (t E [0,T)) has to be 
determined while temperature data z(x) = u(x, T) are given and u(x, t) satisfies the 
evolution equation .	.	. 

Uj + Au = 0	(0 I <T)  

with a linear, densely defined, self adjoint and positive definite operator . A D(A) c 
H - H with eigenvalues Ai (i E N): 

0<A 1 <A2 < ...	with	). — oo for i - oo 

and eigenelements u (i E N) that form an orthonormal basis in a real Hubert space 
H with norm	and inner product (.,.). One simple example for (1.1) is the one-
dimensional heat equation	,	.	.	. 

	

U t - u	= 0	for (x, I) E (0, ir) x (0, T) 

	

u(0, t) = u(,t).=0	for te [0 , T	 }	
(1.2) 
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in which the eigenvalues A i and eigenelements ui of A: H0'(O, it) fl H2 (0, it) C H -* H 
with H L2 (0, it) are given by 

A	i 2	and	u =	sinix	(i E N), 

respectively. 

Let us formulate the above backward heat equation problem as an operator equation


	

K(t) q(t) = z .	 ( 1.3)


By Fourier method one has the usual 'forward solution' 

CO 

	

u(x, t) =	(q(0), u)	u 

of problem (1. 1), consequently, (q(0), u 1 ) = (q(i), uI)e (q(T), u i )eA T , which gives 
(q(T), u 1 ) = (q(i),ui)e_(T_t) and shows us that for any fixed t E [0,T) the operator 
K(t) : H —+ H of problem (1.3) has the representation 

	

K(t) q(t) =	(q(t), u) _A(T_t) UI. 

Consequently, K(t) : H - H is a linear selfadjoint compact operator with eigenvalues 
= e_A1(T_t) and eigenelements U 1 . Since the eigenvalues K 1 (t) of the operator K(t) 

decay exponentially fast we realize that problem (1.3) is a severely ill-posed problem. 
The ill-posedness becomes worse as t decreases. The numerical treatment of linear ill-
posed problems in which the solution q(t) of problem (1.3) does not depend continuously 
on the data requires the application of special regularization methods. For the general 
regularization theory for linear ill-posed problems we refer to [1, 2, 5, 6, 8, 11, 18, 
21]; special regularization methods for the heat equation backward in time have been 
considered, e.g. in [3, 7, 10, 13, 14, 17). 

We suppose that instead of z = u(T) noisy data z 6 E H are available and assume 
throughout this paper that 

(Al) li z -	5 
(A2) ii g (0 )il	E 

with known bounds S and E. Let, for any fixed t < T, q(t) the solution of problem 
(1.3). Then, since q(t) can be represented by 

00	 00 

q(t) =	(z,u) 
UI =	

(z,u1) 1(t) Y UI	 (1.4) 

	

i=1 KI(t)	1=1 ,c(0)	
T 

 

we obtain that
q(t)	K(t)" q(0)	with p =

	.	 (1.5)
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From the source representation (1.5) for the exact solution q(t) of: problem (1.3) 
we realize that (for any fixed t E [0, T)) condition (A2) can be reformulated into the 
condition q(t) E M,E where the source set M,E is given by 

Mp,E = {q(t) E H : q(i) = K(t)" v, jjvjj E, p = ;— } 

Any operator R(t) : H — H can be considered as a special method for identifying the 
solution q(t) of problem (1.3) from noisy data z 6 E H; the approximate solution to (1.3) 
is then given by R(t)z 6 . We introduce the worst case error i.(S, R(t)) for identifying 
q(t) from z 6 E H under the conditions li z — z 5 1I S and q(t) E M,E by 

L(8, R(t)) =	sup	11R(t)z6 — q(t) 
q(I)EMpE , .6EH 

11<6 

where the side condition q(t) E M9 ,E can be replaced by the equivalent condition (A2). 
This worst case error characterizes the maximal error of an arbitrary method R(t) if the 
solution q(t) varies in the set Mp,E. Now we ask the question concerning the magnitude 
of the worst case error i(S, R(t)) for 'optimal' methods R(t) : H -* H. From [21] we 
have the result that

inf A (6,R(t)) > E	5T = E 1	54 .	 (1.6) 
R(t) 

(where the infimum is taken over all methods R(t): H -. H) provided € a(K(t)7') 
where a(K(t)) denotes the spectrum of mapping K(t). Note that condition f E 
c(K(t)P+ ') can only hold (for sufficiently small 5) provided problem (1.3) is ill-posed, 
which means in the compact selfadjoint case that the eigenvalues ?c(t) tend to zero. 
For well-posed problems (1.3) condition e a(K(t)') can never hold for sufficiently 
small 5, hence this condition excludes the class of well-posed problems. 

