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Fourier Multipliers	. I


between Weighted Anisotropic Function Spaces 
Part I: Besov Spaces 

P. Dintelmann 

Abstract. We determine classes M( ,q0 (wo),B, q1 (w1)) of Fourier multipliers between 
weighted anisotropic Besov spaces B 0 ,qo (wo) and B ,q1 (w1) where p0 < 1 and WO, 'w 1 are 
weight functions of, polynomial growth. To this end we use a discrete characterization of 
the function spaces akin to the (p-transform of Frazier and Jawerth which leads to a unified 
approach to the multiplier problem. In this way widely generalized versions of known results 
of Bui, Johnson, Peetre and others are obtained from a single theorem. 
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1. Introduction 
The purpose of this and a subsequent paper is to give a detailed study of the class 
M (X ,q0 (WO), YJ1Iq1 (w i )) of Fourier multipliers between two anisotropic weighted func- 
tion spaces X 0 qo (wo) and Y,',q1 (w i ) of Besov and Triebel type in the case of po 1. 

In this Part I we restrict ourselves 'to the case of Besov spaces. So we have to 
determine the class of tempered distributions M generating bounded operators 

TM : B; ,90 (wo) - B; ,q1 (w1),	TMI = F[MFf] (1 ES). 

The general case (Besov . and Triebel spaces) will be considered in a following paper 
which will also contain some results concerning the case of Besov spaces. The reason for 
this splitting is twofold. On the one hand weighted Besov spaces have recently attracted 
much attention (cf., e.g., [2, 3, 8, 11, 13]) so that their study has a right in its own. On 
the other hand the case of Besov spaces is much simpler to deal with from the technical 
point of view (e.g. we do not need anisotropic maximal functions). Thus we develope 
the basic ideas of our method in the ease of Besov spaces and refine them later to deal 
with the general situation extending the results' presented in this paper. The current 
work is selfcontained and has no reference to the forthcoming Part II except for the 
proof of a certain characterization of Besov spaces. 
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To give an impression of the obtained results we formulate a special case of the main 
theorem of this paper. Let B0 ,q0 (WO) and BPI ,' , , ,  (w 1 ) be two isotropic Besov spaces with 
weight functions wj(x)=(1+x) i 3 O<d0 _< d i , and 0< pi , q <,s 3 ER(j =0,1). 
If p0 min {1,pi }, then 

M(B	B3' ,q0(wo), p i ,q, (Wi))	.F[B; r(Wi )J 

where 1 =(- -	and s = n( — 1) + si - SO. A corresponding theorem is proved r	q1	qo	 P0 
for an isotropic spaces and will be sharpened in Part II. 

This extends earlier work of the author [6, 7] and generalizes in particular the 
following results to weighted spaces and extends them even in the unweighted case: 

n(!-1) 
P	1 M(B;,g,B;g)	-77 [ Bp, 	j (0 <p < 1)	(Peetre 1976) 

M(B°B;'q1 )	F[B'°' (qo q, 1 <p < oo)	(Johnson 1978). q0,	 p.00 1 

Our method of proof is based on a discrete characterization of Besov spaces (proved in 
Part II) which will be introduced in the next section. This leads to the study of matrix 
operators between sequence spaces instead of the original Fourier multipliers between 
function spaces. These matrix operators are discussed in Sections 3 and 4. The results 
are applied to the study of Fourier multipliers in the final Section 5. 

2. Besov spaces 

Let IR" be the n-dimensional Euclidean space and let us start with a real (n x n)-matrix 
P the eigenvalues of which have positive real parts. We define 

ii = trace P. 

With the group (A)> 0 of the dilation matrices 

A =exp(P . lnt)	(t >0) 

we associate a positive A t -homogeneous distance function g, i.e. a continuous function 
: R" — R with properties 

Q(A t x) = t(x) (t > 0)	and	(x) > 0 (x 54 0). 

It is known that any two A t -homogeneous distance functions are pointwise equivalent 
and that there exist constants C, C, C" > 0 and 0 <a < b < - so that the estimates 

(x + y ) C ' (e(x)+e(y)) 

and
C'. min {IxI a , Ixi b) < (x) <C" . max {IxI a , xlb}
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hold for all x, y E R". For proofs, examples and further details concerning this concept 
we refer to [5: 14, 221. Stein and Waigner [22) proved that for a given matrix P there 
always exists an A t -homogeneous distance function o E C(lR" \ {O}) and in the sequel 
g denotes always such a fixed A t -homogeneous distance function. The adjoint matrices 
A of A t form a group of dilation matrices generated by P via 

= exp(P* . ini)	(t > 0). 

