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Representation and Approximation of the Solution
of an Initial Value Problem
for a First Order Differential Equation
in Banach Spaces

I. P. Gavrilyuk and V. L. Makarov

Abstract. An initial value problem z(0) = zo for the first order differential equation z(t) +
Az(t) = g(t) with an unbounded operator coefficient A in a Banach space is considered. Using
the Cayley transform we give explicit formulas for the solution of this problem in case the
operator A is strongly positive. On the basis of these formulas we propose numerical algorithms
for the approximate solution of the initial value problem and give error estimates. The main
property of these algorithms is the following: the accuracy of the approximate solutions depends
automatically on the "smoothness” of the initial data (the initial vector zo and the right-hand
side g).
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1. Introduction

The Cayley transform of an operator A
Ty=(1I- A)('rl +A4)7,

where I is the identity operator and v is an a.rbltra.ry complex number, is well-known
in operator theory and posesses many useful properties. For.example, if A is a densely
defined, strictly dissipative unbounded operator in some Hilbert space H, then the
operator T, is contractive (see {1, 2, 7] and references. cited there). In [1] it was found
one more application of the Cayley transform, namely: it was used to represent the
exact and an approximate solution of the initial value problem

#(t) + Az(t) = 0

.z(0) = zo T ,ﬂ M
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where —A is a bounded strictly dissipative operator in Hilbert space. The discrete initial
value problem

Yyn41 = T.;‘y-.,,,, (n =0,1,...)

Yv,0 = ZTo

(2)

was regarded together with problem (1). It was shown that the solutions of problems
(1) and (2) and the corresponding continuous and discrete semigroups {T'(t)}¢>0 and
{T7}n>0, respectively, are connected by the formulas

z(t) = T(t)zo = E( 1P0,(27t) yyp

/,,,,,(t)x( )Mo]

e
T(t) = E(—l)”%(%t)Té’

T? = (-1) [/w,(t)T( )dt+I]

oalt) = =2 LD, (0] <1 forall p20
d

Yvp = Tf;y‘,, = (- 1)"“

where

bolt) = —e I, (1) = T4 T LO(Y)
with Laguerre polynomials L,(pa) . The approximate solution z of Problem (1) defined
by

N(t) = Z( 1P0,(27t) yv,p
P_ -
converges uniformly in ¢ to its exact solution £ = z(t) as N — 400 with convergence rate
of geometric progression with denominator ¢4 < 1 depending on the condition number
of the operator A. In [8] these results were extended to the case of an unbounded
selfadjoint positive definite operator A with dense domain D(A). There was shown that
the approximate solution zV of problem (1) defined by
| . |
V() =TV ()20 =™ D (=1L (21 (Yrp + Yrip1) (3)
. p=0

is a best approximation for the exact solution z in some Hilbert subspace. The conver-
gence rate is determined by the "smoothness” of z¢ and is of order O(N?~?) in some
special weak norm || : ||¢, with ¢ > 0 provided that zo € D(A°~%). Further essential
improvements were made in {2, 8], where various uniform estimates for the approxi-
mate solution (3) for an unbounded operator A in Hilbert and Banach spaces have been
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proved. In order to find the.sequence {y.,,,,},',"=0 participating in the construction of

the approximate solution z"V of problem (1) one has to solve the recurrence operator
equations (with the same operator but with different right-hand sides)

(I + A) Yyp+1 = (7 — A)'y'm (pr=0,1,.. )

y‘Y’O = Zo-

(4)

The main features of this discretization technique are the following ones:

1) Decomposition of an evolution problem in a sequence of stationary problems
("elimination” of one variable (variable t)).

2) Automatic dependence of the rate of convergence on the "smoothness” of the
initial data or the solution (”spectral property”).

3) Exclusively contractive operators are used. -

4) The approximate solution can be determined in an analytical form by a hybrid
numerical/analytical/computer-algebraic method.

There are a lot of papers concerning the discretization-in-time (decomposition) for evo-
lution problems (see, for example, (3, 6, 12, 15, 16]). But the authors know only a
few methods (for example, [4, 18, 19]) with accuracy automatically depending on the
smoothness of the solution which are suitable for rather limited classes of problems.

The recurrence equations (4) seem to be similar to the classical Crank-Nicolson
difference scheme if we interpret vy as step size, which appears, for example, in [3, 15]
as a simplest example of schemes based on the Padé approximation of e~*!. But the
approximation (3) is distinguished principally from approximations of [3, 15] in the
following sense. First of all, the Padé approximations from {3, 15] are discrete in time
and local whereas our approximation is global on the whole interval [0, +00). Second,
one can although construct a Padé approximation of arbitrary accuracy order but in
contrast to (3) this order is fixed independent of the smoothness of the solution and in
addition provided that the complexity of the algorithm grows.

In the present paper we show that the representation

z(t) = T(t)zo = €™ D (1) LY (27t)(Y,p + Yrpt1) (5)

p=0

for the solution of problem (1) is also valid if the problem is regarded in some Banach
space E and A is a densely defined, strongly positive operator. In this case we have
the same estimates as obtained in [2, 8, 9] for a selfadjoint positive definite operator A
but under slightly stronger assumptions with respect to the initial data. The case of
Banach space requires a special method of analysis which is completely different from
that of (1, 2, 9] and is based on the idea of strong positivity of unbounded operators
and on the infinite Dunford mtegra.l

One of the fundamental problems in the theory of operator semigroups {T(t)}e>0
is the relation between the semigroup and its infinitesimal generator [11, 14]. From the
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point of view of applications to partial differential equations it is more interesting to
obtain {T(t)}:>o0 from its infinitesimal generator —A. The reason for this is that, for
z € D(A), T(t) zo is the solution of the initial value problem (1).

In fact, Section 3 is dedicated in particular to the problem of representing the
semigroup {T'(t)}>0 in terms of its infinitesimal generator; namely there will be given
the following new solution of this problem:

T(t) = e""f(—l)*Li”(%t) Ty(I+Ty)
k=0 .

T = (1) /z/;k(t)T( )dt+I

For the inhomogeneous problem

£(6) 4 Az(t) = g(0)
z(0) = ¢ | ' (6)

we rega.rd the’representation of the solution
2 =z + 2z

z1(t) = T(t) zo

t

0

o) = [Te-9eods S

=Sy / == LO) (2y(t — $)) T + T) g(s) ds

.g=0

and the representation of the approximate solution

N = z{v +:1:éV
N ()= TN(t)zo
t
F0= [Te-990ds . ®
. : 0 . v
. N t . .
=Y (-1 / e~ LO (2 (t - 5)) TI(I + Ty) g(s) ds.
p=0 5 . o g v
Accuracy estimates for the error z — zV in various normed spaces are given.

It makes sense to use the approximation (8) if the corresponding integrals can be
calculated a.na.lytxca.lly In the opposite case we propose another approach based on:the
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interpolation of g(t) with accuracy rate automatically depending on the smoothness of
the initial data z¢ and the right-hand side g.