From (1.6) we realize that there exists no method R(t): H -+ H which guarantees 
an error bound iIR(t)z6 —q(t) < E` *b+. On the other hand it is well known (cf. [11, 
17, 20]) that there exist special regularization methods R(t) (where R0 (t): H - H 
denotes a continuous operator depending on a positive regularization parameter a > 0) 
which guarantee the 'optimal' estimate ., 

R0 (i)z5 — q(t)II	E	= E' 4 4	 (1.7) 

which means (together with (1.6)) that the best possible worst case error for identifying 
q(i) from noisy data z 6 E H under the conditions (Al), (A2) is given by 

w(S,t) = E'4'' .	 (1.8) 

We note that it has long been known that problem (1.3) can be stabilized by imposing 
condition (A2). By the concept of logarithmic convexity it can be shown (cf. [2, 14, 
17]) that under the a priori assumption (A2) there holds ig(t)II E' iig(T)ii' which 
means that q(t) depends in a Holder continuous way on the (unperturbed) final data 
q(T). Thanks (1.6) and (1.7), (1.8) the following definition make sense, which is due to 
Vainikko et al. [21]:	 ..	.
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Definition 1.1. Parameter dependent regularization methods R(t) in which reg-
ularized solutions q(t) for problem (1.3) are defined according to q(t) R,(t)z 6 are 
called

(i) optimal on the set M,E if z.(5,R,(t))	.(ö, t) for a given parameter choice 

(ii) order optimal on the set M, E if L(c5, R(t))	cw(S, i) for a given parameter 
choice a = (ö) where c 2 1 is a constant independent of c5. 

For a discussion of optimality of parameter dependent regularization methods R(t) 
we refer to [11, 15, 16, 19, 201; concerning order optimality we refer to [1, 2, 11, 21]: 

In this paper we are interested in optimality results for heat equation problems 
backward in time. We consider regularization methods of the general form 

q(t) = R0 (t)z6 =	p(,,j,t)(z6,u) Ui	 (1.9) 

and ask the question how (for given filter factors p = p(c, ,c, i)) to choose the regular-
ization parameter a > 0 such that (1.9) becomes an optimal regularization method. A 
special optimal regularization method for backward heat equation problems (1.3) has 
been derived by Seidman [17). This method is characterized by (1.9) with filter factors 

1 P = mm	;(7)	
}	

(1.10) 

where r(t) =	 are the eigenvaiues of K(t) E £(H, H) (cf. also Remark 3.3). 

2. Optimality for a general regularization scheme 

From (1.9), (1.3) and (1.5) there follows 

q(t) - q(t) = q(t) - Ra(t)z + Ra(t)z— Ra(t)z6
(2.1) 

= [I - Ra(t)K(t)]K(t)"q(0) + R0 (t) [z - z61 

consequently we obtain from Lemma 2 2 in [19] (cf. also [12] and [4]) the following 
result. 

Lemma 2.1. Let q(t) = R0(t)z5 t'he regularized solution (1.9). Then for the 01
maximal error i(6, R(t)) there holds 

, R,110)=	 K(t)P[I - R(t)K(t)12 + j-_R(t)V	(22) 

where p is given by (1.5).
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In our following considerations we consider special regularization methods (1.9): For 
any fixed i . E [0, T) we define an approximate solution q 6 (t) for problem (1.3) according 
to	

q(t) = ga(K(t)23+2) K(t)2 ' z 6	 (2.3) 

with s > -. Here, g,, (K) : [0,i] —* IRis a family of (piecewise) continuous functions 
depending on a positive regularization parameter a > 0 and g(K(i)) is defined accord-
ing to g(K(t))q )i ga (lc j )(q,u t )u j where ic, with r., ^! k ... are the eigenvalues 
and u 1 the eigenelements of the linear compact operator K(t) E £(H, H). Note that 
(2.3) has the general form (1.9) with 

p(a,ic,t) = g (ic2 2)2s+1 . 

Example 2.2 (T;khonov regularization). This regularization method is character-
ized by the choice g(,c) = The computation of the regularized solution (2.3) 
requires in this case to solve the linear operator equation 

	

(K(t)23+2 + al) q = K(i)2 'z6 .	 (2.5) 

• Example 2.3 (Regularized singular value decomposition). This regularization 
method is characterized by the choice

for c2a 
—	—' 

	

a	for i<a 

with some additional fixed parameter z E (0, cc). The computation of the regularized 
solution (2.3) can be done by one of the following equivalent representations 

q(t) =	>	(z6,u) u 1 + _L	,c(z6,u) tz 

<0	
(2.6) 

= Ui 
(z6,u1)	

+	;	
—

ic(z,uj) 
I	 •ç•+ 

with fi 2p(s + 1) — 1, where the second representation requires only the computation 
of a finite number of summands in the above sums. 