In the sequel always denotes a fixed A-homogeneous distance function from C°°(R'\ 
{O}) satisfying the additional condition 

JC E R': e(e) 5 2} c [-,]' 

which will be used in the proof of the discrete characterization of Besov spaces. 
The Fourier transform and its inverse .7' are defined by 

- 1
	/ f(x)e'dx 

 (2ir) 121	n 

on the Schwartz space S = S(1R). Since det A = we have 

.F' [f(At s )] = t' . (971f)(A,.)	and	IIf( A t . ) ll = t — Ill lip 

for all suitable f and 0 < p 5 oo where 11-11 p denotes the usual L quasinorm for 
measurable functions on R'2. 

For d > 0 the class Wd of weight functions contains all continuous functions w 
R satisfying the estimate	 - 

	

0 < w(x) Cw w(y)(1 + lx - 1)d	 . 

for a suitable constant C,, > 0 and all x, y E R'. The typical example of such a weight 
function is

W(X) = ( 1 + lxI)'. 

The class W of admissible weight functions is defined by 

W = U Wa. 
d>O 

It has been studied by several authors in connection with Besov and Triebei spaces.(cf., 
e.g., (8, 11, 13, 181). The following estimate is very useful in connection with the matrices 
A. Denote by lub2 the matrix norm associated with .. From A = exp(P . lnt) we get 

lub2 A2 -	exp(ln2' . lub2 P) CO	(j EN) 

which leads to
(1 + IA2_jxI)	C. (1 + ixlY	(d> 0).	 (1)
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To give the definiton of Besov spaces we need a resolution of unity. Let 0 E C(1R+) 
be a fixed bump function with properties supp 0 c [0,21 and 0 I[oi] 1. Define 

= 

	

= (2 i e*(e)) - (2i+Ie*(e))	(i > 1) 

for e E R'. These functions are of C°°-type with 

suppo c {e e R": () <2} 

suppg j c	ER": 2' <() <2i+I} (i >1). 

Furthermore, we have 

r-i	
(eESUPp)	and  

Co

 (e) = ' (eER") 

where	= 0. 

For 0 <p,q < 00, S e R and w E W the (anisotropic inhomogeneous) Besov space 
B; ,q (R"; F, w) (denoted by B q (w) for short) contains all f E S' (the space of tempered 
distributions) with finite quasinorm 

= (2. ' Mw . J -1 [cb1f ] Mp)jENkg 

These are quasi-Banach spaces which are independent of the choiceof 0 and ' (cf. (19]; 
the proof is analogous to [24: p. 46]). In the isotropic case, i.e. P = I (the unit matrix) 
the theory of these spaces is extensively studied in [24, 25] (unweighted case) and (18] 
(weighted case). Anisotropic spaces were used by Dappa [4], Dappa and Trebels [5], 
Seeger [19] and Marschall [14]. 

To give a discrete characterization of the Besov space BP-' , , (w) we use the sequence 
space b q (R";P,w) which is denoted by b q (w) for short (0 < p,q < 00, .s E R and 
w E W) containing all complex sequences a = with finite quasinorm 

Ib,q(w) = IPII:jeNcM 

where wL w(A2 _ 1 k). Note the analogy in the structure of the two norms- of b,q(w) 
and B(w). These sequence spaces are quasi-Bariach spaces and we remark that the 
finite sequences are dense in b, q (w) in the case of 0 < p, q < 00. From the embedding 

—i L (0 <u <v <00) we obtain the two embeddings 

	

b; ,q0 (w) '—i bp,,, 3 (w)	(0 < qo	q i	00) 

b30 	-4 b; ,q (w)	(so -	= i -- P0	p,'
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where 0<	 , s, so, s 1 ER and w  W, like in the case of Besov spaces. 