Throughout the paper ¢ denotes various constants which are independent of the

parameters under consideration. Py will denote the set of polynomials of degree less or
equal than M.

2. Basic definitions and preliminary results

We consider the problems (1) and (6) in some Banach space E, where A is supposed to
be a densely defined closed linear operator with domain D(A4), resolvent set o(A) and
spectral set £(A4). We begin with the following definition of a solution of problem (6).

Definition 1. A function z : [0,00) — E is called a solution of problem (6) if it
is continuous for ¢t > 0, continuous differentiable for ¢ > 0, satisfies equations (6) and

z(t) € D(A) for all t > 0.

We will use functions of certain unbounded linear operators A, in particular frac-
tional powers of A. For our purposes we need the following definition of strong positivity
of A (compare with sectorial operators [7, 16], strongly positive operators in the sense
of (3, 17], and normally positive operators [10]; see also [14: p. 69)).

Definition 2. We say that an operator A is positive, if
E+={z€C: 0<<p§|a.rgz|§7r}U{zGC: IzIS’y}Cg(A)

and M
-AY <
I - )7 €
for some positive constants ¢, v and M. The lower bound of all such ¢, for which the
relations above hold, is called the spectral angle of the positive operator A and will be
denoted by p(A; E) or simply ¢(A).

for all z €. Tt

Definition 3. A positive operator A is called strongly positive if p(A4) < 7

In what follows we assume the operator A to be strongly positive. Let I’ be a closed
path in the complex plane C which consists of two rays

S(xp) = {96*‘“’ ty<e< +oo}
and of the circular arc
T
{z €C: |z] =9, |argz| < o, p(A) < p < 5}‘
The domain Qr bounded by T contains the spectrum of A. If M =1 and ¢ = 7, then

—A is the infinitesimal generator of a Co-semigroup [14: p. 69]. If p(A) < %, i.e. the
operator A is strongly positive, then —A4 is the infinitesimal generator of an analytic
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semigroup [14: p. 69]. For an analytic function f = f(z) in Qr one can define the
operator f(A) by :

f(4) = 5= /r f(2)(z — A)dz

where the orientation of ' is chosen so that the spectrum of A lies on the left. In
particular, for ¢ >0 we have

: 1
A= — | 27%(z2 - A)"Ydz
r

2me

where 277 is taken to be positive for real positive values of z. If ¢ = n is an integer, then

using the residue theorem it follows that the integral equals A~". Thus, for positive
integer values of o the definition of A~ above coincides with the classical definition of
(A~})". The operator A° (o > 0) is defined as (A=?)~'. The domain D’ = D(A?) of
the operator A° becomes a Banach space with the norm ||z||ps = ||A%z||g (see [17]). .

Example. Let 1 < p <+ and let 2 be a bounded domain with smooth boundary
09 in ]R" Let
A(z,D)u = Z ao(z)D%u
la|<2m
be a strongly elliptic differential operator in 2, i.e. there exists a constant ¢ > 0 such
that
Re(—l)"‘ > aa(z) €% > cl¢P™
la|=2m :

for all z € Q and £ € R". The coefficients a, = ao(z) are assumed to be sufficiently
smooth in Q, for example a, € C?™(Q) or ao € C®(Q). With a strongly elliptic
operator A(z, D) we associate a linear (unbounded) operator A, in LP(2) as follows:

D(4,p) = W*™P(Q) N Wg™H(Q)
. Apu = A(z,D)u for u € D(4,).

The domain D(A,) of A, contains C§°(Q?) and is therefore dense in LP(2). Moreover
from the fundamental mequa.hty

lullzm,p < c(llAullop + llullop)  forall u e D(4,)

it follows that A, is a closed operator in LP(Q?). From [14: Theorem 3.2] it also follows
that A, is a strongly positive operator and the operator — A4, is the infinitesimal gen-
erator of an analytic semigroup on LP(2) [14: Theorem 3.5). The same.is also true in
the cases p = 1 and p = +oo [14: pp. 217 - 218] if we define

D(Ax) = {u

u € W2™P(Q) Vp >n, A(z,D)u € L=(Q)
DPu=0 on 9Q for 0<|Bl<m

Acou = A(z,D)u for u € D(Au)
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and
D(4,) = {u|u € WL Q)N W (Q) and A(z,D)u € L‘(Q)}

Ayu = A(z,D)u for u € D(A,;)
where A(z, D)u is understood in the sense of distributions.

Let A(z, D) be the symmetric second order differential operator given by

A(z,D)u = — Z % (a“(:z:) 62:7) (11)

k=1

where the coefficients axi = aix are real-valued and continuously differentiable functions
in . We assume that A(z, D) is strongly elliptic, i.e. that there is a constant ¢o > 0
such that ’

n

Y an() €l = co Y €} = col€]?
k=1 X

k=1

for all real €& (k= 1,...,n) and z € Q. Analogously as above we associate with the
. operator A defined by (11) an operator A, on LP(2) (1 < p < +00). The operator
—A, is the infinitesimal generator of an analytic semigroup of contractions on L?()
and the Hille-Yosida theorem yields that A, is strongly positive (see [14: pp. 8 and 214
- 215)).

We will make certain estimates in some weak norms which we define below.

Let E be a Banach space and E* its dual space of continuous linear functionals on
E. Let F = {fx}}23 C E* be a total family of functionals, i.e. from fi(z) =0 (k € N)
for some z € FE it follows that z = 0. In every separable Banach space there is a
complete minimal family {ex}ren such that the corresponding biorthogonal functionals
form a total family {fi}ren. Without loss of generality one can assume that

(Fpy = Zumg. <t+oo  (p21). (12)

k=1
We define the normed space Gj by

lzllas = {ZI 2, i) } < +oo}

where (-,-) denotes the bracket representing the duality between E and E*. From this
definition it follows easily that

G”={IGD”

lzlley < Fyllzlloe,

ie. D7 is imbedded into Gj. If E = H is a Hilbert space with an orthonormal basis
{ex}ren, p=2 and fi(z) = (z,ex) (z € H), then one can omit condition (12). In this
case, we have due to the Parseval identity

oo 3
- (4 2 (-4
lzllas = {ZI(A z, fo) } = |A%2z||i = ||zl pe,
k=1
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ie. G = D°.

We denote by Sg the normed space of all functions z = z(t) with values in D(A?)
with finite norm

i
+oco P

P
/ (A2, £;)/2y e~ " Ly (27t) dt
0

+ o0
lzlleg =

J,k=1
Let

+o0
2%(s) = A%(s) and zf = /2y / e_“”Lio)(27s)xo(s) ds,
) .

i.e. z{ are the Fourier coefficients with respect to the orthonormal family

) . +00
{\/2_’)’6_7"145‘0_)1(273)},‘:1.

We denote by E}‘,’ the space of all functions z = z(t) with values in D(A®) with finite
norm .