Example 2.4 (Asymptotical regularization method). In this method the regularized 
solution q 6 (t) is characterized by (2.3) with g0 (k) = hence, there holds q6 (t) = 
y() where y(r) is the solution of the initial value problem 

i(r) ± K(t)22y(r) = K(t)2 'z6	for r E (o, ] }

	
• (2.7) 

Y(0) =O
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Example• 2.5 (Iterated Tikhonov regularization). In this regularization method 
q(t) is obtained after performing rn steps of the method of Tikhonov regularization as 
discussed in Example 2.2, i.e. there holds q(t)	q,,, where q,,, is obtained via 

qo = 0 

	

qk+1 = qk .+ (K(t)2 ' 2 + al)'K(t)21 (z 6 - K(t)qk )	(k = 0(1)(m - 1)).. (2.8)



Consequently,q(t) can be represented in the form (2.3) with g(ic) = [1— (__'m]/,. a+sc / 
Example 2.6 (Quasireversibility method). In this regularization method the reg 

ularized solution q(t) = u(t) is obtained by solving (backward in time) the regularized 
problem

ur+Au(r)—aA2u(r) = 0	for t<r<T	
(29)
u(T)=z6 

Since u(r) (r E [t, T)) can be represented by

00U(r) = e	AT_r)(z6,u) 

	

CO 

ii	 I	

(2.10) 

= 

we find that the regularized solution q(t) can be represented in the form (1.9) with 
p(a,c,t) =	or equivalently, in the form (2.3) where in case s	- there 
holds g(k) =	 S 

Now we introduce for 0 'c < oo and  <a < co the functions g: [0,00)-4 JR and 
h: [0, cx) - JR according to 

g(K) = ag0 (cxK)	and'	h(K) = 1 - ?cg(K)	 (2.11)


and assume that g and h are independent of the regularization parameter a. Note that 
(2.11) is satisfied for Examples 2.2 - 2.5 but violated for Example 2.6. We easily find 
that g(c) =	for Example 2.2,

	

'	for r, > 1	 '	(2.12) 1k	for c<1 

for Example 2.3, g(n) = -9-- for Example 2.4 and g(c) = [1 - (j4)"]/' for Example 
2.5.

For regularization methods (2.3) satisfying (2.11) we obtain from Lemma 2.1 in 
analogy to the proof of Theorem 3.1 in [20] (cf. also Theorem 2.3 in [15]) the following 
result.
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Theorem 2.7. Let g and h the functions defined by (2.11) and p the parameter 
given by (1.5). If 

(i) the equation h(n)	has a unique solution no and 

(ii) a is chosen by a = 

then for q(t) = R0(t)z 6 defined in (2.3) there holds the error estimate 

E1 sup {f()} = E' 4 8' sup If(.)) '	(2.13) 
O<Ic<oO	 O<.c<oo 

with

(Ko)	
+ l+7) 	K2g2(sc)(2.14) f( s) = (1+p) —	h

p	no) 

Remark 2.8. Theorem 2.7 shows that regularization methods (2.3) satisfying 
(2.11) are optimal if sup, E[O) f( , ) < 1. If f(sc) > 1 for some c E [0, cc) and 
[0,e] C o(K(t)) (e > 0), then method (2.3) is not optimal for any parameter choice 
a = a(S) provided S = 5(e) is sufficiently small. For the proof of some non-optimality 
results we refer to [11, 19, 201. 

3. Optimality for special regularization methods 
On the basis of Theorem 2.7 it is possible to obtain optimality results for different 
regularization, methods discussed in Examples 2.2 - 2.5. Let us start to consider the 
method of Tikhonov regularization (Example 2.2 with s = 0). In this method the 
functions g and h from (2.11) are given by g(') =	and h(k) =4j.. The equation 
h(n) =	has the unique solution no = p, hence, the function f from (2.14) attains

the form

- (1±p)c' + (l+p)ic	 31 
- p?('+1)2	(ic±1)2 

Since 5UPe(0oo)f(K) < ifor all p E [0,2] we obtain from Theorem 2.7 and (1.5) the 

well known result that for the a priori parameter choice a = (-s) the method of 
Tikhonov regularization (Example 2.2with s = 0) is optimal for p E[0, 21, hence there 
holds 