The unweighted spaces (i.e. w 1) are denoted by B q and bp' , , as usual. 
To establish the connection between these sequence spaces and Besov spaces we 

furthermore need the two special functions 00 and iJ.'i defined as 

=
 {

0()2+1()2 for () <3 

0	 otherwise 
and

&(A2) 

01 
(0= { (

2 + 1 (A)2 + 1(A)2 
for <) <3 

0	 otherwise. 
These functions are of C°°-type with compact supports 

suppo ç (C E R' : *() <2} and supp i ç J C E R" : <	< 2}. 
The next theorem contains the discrete characterization of B q (w) with the help of 
b; ,q (w) and is the basis of our. work. It will be proved at the end of Part II of this paper. 
Note that the unweighted case was already proved in [8]. 

Theorem 2.1 (Discrete characterization of Besov spaces). For f E S' define the 
sequence sef by

k))' 
EN 

sef = 

For finite sequences a =	of complex numbers define the function fua by 

fua =	a (F'o)( - k)+	 .(11)(A2. - k). 
kEZ"	 j=1 kEZ" 

Assume , 0 <p,q < oo, s E R and w  W. Then the operators 

se B,", (w) - b; , ()	and	fu : b ,q (w) - B;,q(w) 

are bounded (the unique extension of fu to b g (w) is denoted by fu, too). Furthermore, 
fu o se = id on B' ,q (w) and

sefIb ,q (w)	 IBP',,(w)ll 

holds for all f E S'. 
This characterization is akin to the 0-transform. of Frazier and Jawerth [10] for 

isotropic unweighted homogeneous spaces. Similar results for the isotropic unweighted 
inhomogeneous case were proved by Sickel using splines [20] and wavelets [21]. 

The following important corollary is immidiate from the above theorem. 

Corollary 2.2 (Discrete characterization of linear operators). Assume 0< po,pi, 

qo, q i < oc, so,s i E R and w 0 ,w 1 E W. The equivalence 

IITIBP$ O 	B ,qi (Wi )M - use T fuIb,qo(wo), b ,gi ( W I )I 
holds for all linear operators T :	-+ S'. 

Here II A I X , Y 1 denotes the operator quasinorm of the linear operator A: X - Y. 
To apply this corollary to operators TM with TMI =	[M.Tf] we first study the 
boundedness of matrix operators.	 . .
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3. Boundedness of matrix operators 

For a matrix A - (As" ).7IEN and - k,m k,mEZ	a sequence =	we define the product 
Ao via

00 

( Aa)L = >	A•a	(IEN,mEZhl) 
j=O kEZ 

By the following lemma we can restrict ourselves to the case of matrix operators between 
unweighted sequence spaces. 

Lemma 3.1 (Boundedness of A and A(wo,w i )). Assume 0 < po, p i , qo,qi	00, 
so, S j E R and w 0 , w 1 E W. For a matrix A = (Aji IEN 

k'm)
i
km EZ define A(wo,w i ) by 

) ,IEN 
A(wo, w 1 ) = ( (wi ' As"	

1 
)m km (wo) )kmEZO 

with ( Wo)'m = wo(A2 _1 m) and (w 1 ) = w i (A2 _, k) (like in the definition of b ,q ): Then 
the relation

33' Aib; ,q0 (wo) b3 '	(wi)I = A(wo, Wi)Ibpoqo,0	
b pj,q I i,qi

holds for all A. 

The next theorem contains a boundedness criterion for matrix operators in the case 
of qo :5 qj. 

Theorem 3.2 (First boundednss criterion for matrix operators). Assume 0 < 
po, p i , qo,qj < oo and so, s 1 E R. For a matrix A - 'A"	define - \ k,vnIk,mEZ' 

B(A; So, Po b3 '	- (
220)	

'''A" LEN 'b3'	ii	t00I I ' P1 gIl -
	 P0	sup	k,m)mEZ" I p , g kEZ"	 .	 /iEN 

Then:

a) We always have the estimate 

B(A; So,p b3 '	' 15 A 1 b°	b31	I' I p , q ' p I, q I ii 

b) In the case of max {po,qo}	min {1,p 1 , q 1 } the equivalence 

1 A'b°	b3'	II_ B(A; So,Po b31 II	I po, qo' p i , q 1 II	 ' p, ,q, ) 

holds for all A. 