+o0 1/p
]
iy = { S|
k=1
It is easy to see that 6_',‘,’ is embedded into 53 and
lzlles < Fp ll<llzs-

If E = H is a Hilbert space with an orthonormal basis {ex}ken, p = 2 and fi(z) =
(z,ex) (z € H), then one can omit again condition (12). In this case we have due to

the Parseval identity
1
2 ? +o0o %
0
= {Z ||zkui,} = llzlls,
k=1

H

+oo
lzlley = {Z
k=1

+oo
/ V2y e“"‘Lf:)_)l (27t) A%z(t) dt
0

ie. £ = €Y = H®, where H? is the space with the scalar product

+oo
@b = [ (4%2(0), A%(0)  at.
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We define for any x > 0 the following weighted spaces:

H:)_“ = Le—nt
1

. +oo L
lollox = { / e-wmdt} . +oo}

= {(p : [0,00) — R measurable
0

1

m 2
lpllm,< = {Z Ilw(")llﬁ,n} < +°°}

He":u = {(P € H:)—u
k=0

e = {g 2 [0,00) = H|llgllgn.0 = /8_"'”4“9”31 dt < +°°}
1]

2
&M = {9 < +oo}
e:'u

where H is a Hilbert space and A is an operator in H. Via interpolation one can define
HP__, with norm || - ||« for real p > 0 (13].

c

m

ligllsm ="

k=0

d*g(t)
di

3. Representation of the solution of a homogeneous
initial value problem

In this section we will justify the representation (5) for the solution of the homogeneous
problem (1). Simultaneously, we will consider the series

(t) = e > (—1)PLO(27t) (Y k+1 = Yok) (13)
p=0 .

which one obtains by formal differentiation of (5) using the formula (see [5])

%(Lia)(t) - L};‘_’l(t)) 1@ ).

First of all, we collect some properties of the series (5) and (13) in the next auxiliary
statement.

Lemma 1. Let A be o densely defined, strongly positive linear operator in some
Banach space E and zo € D(A®). Then:

1) o > 0 implies the uniform convergence of the représenta.tion (5) of z = z(t) with
respect to t € [0,+00) and z is continuous on [0, +00).

2) 0 > 1 implies the uniform convergence of the representation (13) of & = Z(t) in
E with respect to t € [0,00), £ 1s continuous on [0,00) and Z(t) = (t) for all t > 0.

3) o > 1 implies z(t) € D(A) for allt > 0.
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Proof. We have

1 1 k —
Yok + Ypkt1 = o ( ) (1 + u) (z — A) 2o dz
r + 2

2m1 v+ 2z 5

e (19)
= L - _ -1_0
,n.z r (7 + Z) (,Y + Z) za (Z A) 2:0 dZ
and
1 v -2z k 1 1
Yy,k = Yy,k+1 = i Jr (7 ¥ z) T 2)27 (2= A)"'zf d=

where zJ = A%z¢. Using the strong positivity of the operator A4 we get from (14)

lyv.k + Yoy k41l
+o00

‘o k
. o ge"p 1 . 1
Ime*? - - - YA od
me / (7 + 96"”) (7 + oe'*)(0ei*)? (e )7 de
5

k

+ R '/v Loe? ! (ve'® — A)™'z5 db
et 1+e?) (1+e0)(qe®) ! 0

<%
™

(15)
27 /‘ — pe'? 1
- do
v +0e| |y + el o°(1+0)
@
1—eif|* 1
. dé | |z5 |-
+/ 1+e?]| [14+69(1+7) )"%”
0
Simple computations show that
y—ee¥|" _ v’ +0% —2y0cosp _ g —ycose (16)
v+ oe’® 72+ 0% +2ypcosp T g+ ycosy
The function”
k
—yeosp|® _,
b >, 7>0
satisfies for large k the inequality
. : .
-} k2 2y 1 ~r
max $(o) = | VR ) (22 (k + iz +17))
0€[v,00) Tk +VEE+72) +1 T -(17)

< C(v,r,w).
<=0
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Using (16) and (17) we get from (15)

1Y~k + Yy k41l

+o0
<2_7 /(g 7cos<p> 1 d
oo otycose/ \/y2+ 0?(1+ g)o°
Y
1 [ .6 9
- t k7 =17 46 o
+2(1+7)/ an 2cos 5 )||a:0||
+
@ —cosp —(2+o)d t kf 4
(/.(9+7C%¢> ? ot tan® 5 | l=5l
¥

1 +00
Q= YCOSP\? _(140-6) / do
<c| max + tank .
(96[7,+oo) (9 + ycos (p) e 91+6 llz3 |l

~

(18)

C
< Fito—6 llzg |

where § 1s an arbitrary small number from the interval (0,¢). Analogously, one obtains

[ymk — msrl] < 2L / ("_”°°S“’) - d
k — Yyk S
R v, k+1 T J P+ ycosey /,Y?, + 92(1 + Q) go—l

7]
1 0 .8
—— |t - — dé g
+ 20+ 7) / an 5 cos > )on li
. 0 : :

[o4
< % lzg1l-

(19)

If o > 1, then

N
AzV(t) = e S ()L (29t) TEU + Ty) Azo.
k=0 )

From the estimates

| T2 + Ty) Azol|

1 o A 4 k 1 ' I
— — -l ~
= -/l: (7+Z> (’y+z)z”“ (Z A) dz

(o
Fo—06 llzg |l

IA

and (see [5]) . : ‘ .
e HILO@W) <1 forall te[0,00) - (20)
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it follows that the series

oo
za(t) = e Y (“1DXLO (@) THI + Ty) Azo = lim Az (1) (21)
k=0 N=co ,

converges uniformly with respect to t € [0,+o00) provided that ¢ > 1. The uniform
convergence of the series (5) on [0, +00) and the continuity of its sum z = z(t) follow
from the estimates (18) and (20) provided that ¢ > 0. If ¢ > 1, then the estimates (19)
and (20) imply the uniform convergence of the series (13) with respect to ¢ € (0, +00),
the continuity of its sum # = #(t) and #(t) = Z(t) for all t > 0. The uniform convergence
of the series (5) and (21) under the assumption ¢ > 1 and the closedness of the strongly
positive operator A yield z(t) € D(A) for all ¢ € [0, +00). The proof is completc i

The assumptions of Lemma 1 can be weakened if we consider a finite interval [e, w] C
(0, 4+00) instead of [0, +o00).

Lemma 2. Let A be a densely defined strongly positive linear operator and zo €
D(A?). Then:

1) The series (5) converges in E uniformly in t € [e,w] and its sum z = z(t) is

continuous on [e,w| provided that o > —1.

2) The series (13) converges in E uniformly in t € [e,w), its sum Z = (1) is
continuous on [e,w] and #(t) = z(t) provided that o > 3.

3) z(t) € D(A) for allt € [e,w] if o > 3.