Theorem 3.1. Let, for any fixed t E (0,T), q(t) = R0 (t)z 6 the regularized solu- 

tion (2.5) with s = 0 where a is chosen by a =	 If t E [0,T], then the

error estimate

E'— + 5'	 (3.2) 

holds.	 - 

In analogy to Theorem 3.1 it is possible to derive optimality results for further 
regularization methods. Some of the results which can be deduced from Theorem 2.7 
can be formulated as follows:
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(i) The method of Tikhonov regularization with s = - 1 (cf. Example 2.2) is 
optimal for any fixed t E [0,	T] if a is chosen by a = ii.! (.) ir!.• 

(ii) The method of asymptotical regularization . with .s = 0 (cf. Example 2.4) is 
optimal for p E [0, 7.121, i.e. for all t E [0, 0.88T] if a is chosen by a = ()2/[ln 

(ill) The method of iterated Tikhonov regularization with s = 0 and rn = 2 (cf. 
Example 2.5) is optimal for p E [0,3.58), i.e. for all t E [0,0.78T] if a is chosen by 
- %I'T 	(5\2 

'_.jjkEJ 

The following Table 1 contains the optimal values a01 of the regularization param-
eter and the corresponding ! -ranges for which the methods of Tikhonov regularization 
(Example 2.2), iterated Tikhonov regularization with in = 2 (Example 2.4) and the 
method of asymptotical regularization (Example 2.5) are optimal. 

Regularization 
method

Tikhonov 
regularization

iterated Tikhonov 
regularization with m = 2

asymptotical 
regularization 

a0 T-t(6\
l	T l-1(6\P fl—jJ ) 

s = —0.5 0 : 0.382 0 : 0.434 0: 0.511 
S =	0.0 0 : 0.667 0 : 0.782 0: 0:877 
.s =	0.5 0.051 : 0.750 0.078	0.857 0.146: 0.932 
s =	1.0 0.196 : 0.800 0.265: 0.889 0.399 : 0.955 
s =	1.5 0.329 : 0.833 0.416: 0.909 0.564 : 0.966 

=	2.0 0.432 : 0.857 .	0.525: 0.923 0.669 : 0.974

Table 1. ! -ranges of optimality, ii := 2(s + 1)- 
Note that outside of the ! -ranges given in Table 1 the corresponding regularization 

methods are not optimal, hence, there appear saturation effects. Such saturation effects 
have already been known in case of order optimality (cf. [5]). For example, Tikhonov 
regularization with s = 0 is order optimal for the parameter choice a 6 2 ( 1 f provided 

E [0 , j ; for 4 > Tikhonov regularization with .s = 0 is not order optimal. 
In our following considerations we discuss the method of regularized singular value 

decomposition (cf. Example 2.3). The next theorem shows that for this method opti-
mality can be guaranteed for arbitrary values 4 E [0, 1), hence, there doesn't appear 
any saturation effect. 

Theorem 3.2. Let, for any fixed t E [0, T), q(t) = R(t)z 6 the regularized solution 
(2.6) where a is given by

T	5	
2(.+1T-1) 

a = (T) (Ti)	 (3.3) 

If the constants .i and s are related by 1	2 4u(s + 1)	2, then for any t E [0,T) the 
optimal error estimate (3.2) holds. 
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Proof. We apply Theorem 2.7 with function g given by (2.12) and prove that 
sup,1 > 0 f(i) < 1 if p < 1 < 2p holds, where f(ic) is given by (2.14). Let h the 
function defined by (2.11). Then, since the equation h(i)	with p given by (1.5) 
has the unique solution sco = we obtain that f( s) is given by 

f( ?)

_;	-i 7TT	 for 	(3.4) 

{ ( 

p )	
p (l+p)	 ,c.+1(1_&L)2+(L± /	12p_41 for ic<1 \ P  

First we note that sup,-, 0 f(ic) < oo if 0 < 1 < 2p holds. Let 0 < < 2p. Then 3+1
f(c) is monoton decreasing for ic 2 1. Furthermore, 1(1) :5 1 is satisfied for p ;:h. 
Hence it remains to prove that for p :5 -fr 2p there holds sup0 <,1 < 1 f() :5 1. For 
0 < y :5 1 there holds yP(1 - y) []I'[jiç.], consequently, for 0	1 there

holds the inequality 

()iT(1Kl):.r < 	/ 1 ) 
- 1+p) (r 

which gives

<	 1 
- 1 + p) .	()	(1—)_ 

We use this inequality and obtain from (3.4) 