The case of q, > qi is covered by the following theorem.
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Theorem 3.3 (Second boundedness criterion for matrix operators).' Assume 0 < 
po, pi < oo, 0 < q i < q < 00 and s 0 , s 1 E IL Additionally assume that all coefficients 
A'k','m with Ii - II > 1 of the matrix A =	 vanish. We define 

II(( Aa)L)m€z 16111 .	( 1 E N) N,(A;po,pi ) = sup
am )mEZ" 

where the supremum is taken over all sequences a for which the denominator does not 
vanish. The numbers N,(A;po,p i ) have the following properties: 

a) The equivalence 

II	I 1A'b°	bp i3 ' p q	q, II 
II ,., (2'N,(A; P0, Pi )),ENVr II '	,  

holds for all A, s	- - )+ S i — o and J. —1._ I 

	

r	q	qo 

b) The estimate

Sup sup I(AñmEZfItpiM	Nj(A;po,pi) 
kEZ trr0,±1 

holds for all 1 E N. In particular there exists a constant C > 0 by part a) so that 

	

, I \ km )mEZ" 6 ' M"	r hI <C IIAIb30	b3 '
(2" sup sup II "A'"" po,qo' p,,q, kEZ" 1=0±1	 /IEN	Ii 

holds for all A (s and r as in part a)). 

c) In the case of 0 <Pa < min{1,p i } the first inequality of part b) can be reversed 
and by part a) the equivalence 

A 1 b30	b" I p o, q o , p,,g, II	(2i	 II sup sup	(Al+tI) k	mEZn e, "	er 11 
kEZ" i=0,±1	 / 

	

m	 IEN	II 

holds for all A. 

In the proof of these two theorems we use the special sequences 

	

= { 1 for i = land k = m	
(jl E N, k, in E V')	 (2)


0 otherwise 

They satisfy the two relations 

I Ie b° i i = 2 30	(j E N, k E Z") 1 U po,qo,l 

and
CO 

(Ae),,=	 A"" (eV'=A"	(1EN,mEV') v,m ' k'v	km 
u0 vEZ"
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Proof of Theorem 3.2. Step 1. From the above relations we conclude that 

IAEJ ibsl	II 

	

B(A; s 0 ,p b3 ' ) =	 k piqiul < A''° O	 sup	 b II	-	I p o, qo' b pi,q jEN kEZ	IkI poqoIj 

which proves assertion a) of the theorem. 
Step 2. Now we show the converse of this inequality to obtain the equivalences of 

assertions b) and c) of the theorem. Without loss of generality we may restrict to finite 
sequences c. Put r = min {1, P i , q1 }. From the embedding 4	we obtain 

A (	

c

	bp'' 

e) j=OkEZ	 I 

<	- 	((,,j Ac jt) I m) iEN 
kEzn Itl II )mEZ Im	qj LI E N'	ii 

<(213 (JI((a . AE j)I JEN I4II)mn Ipi	tqj 

L IEN' 

Applying the generalized Minkowski inequality twice this can be estimated by 

EN -	(Il( (	. Ae	)	krII )	I6 M)1	l 
EN 

1	e =	-	(II (I (	Ae)	
r1jEN 

kEZ I II mEZ kpilr ) 1	f"'. 
/r 

jEN 

AEkb,q1 ,))EN
	II kEZ	r11 

Now using the definition of B(A;so ) po,b q1 ) and the embeddings 

b; q0	 ' b r,
	(o=so+v(L_i)) 

we finally get
JEN , 

i ce) 1	AEIb,qj II)kEZn r 

IIAe'b3'	
II


pi sup sup ,qi II 
II J EN kEZ"	Ejbp0so,qo II

(IaI . Ij 'b3°	
')kEZ '°i II	

iEN 
kI po,qo 

= B(A;so,po ' p b3'i,gu/ 'I IIIrII 

< C . B(A;so,po, b;'1,qj ) hIaib0	E N II	I po,qo 

which proves the theorem U
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Proof of Theorem 3.3. We write N, = N,(A;po,p i ) for short. 
Part a) Using the Holder inequality with 1 =-- + we get the estimate 

AaIb,qj 

= ('' -
	

((Aa) )mEzn e, \

lIEN 

)II(a

1i t=O ±1


	

M )mE	I6o),eql 

-	2' N II' 1+1 t=o,:l:1 p	uiqi	I 1/q 
-	 'IIYm )mEZ" I'POIII	)	i I 

lEN	II
q 

< RI 2 ' N -	' , ,4 Ir/qj	. (2'	II (am )mEZ" VPO MI ) 

< Co I(2 ' N,),ENI erM ilaib°	1 Ii	Po,qoil 

which yields

	

.4 L3 O	L.I	 Is 7*T '.	. 0p0,q0,Upj,q1	- ,
	/	

JV/j	ty. 