Proof. The proof is similar to that of Lemma 1 if one takes into account the
expansion (see [5])

am

Lﬁa)(t) = W”%e%t_%‘%k%_% (cos [Q(kt)% d 7 - g + (nt)_%O(l)) (22)

where a > —1, ck™! <t < w and ¢ = const > 0. It follows from (22) that
le=3 L7(t)| < ck™+ (23)

uniformly in ¢ € [¢,w]. Hence the series (5), (13) and (21) are majorized by the number
series ¢ 3453 k~(§+9-8) ang ¢332, k(31279 uniformly on [¢,w] and the statements
of the lemma follow il '

We are now in a position to show that the series (5) represents the solution of
problem (1): :

Theorem 1. Let A be a densely defined, strongly positive linear operator in some
Banach space E and o € D(A%) with ¢ > 3. Then the function z = z(t) given by (5)
is the only solution for the Cauchy problem (1).

Proof. It follows from Lemmas 1 and 2 that under our assumptions the function
z : [0,+00) — E given by (5) is continuous for ¢ > 0, continuous differentiable for ¢ > 0
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and z(t) € D(A) for all t > 0. It remains to show that z satisfies equation (1). We have

+o00 k
z — Az p— e_’Y‘ _1Y)k (0) zl—w Y-z
(t) — Az(t) k§=o( )L, (2‘rt)/F ( )

Ttz

=z =2\, .,
x('y v z 27+Z)(z A) 'zl dz

Since —A is the infinitesimal generator of an analytical semigroup we get from (14:
Theorem 1.4] the uniqueness of the solution il

Remark 1. Because of Lemma 1 it makes sense to consider the scries (5) also for
zo € D(A%) with 0 > —1. The solution z = z(t) given by (5) for o € (-3 3]isa
generalized solution.

4. Approximation of the solution of a homogeneous
initial value problem

In this section we study the truncated sum (3) as an approximate solution of problem
(1), exactly speaking, the convergence of zV to the exact solution £ as N — oo in
various norms. We start with the following algorithm.

Algorithm 1 (Numerical approach to the solution of problem (1) based on the
approximation (3)).

1. Input N and set y40 = zo.
2. For k =1 to k = N + 1 solve the operator equations (with the same operator but

with various right-hand sides)

(Y4 A) Tk = Yy k=1
and find
Yvk = (11— A) Y-
3. Input t and find z™(t) in accordance with (3).
The next theorem states the accuracy of this approximation as N — co.

Theorem 2. Let A be a den‘se:ly defined, strongly positive operator and zo € D(A?)
for 0 > 0. Then

llz™(t) = 2() < cN=7+|jzg ||

uniformly in t € [0,00), where z§ = A%z¢ and § is an arbitrary number from the interval

(0, 0).
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Proof. Using the estimates (18) and (20) we get

+oo
e S (“DFLP @)Yk + Yk
k=N+1

=" () — z()]) =

+o00
<c Y kOO
k=N+1
< eN=THgg |

and the assertion is proved i

Making use of estimates (18) and (23) one can analogously prove the following result.

Theorem 3. Let A be a densely defined, strongly positive operator and zo € D(A%)
for o > —41. Then
l2(t) = 2()ll < eN775 a5 |
uniformly in t € [¢,w] where [e,w] is an arbitrary closed finite subinterval in (0, +o0).
As we have mentioned before the domain D(A?) of the operator A? becomes a
Banach space D? with the norm ||z||ps = ||A%z||. In this space we have, for example,

k
Y Y-z 1 1o
x —A
m'/r(7+2) (7+2)Z"“’(2 )7 dz

C
prprerard |

1 Y-z k 1
- _A—l ad
m'/r(7+z) (v +2)z0-¢! (z = A)" g de

C
< prran (e

”y‘y,k + Yy k41 Il De

and

i

1Y~k = Y,6-1l e

where 6 is an arbitrary small positive number. Using these estimates we get in an

analogous way as in the proofs of Theorem 1 - 3 the following estimates in the norm of
De.

Theorem 4. Let A be a densely defined, strongly positive operator and zo € D(AY)
for 0 > 0. Then, for an arbitrary small positive §,

eV (1) = z(Dllpe < N~ O1zg|
uniformly in t € (0,00) and
. L ]
=¥ () — 2()llpr < N7 3H+Ei2g|

uniformly in t € [e,w] C (0,00) where [€,w] is an arbitrary closed finite subintervall in
(0, +00).

We conclude this section with estimates in some weak norm, namely in the norm of

€.
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Theorem 5. Let A be a densely defined, strongly positive operator in a separable
Banach space E and zo € D(A?). Then the function z given by (5) belongs to &7 with

=0+ E;—’ ~ 6 and
" - zllgs < eN=E=0 28] (24)

where p € (1,4+00) and § is an arbitrary small positive number
Proof. The family {/27v e‘“"Lio_)l(27t)}:: is orthonormal on (0,+o0). There-
fore, we have for g > 0 fixed, p € (1,00), § > 0 arbitrary small and 6 = o + ?:—l -6

+o0
1 Z |(Aa(y-y,k—1 +y-,,k)yfj)|p

(B4
(27)=
+oo k=1 _5-— P
1 vy—z 2777 _
= (2+)% —/( ) z— A)'zg, fi) dz
(27) j’g;] omi Jp \ v + 2 7+z<( ) of))
. too . -
= m’flmfﬁ/ 7 — et "™
i J,k=1 i —y+ge“f’
yR= ¥ A
6—aei(6—o)gp ; _
x Q—H—ge.«;—((ee“’—fl) 'zg,fj)de
¥ k—1 = P . P
1- 610 7a—aex (6—0)8 i
+Re/(1+ew) P ((ve - A)'zg, ;) dé
0
< (Y2 \s R / v — €' 0°=°  do
“\ ¥ + e Iy + ee*?| 1+ 0 (25)
» 0 P
¥ [l1-¢ 1 .
. — df P
+1+7/ e LA W
0
too | T giv [PE=1) P18 o s ”
. . 4
cz /‘ iy io|p(1 de _/1 de
o) Irtee Iy + eet?|P(1 + o) +p
® 0 4 .
+ /ta.n dG (EX4ils
0
-+ o0 . p—2-5
/I7+ee“"|”—|7 oeielp °°
= (7 )8 ? o\
plk=1) 7 v o|P
+ 3| frawtnZa) { [ i) (151
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where p € (1,+00) and } + ; = 1. Since tan § < tan £ < 1 and
Jim ((72 + 0% +2y0c0s )% — (v* + 0% — 270 cosw)%) o' 7P =const  (26)

we further get from (25)

+o0
lllles Sc( / e““’de+1> [EX

¥

ie. z € £ provided that zo € D(A”). For the approximate solution zV we have the
following estimate in the norm of 59:

_ ge"" f—o

N P
" —z <cllz
” ”8: = ” 0 W N+1 /)7_},96!“’

®
/ 1

1+7 1+e'5 1+ e}
0

2 d
lv + oe*|(1 + o)

d¢

p(k—1)