1	 2—	 2— / p	
- 

f(sc) ( (1 +p)1TTY(1 -	 + (j---)	
(,P)	(.41) 

for 0 < ,c	1. One shows that the right-hand side of this inequality attains its 

maximum for ic = P which yields the result sup0 <,1 < 1 f(sc) f((j-f)) = ii 

Remark 3.3. Recommendations for the choice of s and p in Theorem 3.2 are values 
with 2p(s + 1) = 1 (e.g. s = - and p = 1) since in this case the number of summands 
to be computed in the finite sums of (2.6) is 'small'. In this case we obtain immediately 
from Theorem 3.2 that for the regularized solution 

q(t)	(z6,u,) ui+ ._
 JZ6- 	(z6,u1)u1}	(3.5) = 

k 

with

Ki = K(t) = _Tt)	and	c = ( t) =	
( T  

there holds (for any fixed t E [0, T)) the optimal error estimate (3.2). Note that the 
representation (3.5) is equivalent to the representation (1.9), (1.10) from the paper of 
Seidman (cf. [17]). Furthermore note that for smaller i-values a smaller number of 
summands in the finite sums of (3.5) is needed.
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4. Optimality for quasireversibility methods 

If the eigenvalues and eigenelements of the operator A of equation (1.1) are available, 
then the method of regularized singular value decomposition as proposed in Example 
2.3 is definitely to be recommended since it appears to be 

(a) very cheap concerning the computational amount of work if one decides to use 
the representation (3.5) and 

(b) optimal for any fixed I E [0, T) (cf. Theorem 3.2 and Remark 3.3). 

However only in very special circumstances - constant coefficients and simple geometries 
for example - it will be possible to compute the eigenvalues and eigenelements of a partial 
differential operator A analytically. Generally the eigenvalues and eigenelements of A 
will not be available. In this case the method of regularized singular value decomposition 
becomes very expensive concerning the computational amount of work. 

The methods discussed in Examples 2.2, 2.4 and 2.5 do not require the knowledge of 
the eigenvalues and eigenelements of the partial differential operator A, but they have 
the disadvantage that they are not optimal for all t E [0, T) and they have the difficulty 
that

(i) the generation of the (discretized) operator K(i) is quite expensive and 
(ii) the (discretized) operator K(t) is dense, even if A is sparse. 

Of course, these disadvantages can be overcome if one switches over to the concept of 
adjoint equations from control theory which does not require to generate K(t). It is 
clear that, e.g. for integer values of 2s + 1, the element K(t)24 ' z 6 can be computed 
without to generate K(i) explicitely. Also for the realization of (2.5) it is possible to 
use iteration methods which do not require to generate K(t) explicitely. 

We note a further disadvantage of the methods that fit into the framework of Theo-
rem 2.7. This disadvantage appears if the solution q(t) is searched not only for one fixed 
I E [0, T) but for all I E [0, T). Then the considered methods have to be applied for a 
series of i-values 0 = to <Ij <... < I,, <T and it is not clear how to use the information 
of q(t 8 ) in order to compute an 'optimal' regularized approximation q(i_i). 

A very cheap method from the point of computational amount is the method of 
quasireversibility proposed in [10] (cf. Example 2.6). A generalization of this method 
can be described as follows: search for q(i) = u(i) by solving (backward in time) the 
regularized problem

U(T) +g(A)u(r) = 0	for I r <T}

	
(4.1) 

u(T) = 

with a function g to be chosen appropriately. Note that g 0 (A) = A - aA2 for Example 
2.6. Since for any fixed I € (0,T) the solution q,(t) = u(t) of (4.1) can be represented 
by

q(t) =	eg(Ai)(T_t) (z 6 ,u)u 1	 (4.2)
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we find that q,(t) can be represented in the form (1.9) or (2.3), respectively, but (2.11) 
will generally be violated such that Theorem 2.7 cannot be applied in 'order to find 
optimality results for method (4.2). 

In our following considerations we ask the question if it is possible to find some 
optimality results for method (4.1). Since Theorem 2.7 cannot be applied we start our 
examinations by applying Lemma 2.1 and obtain the following 

Lemma 4.1. Let, for any fixed t e [0,T), q,(t) = R,.(t)z 6 defined by (4.2). Then 
for the maximal error (fi, R(t)) of (1.8) there holds 

R0(t)) 

inf	sup	_e_2T_t) [i - e(9	A)(Tt)J2 + jLe29_t)}2	(4.3) fE2 

eE(O,1) AE(A,,00) 

where p is given by (1.5). 