To prove the converse inequality we split up the set of 1-values in three disjoint parts 
which will be put together in the end. Therefore define 

	

I= {3j+u: jEN}	(u=O,1,2). 

There exists a sequence a = (aj)j E N of complex numbers satisfying the two conditions 

I(1 I ()*) aj ) j I qo/q1 11 = 1 

and
-I-

i-II II (2"N,),	ItrM = M ([2'N,]' )s€ ' V(qoiq)' II	
= (	

[2I3N,]1 . au)	(3) 
lEI 

where
—1

q,	q, 

(qo/q )' -	- r 

The second condition states that a is a maximal element for the converse of the HOlder 
inequality. Since the coefficients A"m withIj - l > 1 vanish we can find a sequence & 
satisfying the condition 

N,	I( '-a' ) t=o ,±1 P m mEZ" k ii 5.2 ( ( A&)fl)

lEN 

mEZ i	ii	 (4) 

for all I E I. This follows from the definition of N, and the structure of the set I. 
Note that the numbers 1 + t and (I + 1) + t with t = 0, ±1 are pairwise different for each 
two successive values of 1. Since this inequality, stays true if we dilate the sequence & 
by a positive constant we can adjust & to satisfy the additional condition 

M(am )mEZ" Ie0M = a,I*	 (5)
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for all 1 E I. We show that & is an element of the spaée b°0,q0 . Formula (5) leads to 

I,qo = (; 
[ ( 5°	

II(n) m € Z iiij ) * 
l=0

-I- 
qo\ ° 1+1 t=0,±1 1• (

	
[2"°— II( &	) mEZ IpoII] ) 

1EI

!Q.1 
,

(Vu ) 

= Cl . 

=cl. 

Now we use & to estimate the operator quasinorm of A from below. To this end we use 
the estimates from (3) - (5) to obtain 

=	[2'N,]I1. jail) 
(El. 

= (2'(1— N, ,I(& t ) t= 0,m€Z± I	 eq, II SE!.. 
2• (2' - P1 I(( 4& )m)mEZ n I4 

=2 A&lbsiI 

< 2C . iiAib 0	b31	II -	 po,qo' p I, q i II 

Summing up in u yields the desired estimate 

2 

(21Nl)1eNI4Ij 	11 ( 2"' Nj)1E1u 1411	C2 . 'AIb°	b3 '	I' I	. p o, qo' pi,qi 
tLO 

	

Part b) The assertion follows from the simple inequality	S 

II(( 4 ct t )n)m E Zn 14i11 sup sup I( A v')mEZl6IM = sup sup 
I' ,+
	 s=o,±i	- N,. 

kEZ" 1=0±1	 kEZ' t=o,±i I I (ek )m ) MEZn 4011 

Note that the denominator always equals 1.	 .


Part c) It remains to show the estimate 

N, < sup sup 11 (A')m€nl4iII. kEZ" i0,±1
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Put v = min{ 1, p}. Applying the same technique as in the proof of Theorem 3.2 we use 
(Ae t )L = A', the embedding L,, c_ L and the generalized Minkowski inequality to 
obtain

ii = Il	A	
+t 

k	 FePi 
0 -1  kEZ"	 mEZ"	II 

t=O,±1 

( 
(a	(ACt)m)kEZn i M) € 1tp1 

j	lO,1	\	e, II RII(a t (AE ,+t )m)k EZn ILVIIIZ 
II /	i+t	

t=O,±1 

	

- II\Iak I	((AE•t)) E Zfl IPi ii'	ILVI 
/kEZ" 

	

I	II	i0,±1	U sup sup II((4t) n ) m€n IL, h II(k 
I+t 

)kEZ' I VII 
kEZ't=O,±i 

Because of	-+ L,, and (AE t, t )L =	w e have 

II ((Ac, )mEZ I6 II	sup sup (Af	 (a 

	

)m E Zn ILpi II."	
i+t) t0

Z
4
" 1 l ep. II 

kEZ t=O±1	
k k 	I 

Dividing this by (c4+t) i—O±1 IL,, 11 and taking the supremum in a completes the proof U 