"P
< el / et
k= N+l TTe

Qp(o o)+(p—1)é / 9—6
g et |P(1 +9) 1

L4 ®
+ /tanp(k—l) édf / d¢
2 cosP’ &

0 1]
+ o0

< cflagIP /
J

gp(f? o)+(p—1)6—p PN P
o + tan”" — 5.
(I + el — = gel?) & 2

Using (16), (17) and (26) one obtains further

+
8
e

y — gete "

Y+ ee¥

N
[ _I”;;
TPy = oere PN -1
< cll=5i? / | e 0T o 4 tan?
s TTre
+ o0
SeNTOH g L [ g
Y

completing the proof of Theorem 5 il
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Remark 2. In the case p = 2 and E = H being a Hilbert space with an orthonormal
basis {ex}ren and functionals fi(z) = (z,ex) the spaces £ and £f coincide with H?
and (24) takes the form

2

+oo
2™ — z||se0 = / iz (t) = 2t} dt | < cNTOTEHEHE iz
0

Remark 3. If 0 = +o00, then the convergence rate of the approximate solution z%V
to the exact solution of problem (1) is exponential, i.e. for every r > 0 it holds

: r N _ —
Jim N7 — 2] = 0 (27)

for any of the norms considered above. Really, we have for max ey, +o0) ¥(0) from (17)

T T 1
lim k7 ={— Ii = f
k—-lToo oer[I-:,a-i(oo) ¥(e) <2€')‘ cos (p) k—{Too kT—r 0 orall 7>

what implies (27). An interpretation of the case ¢ = +oco for a Cauchy problem for a

homogeneous parabolic partial differential equation is to assume the initial function to
be infinitely differentiable.

5. Representation and approximation of the solution
of an inhomogeneous initial value problem

In this section we study the inhomogeneous problem (6). We show that under ap-
propriate assumptions the representation (7) of its solution z is valid. We will also be
interested in imposing conditions on the right-hand side g so that the solution z belongs
to corresponding spaces. Further we give various estimates of the approximate solution
z" as defined by (8). We will assume throughout this section that A is a densely de-
fined, strongly positive operator so that the corresponding homogeneous equation has
a unique solution.

Let L*(0,To; E) be the Banach space of Bochner integrable functions g : [0,7y] — E
(To £ +00) with norm
To

ol = / lo(s)l& ds.

0

If g € LY(0, To; E), then for every zo € E the initial value problem (6) has at most one
solution, and if it has a solution, then the solution is given by (see [14: pp. 105 - 106])

z(t) = T(t) zo + /T(t —s)g(s)ds.
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We have shown that in (7) '
.’IJl(t) = T(t)l‘o,

where T given by (5) is the solution of the homogeneous equation provided that zo €
D(A°) with ¢ > . Thus it is sufficient to consider the second summand z5(t) in (7).
Together with (7) we consider the series

£2(t) = D (~DFTHI + T,) g(2)

k=0

+o00 ¢ '
+ Z(—l)k / e_"('_’)Lio) (2v(t - s)) T_:(I —T,)g(s)ds (28)
k=0 0

=: 22,1(t) + 22,2(t)

which one obtains by formal differentiation of the series (7). If ¢ = g(¢) is a function
with values in D(A?) (o > 0), then analogous as in Section 3 one can prove that the
series representing z2(t) and z2,1(t) converge uniformly in ¢ € [0, Tp]. Therefore,

rz,n(t)—Z( D*Tyg (t)+Z( DT (2)

k=0

= +°°(—1)kT—fg(f) - io(—l)kag(t) +g(t) - (29)
k=0 k=0

= g(t).

The series representing z »(t) can be studied analogous to statement 2 of Lemma 1.
Then we get that this series converges uniformly in ¢ € [0, 7] provided that

g(t) € D(A°) -and A%g(t) € L'(0,To;E) - (te[0,To); o > 1).

Similary it can be shown that z,(t) € D(A) (t € [0,Tp)) if o > 1. Thus the following
statement holds true.

. Lemma 3. Let A be a densely defined, strongly po:sitiue linear operator in a Banach
space E and

g(t) € D(A°) and A%¢g(t) € L'(0,To; E) (t €10, To]). -
Then the following assertions are true:

1) The series (7) for z2(t) converges in E uniformly int € [0,To] end z is contin-
uous on [0, Ty] provided that o > 0.

2) The series (28) for £,(t) converges in E umformly int € [0, To] Z7 18 continuous
on [0, To) and :::2 %o provided that o > 1.

3)Ifo>1, then z2(t) € D(A) for allt e (0, Tp).

The asshmptions of Lemma 3 can be weakened if we consider our series on an
interval [e,w] with arbitrary € and w such that 0 < € < w < +oo and if we use the
estimates (22) and (23). As a consequence, we get
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Lemma 4. Let A be a densely defined, strongly positive linear operator and -
9(t) € D(A®) and A%g(t) € L'(0,To; E) (t € [0, To))-
Then the following assertions are true:

1) The series (7) for z2(t) converges in E uniformly int € (e,w] and z, is continuous
on [e,w] provided that o > —3.

2) The series (28) for Z,(t) converges in E uniformly in t € [e,w], T2 13 continuous
on [e,w] and £, = %, provided that o > %. :

3) z2(t) € D(A) for allt € [e,w] provided that o > 3.

Now we turn to conditions on the initial data zy and the right-hand side ¢ which
will ensure that the solution z of problem (6) can be represented by (7).

Let J be an interval. A function g : J — E is Holder continuous with ezponent
6 € (0,1) on J if there is a constant L such that '

lg(t) —g(s)l| < Ljt—s]® forall s,tel

It is locally Holder continuous if every t € J has a neighbourhood in which ¢ is Holder
continuous. It is easy to check that if J is compact, then g is Holder continuous on J
if it 1s locally Holder continuous. The family of all Holder continuous functions with
exponent § is denoted by C%(J; E).

Theorem 6. Let A be o densely defined, strongly positive linear operator in a
Banach space E and

g(t) € D(A°) and A%g(t) € L'(0,To; E) (t € [0, To))

with ¢ > %. Then the function = given by (7) is a solution of problem (6). If g 1s locally
Hélder continuous on (0,T), then this solution is unique.

Proof. Obviously, it is sufficient to show that z, satisfies £2(t) + Az2(t) = g(t) and
z2(0) = 0. Using (7), (28) and (29) we get

+o00 ¢
da(t) — Aza(t) = g(t) + > (= 1)* / e I LO (24(t - 5))
k=0 0 X

+oo0 ¢
I B IR
k=0 0

x/r(Z:)k(?Hl)za_] (z — A)~' A% g(s) dzds

= g(t),

i.e. = z; + z2 is a solution of problém (6). The uniqueness follows from Corollary 3.3
(see [14: p. 113]). The proof is complete il
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Let us now consider the approximate solution £V of problem (6) given by (8). The
following two statements can be proved analogously to Theorems 2 - 4 and their proofs
are therefore omitted.