In order to derive optimality' results in an unified manner we introduce the two 
functions g: [0, oo) - JR and h: [0, oo) -, JR according to 

	

g(A) = ag(,, ()	and	h(A) = 1 -	 (4.4) 
A 

and assume that g and h are independent of the regularization parameter a.. Let us 
discuss some examples. 

Example 4.2 (Quasireversibility method of Lattè, and Lions, cf. [101). In this reg-
ularization method the regularized solution q(t) = u(t) is obtained by solving (back-
ward in time) the regularized problem (4.1) with g0 (A) = A - A2 . Consequently, this 
method is characterized by (4.2) with g0(A) = A - c,\2 , hence, (4.4) is satisfied with 
g(A) = A - A2 and h(A) = A. 

Example 4.3 (Quasireversibility method of Gajewski and Zacharias, cf. [3]). In 
this regularization method the regularized solution q(t) = u(t) is obtained by solving 
(backward in time) the regularized problem 

—{u(r)+aAu(r)] +Au(r) = 0	for t <r < T I (4.5) 
u(T) = 

Since the regularized solution q(t) = u(t) of problem (4.5) can be represented by 

= (T - 

	

q(t) =	e '+	(z6,u)u,	 (4.6) 
i= 1 

it follows that q,(t) has the representation (4.2) withga(A) = j-j. Consequently (4.4) 
holds •4	(\\ -	_l JJ\ -  with g, - 1+A an	-
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• Example 4.4 . (Quasireversibility method of degree n, cf. [13]). In this regulariza-
tion method the regularized solution q(t) = u(t) is obtained by solving (backward in 
time) the regularized problem 

ur(r) + Au(r) - &'Au(r) = 0	for t <r < T }


u(T) = z  

where n 2 2 is an integer (note that n =, 2 corresponds with Example 4.2). It can be 
shown that the regularized solution q(t) = u(t) of problem (4.7) can be represented 
by (4.2) with ga(A) = ..\ - a''A, hence, (4.4) is satisfied with g(A) = ..\ - )'. and 
h(A) = )fl_1 

For regularization methods (4.2) satisfying (4.4) we obtain from Lemma 4.1 with 
the substitution y = a..\ that 

ç.	i(t5,R(t))	E4TT inf	sup {f(,y,a)}	(4.8) 
E(oi) yE(O,) 

with 

f(,y,a)= 

•	 e_*y7T_1) 	e9)_(T_t)J2 ± j--- ()
	

g(y)(T-)	•(4.9) 

From (4.8) we realize that method (4.2) is optimal provided 

ml	sup f(e,y,a) <1. O<<lo<,<	.	. 

holds for a special choice of the regularization parameter. In order to determine an opti-
mal regularization parameter we search for a stationary point of the function f(, y, a). 

Lemma 4.5. Let g(y) : [0,cx) —+ IR differentiable and p given by (1.5). If the 
equation

In P+1 
h(y) = (p+l)	P (4.10) in E 

has a solution yo, then 

(eo, Yo, ao) = (, yo, Yo(T_tXP±1))
	 (4.11)In E 

3 a stationary point of the function f(, y, a). Furthermore there holds 

MO, YO, ao) = 1	 (4.12)
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Proof. One shows that the three equations f = 0, f, = 0 and f, = 0 are equivalent 
to the nonlinear system 

(') ' X2, 2 (p+ l)y(T- 9) = (
1)2 1 — X)2 

A l.
1- — X) + [g'(y) — 1]X = '-----g'(y)(1 - X) 

yp(1—X) + [g(y)—y]X= 

	

where X stands shortly for X =	 We realize that the last two equations 
are satisfied for the choice

	

and	X=— ---.	 (4.13) 

	

1+p	 1+,p 

Consequently it remains to solve the two equations 

	

= e_p+1)y(T_	and	e_T_t) =	 (4.14) 
E	 p+l 

where h is given by (4.4). From (4.13) and ' (414) we obtain that (4.11) is a stationary 
point of the function (4.9) where yo is the solution of the equation (4.10). We substitute 
(4.11) into (4.9) and obtain that (4.12) hoidsi 

Now we substitute o and aD into (4.9) and obtain together with (1.5) the following 
result. 