4. Matrices associated with Fourier multipliers 
For M E S' the operator TM is given by 

TMI =.1 ' [MFI]	(1 eS) 

and the class of Fourier multipliers between the two spaces B0,q0 (w0 ) and B-' ,,,q, (w1) 
is defined by

B'° (WO) —4 B; ,q,(w i ) is bounded M(B; ,q0 (tDo) B" (w 1 )) =	E S' TM : ,,-. ,q. ( W O )

 with the quasinorm 
1IIM(B ,qo (wo), B ,q ,(w i ))	TMIB;0°,q0(Wo), B,,q,(wi) 

The matrix operator associated with TM is 

M = se TM fu 
and a simple calculation shows that its coefficients are 

(se TM fU)"m 

I (se(TM [(F- o)( . - k)]))	for j = 

	

= 1 (se(TM[('I)(A2i.—k)J))'
	

for J* > 1 

	

- 1 IF[:,oM](A2_:m_k)	 forj=O 
(2ir) 	i— ' [ 1 (A;1 - ) ,P I M(A; .)] (A2 - rn — k) for j ^ 1.
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We make the important observation that due to the overlapping of the supports of 
,(A;1 .) and o,i all coefficients	with - Il > 1 vanish and thus 

M ( WO, W i) "m = 0	W. —11 > 1; WQ,W1 E W). 

Recall that M(wo, w i ) is the corresponding operator for unweighted spaces (see Lemma 
3.1).

Combining Corollary 2.2 and Lemma 3.1 yields the relation 

B 3 '	(w i ))	IIA?lb° (WO), b', q, (Wi )fl MlM(Bq0(wo), p,,q, II	po q o , 
So  = M	 b
(Wo,Wi)lbp0q0, p,q, II 

where the last quasinorm on the right side is equivalent to B(M(wo,wi);so,po,b;tq) 
under certain restrictions on the parameters p, q and s by the results of the previous 
section. So we are interested in a characterization of B(M(wo,w i );so,po,b q, ) in 
terms of M. This is done with the help of the following theorem. 

Theorem 4.1 (characterization of the matrices M). Assume 0 <p < oo, 0 <q 
00 and .s, a E R. 

a) If w 1 E Wd (d > 0) and w 0 E W satisfy the condition Il < , then II	WO	co 
the equivalence	 . 

______	j 
lEN lb3 /22U sup	1	

(Mkm)Z p,pll)jENI qII	Ml[B	(wi)] II 
\	kEZ' (w0)  II 

holds for all M E S'. 

b) If w0 E W with ".L' 1I 0 Ioo = 00, then 

/ 2j' . sup	
1 lEN 

\	(WO)	
k,m)mEZnlbp,p(Wi)I <00 

kEZ / 

implies M 0. 

The following two corollaries specialize this theorem which will be proved at the 
end of this section to the conditions appearing in the boundedness results for matrix 
operators (Theorems 3.2 and 3.3). 

Corollary 4.2 (First characterization of M(wo,w i )). Assume 0 < Po, Pi < 00, 
0< q	00 and s 0 , s 1 E R. 

	

a) If w 1 E Wd (d > 0) and w 0 E W satisfy the condition	 then the 

equivalence
B(M(wo, w i ); so, p0 , bp',, 	II 1lF[B,,,,,,(wi)]
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with a =	- 1) + s1 - so holds for all M E S' 
PO 

b) If wo E W with	=oo, then 
WO

B((wo,1); so, po b' 1 ' < - bps' 

implies M 0. 
Proof. We only prove part a) because the second assertion follows in exactly the 

same mariner.
3 Since the coefficients M (wo, w l) k

1 
m with I, - l > 1 vanish only three terms in 1 

occur for a fixed j. Thus we can change the parameter qi to Pi and by the definition of 
M(wo,w i ) we are lead to the equivalence 

II (.M(wo, wi),mLEN
	b' 1	(.(w0,	i1 LEN. b'1 k)mEZn I p ,g ii	 1	 I p P1 II 

1	-. 