Theorem 7: Let A be a densely defined, strongly positive linear operator in a
Banach space E and

g(t) € D(A°) aend A%(t) € L'(0,To; E) (t € [0,To))

with o > ;—;’-. Then, for the ezact solution z and approzimate solution =V of problem (6),
2™ (t) — 2()lpe < eNTTF+(J|Az0]| + || 479l 1)

uniformly in t € [0,Ty], where § i3 an arbitrary small number such that o — 6 > 6 > 0.

Theorem 8. Let A be a densely defined, strongly positive linear operator in a
Banach space and

g(t) e D(A®) and A%g(t) € L'(0,To; E) (t € [0, To))

with o > —%. Then, for the ezact solution = and approzimate solution =¥ of problem
(6), _
Iz () = 2(t)llpe < eN=TH07 348 (|| Ao ]| + || A%g]| 1)

uniformly in t € [e,w] with g + } — 6 > 0 > 0, where [e,w] is an arbitrary closed finite
subintervall in (0, Tp).

A regularity result and the error estimates for the case when the right-hand side ¢
in problem (6) belongs to some space with weak norm come next.

Theorem 9. Let A be a densely defined, strongly positive operator in some separable
Banach space E, zo € D(A’) and g € 8,‘,9 where § = 0 — ;7 with p € (1,400). Then
z € £] and the estimate ’

o™ = zllgy < e (Vo)1 A%zoll + N3 || co
holds where ¢ = o + ?;—1 — 6 and ¢ > 0 > 0 with an arbitrary small positive number §.
Proof. In Theorem 5 we have shown that z; € 8,‘;’ and
=l — z1lleg. < eNO=2 |4z
So it remains only to show that z, € S,‘;’ and
lz§ = 22lles < e NP+ 3 gl (30)

Let .
9(s) = > a1/2ye L (27s)
=0
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where

o=V / e~ L{(27€) 9(€) d

are the Founer coefficients of g. Then we have

+o0 +oo t
leally = 3 | S (-1 / / D LO (24t - )
g k,j=111,¢g=0
x 2ve 7'L(°)](27t)\/ 76_7’L(0)(27s)dsdt (31)

4
x (A" TY(I + Ty) AP g, f;)

where {fi}xen is a total family of functionals from E*. It is easy to verify that
+oco t

Ig k= // _ZnL(O)(?)' )L(0)1(27t)L(0)(27s)dsdt

1

. e—‘L<°>1(t) / L0 - s)L(o)(s)dsdt
24

Bl ¥~

e—tL(O)l(t)(L(o)

(@ = L, (D) di

o\-é- )

[5k—],q+l - 5k—1,q+l+1]

where §;; is the Kronecker symbol. Denoting g* = A%g we have further from (31)

P
lezlle; = ) (AT +THel ), 1)
k,j=1
= v =2\t 2yp1-8 P
= — — A)! B > d
k=1 27!’7,/[1(7-{-2) v+ z <(Z ) gk—]v.f] z
p too _ 1—§
SM”F"( ) / oe'® A
7+ eet Iy + ee*?l1+0
. ’ , (32)
0 k=1
1-— e 71_5
- — df B qyp
+/ 1+ e 1+l +e9) ”gk_an
0
00 +°°gl—6 P ,
SCZ / 7 do+ 1] llgi_,li%
k=1 pe e

<ellgll-
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Therefore, we have proved that z, € E,‘:’ provided that g € ff .

Now we can prove the estimate (30). Analogously to (32), we get

N
e’ = zllZ,

+oo 400 P
_Z Z <A0 ﬂTk 1+Tk)gk 1’f1>
J=1k=N+1
+o00 +oo k=1 -8 P
y—z 2yz _
3 S () T B (e At o
3=1 k=N41 v v : :
+o00 k-1, 19-8 P
7\* 7=z |z] 8
<MPFP(—) P
sMPFp (- k;jﬂ( s |7+zlmzll I) gk I

+o00 N =z k-1 |Z|0_,3 1 P
< cllgll?® / dz
< clgllz kg{jﬂ N o I el
+00 *oo v — 0e'® k-1 pf=5+1-6 g, F
<c 14 / - -
=~ ”glls,l k_ZN:+l v + ge'“’ h, + gelﬁpl 1 + 0
- ‘ (33)
/ 1— 610 0 o+1-46 dé
14 e |1+e'9| 1+~
'f'ZO:O oo - gei¢ p(k—1) Qp(o o)+p—"6
< clgl, J 15
£
ks | g 17T Iy + eete|P(1 + 9)
+oo 6 5 p(k=1) ¢ P
x e 4 +/ tan dé / df
an o e
\J, 1+ 2 (1 + cos §)P'/2
0 0
+oo N
_ PT ,p(6-5)+p
<ol § [ (EEe=e)’ L 90\ tan?N &
&t - \o+vycose oP-1  gl+s )
b4

8—
< NP g7,

The proof is complete i

Remark 4. If £ = H is a Hilbert space with an orthonormal basis {ex}ren,p =2
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and fi(z) = (z,ex), then we have instead of (32) using the Parseval identity

+o0
222, = / 1A% =(2)I% dt

2

‘ Al G(Tk 1+Tk)gk ]1f)>

,Jl

~[lar-sres + T 98

k=1
+o0 k-1 2
1 _ 2 1~-6 .
= —/ (7 2) 1L (z—A)_ldzgf_l
Pyt 2m Jp\v+ 2 v+ z H
+o00 1 ' 2
292"~ M
<3 |dz| llgf_, Il
27r 'y+z [y + 2] 14 |z2|
+oo +°°91—6 ?
< / - do+ 1) ol Il
Y

Therefore, Theorem 9 holds under the assumptions ¢ € &f nstead of g € f:'zﬂ |

The rate of convergence in Theorem 9 can be improved under slightly stronger
assumptions with respect to the right-hand side g of problem (6).

Theorem 10. Let A be a densely defined, strongly positive operator in a separable
Banach space E, 29 € D(A?), g € &5, with

-1 -1
a=5-H — +6, &=a+p——6 p>1, r=pq >1,
pq p
where 6 i3 an arbitrary small posttive number and 1 +7 L . Then the approzimate
solution zV in (8) converges to the ezact solution of the mhomogeneous problem (6)

as N — oo and the estimate

e = 2V lleg <eN*=? (420l + ll9()lles)  (0<O<3) (34)

holds with a positive constant ¢ independent of N, zq and g.