Theorem 4.6. Let (4.4) hold, g(y) : [0, oo) 7-+ . IR differentiable and p given by 
(1.5). if

(i) the equation h(y) = (p + 1) in P+ In E has a solution yo and 

(ii) a is chosen by a = yo (T — t)(p + 1)/ In f, 
then for q(t) = R0 (t)z6 defined by (4.2)' there holds the error estimate 

	

(6,R(t))	E6	sup {f(y)}	 (4.15) 
0 y < 00 

with 

Ay)= 

(p+ 1);()°[1 ()
	j2	

+ l ( 6 y*rHt+t)I (416)
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Remark 4.7. Theorem 4.6 shows that regularization methods (4.2) satisfying (4.4) 
are optimal if sup0 < < f(y) < 1 where f(y) is given by (4.16); this in turn depends on 
the ratios 4 and . An analytical examination of the function f shows that following 
properties are valid: 

(i) f(yo) = 1 where Yo is the solution of the equation (i) in Theorem 4.6. 

(ii) f'(yo) 

(iii) P(YO)= (14)2 (LL ) [x 2 - 4x + 2] where x = h(yo) + yoh'(yo, p is given 
yoby (1.5) and h(y) is given by (4.4). 

(iv) f"(yo) < 0 if and only if 

2—v < h(yo) + yoh'(yo) < 2+v' .	 (4.17) 
Unfortunately we cannot conclude from (i) - (iv) that for +- values satisfying (4.17) 

the function f in (4.16) has a global maximum at y = yo. In order to check for which 
+-values yo is a global maximum of (4.16) (i.e. for which ! -values quasireversibil- 
ity methods (4.2) are optimal) it seems to be necessary to examine f(y) numerically. 
On the other hand, (4.17) gives us a hint in which range optimality can be expected 
since we know that outside of the (+ )-range defined by (4.17) the corresponding 
quasireversibility methods (4.2) are not optimal. 

5. Optimality. for special quasireversibility methods 
In this section we-consider the special quasireversibility methods discussed in Examples 
4.2 - 4.4 and ask the question for which values of .and Jc the corresponding methods 
are optimal provided the regularization parameter a has been chosen properly. In order 
to answer this question we will apply Theorem 4.6. Let us start to discuss the methods 
described in Examples 4.2 and 4.4. In these regularization methods the regularized 
solution q(t) is obtained from (4.7) with integer values n 2. Consequently, for the 
functions g and h of (4.4) we have g(A) = A - A' and h(.\) = ) n_1• We suppose 
that 6 < E holds, then we find that the equation h(y) = (p + 1) In .1 /ln (compare 
Theorem 4.6) has the unique positive solution 

.lnE±.	r 

J(

P
+	ln	}	

(5.1) 

Hence, the regularization parameter a given in Theorem 4.6 (which leads to optimal 
error bounds (3.2)) has to be chosen optimally according to 

T t T1n 1 ' 
a 
= In f	 (T - t) In .	

(5.2)


Yo = 

where we have used that p is given by p = T t t . In order to apply Theorem 4.6 we have 
to examine the function f given by (4.16). From Remark 4.7 we know that f"(yo) < 0 
if and only if (4.17) holds. It can be shown that (4.17) is equivalent to the inequality
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t 21 
(i 	

<	
(5.3) 

Since outside of the (+ .)-range defined by (5.3) the corresponding quasireversibility 
methods (4.7) are not optimal it follows that 1(y) has only to be examined numerically 
inside the range defined by (5.3). In order to check for which ( 4c, f)-values yo is a 
global maximum of (4.16) we have executed numerical experiments (for different integer 
values n 2). We have found that for (+ .j) -values that belong to the ranges given 
in Figures 1 — 3 there holds sup> 0 f(y) 1. Note that the ranges defined by (5.3) 
are something larger than the ranges of Figures 1 — 3 for which the corresponding 
regularization methods (4.7) are optimal. Summing up we have found the following 
results. 

Theorem 5.1. Let q6(t) = R,(t)z 6 the regularized solution defined in Example 4.4 
with n = 2, n = 3 or n = 4, respectively, where the regularization parameter a is chosen 
according to (5.2). If (+ -) belongs to the range given in Figure 1, Figure 2 or Figure 
3, respectively, then there holds the optimal error estimate (3.2). 

In the second part of this section we are going to discuss optimality results for the 
quasireversibility method of Gajewski and Zacharias (cf. Example 4.3). In this method 
the regularized solution q(t) can be represented by (4.6), hence, for the functions g 
and h of (4.4) we have g(A) = h(A) = j-. We suppose that 

(5 

E	 (<	
(5.4) 

holds. Then we find that the equation h(y) = (p + 1) in	In (compare Theorem 
4.6) has the unique positive solution

(p+ 1) In 
Yo =

	

	 p ln—(p+ 1) In 

Hence, the (positive) regularization parameter a given in Theorem 4.6 (which leads to 
optimal error bounds (3.2)) has to be chosen according.to 

T 2ln1
(5.5) 