Proof. By analogy with (33), we get

Y\?
lef = =all, < M7 (2)

+o0 y—z k—1 lzlg_a P
x ‘ ' ldz| ) llgg_lI%-
S ) e
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Using the Holder inequality with exponents g, ¢' such that é + # =1and r, ' such
that & + L =1, the inequalities (a + b)” < 2""!(a" +b") (r > 1) and

+oo 1

Q
o) ={ 3 ot} <l
k=N+1 re
we further deduce
ez - =3I,
1
+00 y—z k-1 |2|0- =1 T a
< cH(N / ldz]
( >{k§“ A b PR
+ oo too A ip k-1 0—o T
- d
<cp(N)y 3 / T i
eyl v+eew| |v+ee?| e
J
iy

k-1 A

L'4 .
+ /1_610
1+ e

0

14 e 1+7
+oo +oo i r(k—1) _
Y — pe'¥ do
< C¢(N) z / + ei¥ | + geivlr 1+ 0
enm | 17te v
Tt g A 4 r(k— 1) ® o v
* (/19+ d") +/(tm ) (/ )
4 e - s ] a+ cose)
+o0 N _ ?"
v —gcosp\"? o9 e\"N
< d tan —
< ed() / (7+9cosw) o'te g+(an2)
4

<e H(N)NP(8=2)

where ¢ is an arbitrary small positive number. Now, the proof follows from this estimate
.and Theorem 5

Remark 5. If we choose ¢ = ?”;—6‘ and §, — 0, then

) )
q,=p+ L crepg = p(p+61)
61 61
&
B<a=¢c- +6—> B=0-14+6

( + 61)
pg=p+6 = p,

i . 1+ +6 .
ie. if 2o € D(A°) and ¢ € Sp+ 5 dg ("almost £571%4”), then as N — +oo,

the error z — zV decreases with the rate O(N?~?) (0 < 6 < ) in the norm of £f.
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The approach (8) can be useful if the integrals in (8) can be calculated analytically.
Otherwise, we propose another approach which will-be considered in the next section.

Remark 6. If we multiply (6) by e~*! with x > 0, then we get for the function
2u(t) = e"2(1)
Z.(t) + Axza(t) = g4(2)
z,(0) = z¢
where g.(t) = e~ *'g(t) and A« = A + «I. Analogously as above, we get

Ty = Ta) + Te2

+ oo
zoa(t) = To(t) 20 = €™ Y (—1)1LL(2yt) T + Tuy) 7o
q=0
2a(®) = [Tt = 5)gu(5)ds (35)

0
+o0 p

=) (-1) / e" M=) LO (2yt) T (I + Tuy) gu(s) ds
q=0 0 )

Ty = (vI — A)(vI + AK)™' forall v > 0.

One obtains an approximate solution £" of problem (6) as

V() = ezl (t) = et (zN(2) + z (1)) (36)

where z2 and z[, are the partial sums of (35). Similary to (34) we get
lem (=) = 2¥(Dllgy < N7 (I AZzoll + lle™™ 9(lleg, ) (37)

for all x > 0 provided that A is densely defined, strongly positive, zo € D(A") and
e "tg(t) € 8" with p, ¢ and «a defined as in Theorem 10.

6. Approximation based on the discretization
of non-homogenity

In this section we consider the inhomogeneous initial value problem (6). We will assume
throughout the section that 4 is a strongly positive operator, so that problem (6) has
a solution for every initial value zo € D(A?) and for every right-hand side g € £F, with

ﬂ—a—1+6—a—;anda—a+L—6 where61sa.narb1tra.rysma.llp051t1ve
number and p > 1.
Let us first assume that g is some polynomial, i.e.

n

g(t) =) t*g,  with g, € D(AP). | (38)

p=0
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One can look for a particular solution of the form
i(t) =) tPa,. (39)
p=0

Substituting (39) into (6) and comparing the coefficients, we obtain the reccurence
relation

apzA—l[gp_(p+l)a,,+1] .(p=n—l,nv—2,...,0) , (40)
an = A" Gn (41)

which has the soiution

_Z( 1)P+" p;, AP NG . (42)

Thus, in order to find the particular solution (39) explicitely one has to invert the
operator A (the strong positivity of A yields the existence of the inverse A™!) and to
use formula (42). Next, we set w = z — Z and get

w(t) + Aw(t) = 0

w(0) = 2o — ao. (43)

It is obvious that ag € D(A”+%l) and w(0) € D(A?). Thus, the unique solution of the
homogeneous problem (43) exists for o € D? and can be found by (5). We come to
the following algorithm.

Algorithm 2 (Approximate solution of the inhomogeneous problem (6) with a
polynomial right-hand side (38)). : :

1. Input ¢t and find £(t) in accordance with (39) - (42)

2. Input N and find the numerical approach w" to the solution of (43) by Algorithm
1' . . . . B

3. Find the approximate solution of problem (6) as zV = % + wW

o It' fo]lows from Theorems 4 and 5that the estimates

‘ sup- ||A9 :r(t)—:t t))”

tE[O +oo
= sup ”Ao w(t) — N(t))" <c¢N-lo- 0)+6||A°(x0 —ao)”
t€[0,+ 00
sup ||A°(z(t) - = (i))||
tefe,w)
= sup ”Ao(w N(t)) " < CN_(G_G)_':'+6“A0(20 - ao)”

t€[e,w]



On the Solution of an Initial Value Problem 521

and
lz = ="lleg = flw = w¥lley < e N"E™OA% (20 — @)l

hold where § is an arbitrary small positive number.

We turn now to the case that the right-hand side g of problem (6) is not a polynomial
and E = H is a Hilbert space with orthonormal basis {ex}xen. We consider N +1 points
t; (0<j <N

to=10

G0 = L) =0 (<i<m)
where L) are the Laguerre polynomials. For each continuous function u on [0, +0c0)

let Iyu € Py be the interpolation polynomial of u at the points ¢t; (0 < 7 < N). The
Gauss-Radau quadrature formula {13]

+

(o o]

N
u(t)e ' dt = Zwi u(t;)
=0

o,

is exact for u € P, what yields that

N
Inu = X &kLio)(t),

k=0

where

N .
ay = Zwi LiO)(ti)u(t‘)

=0

is the interpolation polynomial of u at the points t; (0 <j < N).

Let Pn be the operator of the orthogonal prOJectlon in L? s_« upon Py. It was
proved in [13] that, for all € > 0,

v = Prulhs S eV ullmaoe (05 <m)
and
= Inullos € N5 P lullmace - 0 <p <mim > b). (44)

Besides, it holds .

ol 1
Zwi -t < = for all a € (0,1].
. a

We approximate problem (6) by

Z(t)+ Az = Ing

.’2(0) =Ty (45)
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where
N N
Ing = Z?IkLio)(?"/t) with gy = Zw;Lf‘O)(t;)g(ti) (46)
k=0 i=0
a.nd Ing is the interpolation polynomial of ¢ : [0, +00) — H with respect to the points

(0 < j £ N). One can find the approximate solution 2V of problem (45) analogously
to (36), namely

gV =2 +2) ‘ (47)
N

2 (1) = TN (“1)ILOY (2yt) T2 (1 + Tay) 20 (48)
N art

N e
() =3 (-1 / eI LO) (2y(t — 5)) TO (T — Tor) Ing(s)ds  (49)

=0 0
Ye =7+ K.
Using (46), we further get
N
8 ()= D (=1 7ok (t) T (I + Ty) i (50)
k,g=0

where

t
ran(t) = / IO (e ) L2

e” ’L(o)(Q'ys) L(O) (2v(t - 3)) ds

o'\

By partial integration, using the formulas

LY =0
L) =1
nL{(E) = (=€ +2n+a = 1)L (6) - (n+a - 1) L2, (n21)
and ey
FE©O =k (0O - () = - > LOe)
we get )

2+t

=Yt
oult) = S5 [ L) de
0
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e~ Tt

2y

2t k—1
2 2 .
(/—7 e L (27t) - 1 + 7—7 /e%‘ ZLff”({)d{) (51)
* ) v=0

*

1 (o) e~ et 2“/"_l
=—L,(29t) - — + — To.0(% 0<k<N
e - S Osksm

1
To0(t) = —(1 — e~ !
—a e

t

Tek(t) = e ! / e"’Lgo)(27(t -s)) Lio)(Q'ys) ds
0
¢

= et / e%’(l;{( —29(t—s) +2¢ - 1) L, (27(t - 9))
0
~ (=)L rte - ) | L0209 ds

= et / ey.sé{ (=27t + 24 - 1) L, (290 - ) (52)

0

= (g = DL (2v(t - )] L @s) + L, (24(2 - 5)

x [ — (k+ 1)L (27s) + (2k + 1) L (2ys) — kLio_)l(27s)] } ds

5 [(—27f +2¢ — 1) 1g1,k(t) = (g = 1) Tg—2,x(t) — (K + 1) Tg—1 k41 (2)
+ (2k + 1) Tq_l,k(t) bl kTq_l’k_l(t)]

forl<¢g< Nand 0<k<N.

Thus, we can formulate the following algorithm to calculate the approximate solu-
tion (47) of the inhomogeneous problem (6).

Algorithm 3 (Approximate solution of the inhomogeneous problem (6) with a
non-polynomial right-hand side g).
1. Input N, calculate the coefficients 2x90 = g (0 < k < N) of the interpolating
polynomial Ing by (46) and set yo = zo.
2. Forg=0tog=N-1:

2.1. Solve the operator equations (with the same operator but with various right-
hand sides)

(YT + Ax) Gg+1 = yq

and find
Yg+1 = (+I - An)y_q+l~
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2.2 For k =0to k = N — 1 solve the operator equations
(V] + Ax) Zx41,9 = 2k g

and find
Zkt1,9 = (V] — Ax) Zrg1 4.

3. Input t, calculate o, = = =ML (2yt) (0< g < N), 7ok = 744(t) by (51) and
(52) a,nd N in accordance with (47) - (50):

N

N
AN N AN - -
z, (t) = E (—1)0qyq, Z,(t) = E (=1)7gx2kq, = = m{v + xé\'

¢=0 k,q=0
It follows from (37) that
o7 = #")ley < e (1A%ollr + e vl ) (s 2 0)
1

Specifically, for p = 2, ¢ = 1 and x = ; we have ¢’ = +o0,

1
-6 a=5-1+8=0-_, Ed=H0, £ =6€2=nH"

and : N
12 = 8" llge < N®=2 (140 |11 + gl o) (53)

provided that zo € D(A%) and Ing € £°. In order to estimate
+oo
Mnglies = [ e llaTng(o)F d
0

we need the following statement.

Lemma 5. Assume that g € £ for some e € (0,1) and 1 <m < N. Then

Irnllgae = llg = Ingligeo < e(m) N~ ||g|go.m.

Proof. Let s;(t) = (A%g(t),e;). Then, due to the Parseval identity

oo T®

llg — INg“g" °o = Z / e (s5(t) - Ins;(t)) Ydt = Z lls; — INsJ”O 1 (54)

0
It follows from (44) that

”31 - INS]”O 1 < CCN_m+]||3}||m 1—¢ (E € (01 1)) (55)
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provided that s; € H%(,_.,,. Substituting (55) into (54), we get

”g - INg“?::'-O S ce —mtl Z ||31”m l—¢

j=1
m Too dk (t) 2
_ -m+1 —(1-¢€)t g )
=cN ZZ/e ( 2 ,e,) dt
J=1k=0 3 (56)
. +o0 d
t
— ce]\[—m-}-l / g( ) dt
Cdtk "
=ceN™™igllga.m.
The proof is complete B
Thus, if m >-1, then it follows from Lemma 5 that
1ngllges < c(llgllens + llgllezn) < ellgllezm
and we get from (53)
Iz - &" ”g'° < CNo Z(NAzoll + llghes:m)
provided that
zo € D(A°) and  g(t) € EXT (e € (0,1), m > 1). (57)

We consider now the difference z = z — Z which is obviously the solution of the
problem

5(t) + Az(t) = ra(t)

2(0) =0. (58)

Theorem 11. Let A be a densely dcﬁned strongly positive opera.tor and g € &
for some € € (0,1). Then

_m-1
lellers, < eN ™" lgllez.r | (59)

for an arbitrary small €' > 0, with a constant ¢ = c(e,&',m) independent of N and g.

Proof. We have from (58)

() = [T - Orw(©)dt
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where {T(t)},>0 is the analytic semigroup with the infinitesimal generator —A. There
exists a constant § > 0 such that —A4 +§ is still an infinitesimal generator of an analytic
semigroup and (see [14: p. 70]) [|T(¢)|| £ Me~%*. Thus, we have

+o0 t 2
Ielitys, = [ 0+l [ - ruierde] e
0 0 H
“+ oo t 2

N

IA
S~

e | [t -Ocs tare(e)l de | at

0
t t

0
+o00

< /e—(‘+=')'/e"""s(“f)efdf/e_an“rN(f)Ili, dédt
0 0 0

+o00
_ ¢ —(1+e'+26) tf (1426)t _ 2
_ 1+25/e 4201 1)dt 2.
0

IN

c(e',8) IrnllZmo-
1

Using Lemma 5, we get the statement of the theorem B

We are now in a position to give a characterization of the accuracy of the approach
AN .
z  calculated by Algorithm 3.

Theorem 12. Let A be a densely defined, strongly positive operator in H,
1
zo € D(A%), gGE;’;OC for some € € (0,1), a=0-g.
Then

2N _m-=1 —o—Llae"
o= "o, < o(N7F gy + N0 (140l + sz

where 1 <m < N, ¢' and € are arbitrary small positive numbers, and c is a constant
ndependent of N,zy and g.

Proof. First of all we remark that &g c 5?;";, for all 4 > 0. Then, due to (56)
and (59), we have

2N - - N
lle =2 llgoe, = llz - o, +112 =2 llgo,

IA

_m-1 -5 o
(NP lalln + N7 (1420l + loller)

IA

_m-1 —o—Llye”
C(N 7 |lgllgoum + N7 3¢ (||Aa:’-'0||H+||g||£,"_"."))

and the assertion is proved il
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