1n-{(T_t)lnf-_Tln} 

The numerical computed (4, -)-range for which sup9 ,. 0 f() :5 1 holds is given in 
Figure 4. Since all points of this range satisfy the inequality (5.4) there holds the 
following 

Theorem 5.2. Let q(t) = R(t)z 6 the regularized solution defined in Example 4.3 
where the regularization parameter a is chosen according to (5.5). If (4, .j) belongs to 
the-range given in Figure 4, then there holds the optimal error estimate (3.2).
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Figure 1: (4, f)-range B of optimality for method (4.7) with n = 2 
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Figure 2: ( E)-range B of optimality for method (4.7) with n = 3 
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Figure 3: (T , ) -range B of optimality for method (4.7) with n = 4 
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Figure 4 (T' ) - range B of optimality for method (4.5) 
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In the preceeding considerations we have treated the 'stationary' case, i.e. we have 
worked with a fixed a-value in (4.7) (or (4.5), respectively). If the solution q(t) is 
searched not only for one fixed t E [0,T), but for all t E [0,T), then one could apply 
(4.7) with the parameter choice (5.2) for a series of i-values 0 = to <t 1 < .:. .( t, < T 
which would require to apply method (4.7) n + 1 times with n + 1 different a-values. 
From the point of computational amount it seems to be much better to solve (4.7) (with 
t = 0) only once and to work with a time-dependent regularization parameter. In this 
dynamical quasireversibility method a regularized approximation q(t) (t € [0, T)) for 
equation (1.3) is obtained by solving (backward in time) for a given integer n > 2 the 
problem

ut(t)+Au(t)—f3(t)A"u(t)= 0	for 0<1< T	
56 

u(T)= z	 ) 

where 8(t) denotes the 'dynamical' regularization parameter. The solution of problem 
(5.6) can be expressed by

T 

	

q(t) = > e T_t 7f,fi(s)ds(zou)u.	 (5.7) 

where .\ i are the eigenvalues and u, the eigenelements of the partial differential operator 
A. Consequently, the solution q(t) of problem (5.6) coincides with the solution q(t) 
of problem (4.7) if a and 3 are related by a'— '(T - I) = fTu3(s)ds, which, for the 
parameter choice (5.2), is equivalent to 

^

T	In T = J6(s)ds.	 (5.8)

In	t 

Now we differentiate (5.8), apply Theorem 5.1 and obtain 
Theorem 5.3. Let q(t) the regularized solution obtained by solving (5.6) backward 

in time with n = 2, n =- 3 or n = 4, respectively, where the dynamical regularization 
parameter 3(t) is chosen according to 

NO = i	
.	

S	 (5.9) 

Then, for the i-range given in Figure 1, Figure 2 or Figure 3, respectively; there holds 
the optimal error estimate	 . 

IIq(t) - q(t)l	E'+ 8+ .	 (5.10) 

Remark 5.4. The choice of the dynamical regularization parameter (5.9) in The-
orem 5.3 guarantees that we have for the solution of the regularized problem (5.6) a 
well-posed propagation of the data z6 'backward in time' in such a way that optimality 
is preserved, i.e. for every, i-value that belongs to the corresponding optimality range 
of Figure 1, Figure 2 or Figure 3 (in case n = 2, n = 3 or n = 4, respectively) we can
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guarantee the optimal error bound (5.10), hence, the constructed approximation q(t) 
is as accurate as possible in terms of the given information (Al) and (A2). For the 
choice of the integer n in problem (5.6) we should prefer n = 2 from the computational 
point of view. The larger n, the larger the computational amount for solving problem 
(5.6). On the other hand, the larger n, the larger the i-range of optimality for 'small' 
ratios . (compare Figures 1 - 3). Finally we note that the ratio 

f can be influenced 
by incorporating an initial guess t for q(0) into the solution process: let us define the 
regularized approximation q(i) according to the following three steps: 

(i) Given 4 E H, solve the well-posed 'forward problem' 

u+Au= 0	for 0<i<T 

U(0) = 

to obtain u = i(i) for 0 <1 < T. 

(ii) Given ü(T) from (i), solve the regularized problem (5.6) with z 6 replaced by 
z6 - ü(T) to obtain the regularized approximation U 6 (t) for I E [0, T). 

(iii) Given ü(i) from (i) and U 6 (t) from (ii), compute the regularized approximation 
q(t) = ü(t) + u(i) for I E [0, T). 

Then the results of Theorem 5.3 remain true where the constant E from assumption 
(A2) has to be replaced by a constant E satisfying'q(0) -	<E. 
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