	

-	, I(M"	
N	' 1 (wi)II 

	

k,m) LE
	b mEZ" I 

(wo)k 

An application of Theorem 4.1 yields the relation 

B(.M'(wo,wi); so, po b" " ' pig,) 

	

—s o)	 3	LEN b''	\21(P0	 WO,Wi )k,m)mEZ p' ,qi
kEZ"  

	

3 0	________ o	sup	1 II(Mk,m)mEZn Ib1(w1)	_____j,1 LEN
2i(	kEZ (WO)k	 I 

' lMIF[B,,00(wi)] 

which proves the corollary I 
Corollary 4.3 (Second characterization of M(wo,w i )). Assume 0 < p < c, 

0< r <00 ands ER. Ifw i E Wd(d > 0) and w 0 E W satisfy the condition 
( i +I.l) d ii	

<	, then the equivalence II	W0	1100 

213	 I - 
sup sup II (M(wo, WI) 1+ 1,,

)mEZ I6II	er l	M[BpC(wi)] II (
kEZ t=O,±i	 )1EN1 II 

with a=v(-1)+s holds for all MES'. 

Proof. We write A"m for M(w0, Wi)'m• Note that the sequence space b' isPIP 
identical with the 4-space on N x V'. We have the estimate 

213	 ' sup sup IIc Ak,m >mEZ	< 2" sup sup l l /AL + t )\J EN ib/P' iI\ km ImEZ" I pp I 
kEZ t=O,±i	 kEZ" i=O,±i 

< 2"> sup II(A Lk±,gulp
,p ; 3 ) 3EN Ib"" mEZ" I p II 

t=_ikEZ
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Now applying the £r quasinorm in 1 yields 

2"	 l+t,1 sup sup ( Akm )mEZ'd6 l
) IEN Itl  =o,±' 	

(6) 
Co - ('sup 11 (A" >JEN by/P km mEZ PP 

i ) IEN 't' ll kEZ"	'
 

In the same way we show the reverse inequality starting with 

2" sup II(A" ,EN b'' < C1 2" sup sup II/A l , I + tL	'p 
k,m mEZ" II\ k,m )mEZ" kp II kEZ"	 kEZ" 0=0±1 

C1	2" sup II( Akm
il-I-u 

)mEZ" ItEM 
k EZ" 

C1	2" sup sup (Al+0 )mE 
 z" 
t=O,±i kEZ" k,m 

—1 

This leads to

2" sup A" EN 

(

	

	 lEN	II	
(7) 

( k,m)mEZ" p kEZ ,P
	I	II 

2 (
	
sup sup (AkmI+1,i 

)mEZ ep)
IENIfl 

kEZ" 1=0±1  

A combination of formulae (6) and (7) finally results in 

(2" sup sup

	

	 lmEZnI6 kEZ" i=O,±I	 )1ENI RI 

(218 sup	
W1) " '	Ib k,m)mEZ pp k EZ"	 ) jEJ e'^^  

= sup	 1r (2'-'
	

1 
kEZ (w0)	

liEN' 

I M IF [B ,r(W i)] II 

and the assertion follows from Theorem 4.11 
To prove Theorem 4.1 we need the following lemma. 
Lemma 4.4 (simple Fourier multipliers for Lv ). Asume 0 < p < oo and w E 

Wd (d >- 0). Then there exists a constant C > 0 such that

Ii - . 11 w . 
•	

[fg]	C. Ri + I.l) d . —I [f(A; .)]	 P
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with P = min {1,p} holds for all  € N and all  ES and g ES' satisfying the condition 
suppf,suppg ç { € R": &() 2i). 

Proof. Since the supports of f(A,.) and g(A;,.) are both contained in the com-
pact set { € R" : () 1) and the relation w(x) CO w(y)(1 + lx - 1)d holds 
there exists a constant C1 > 0 by [18: Theorem 1.7.2] for which 

	

11 w F' [fg]	
= 2jv(i -	i w ( A2_i .) sr— ' [f(A;, .)9(A2*, )J 

C0 C1 . 2'(1 + 1A2-i .1)d .	[f(A2*1 •)] IL

X II w ( A2_ i .) . .1' [g(A;1.)] 11, 

To estimate the L,3 quasinorm we apply formula (1) which in connection with a substi-
tution leads to the desired estimate 

lw . . 1T 1 [fgj	C0C1C2 11(1 + l • l)	[f(A2*1 •)] II 0 - llW .


and the assertion is proved I 
Proof of Theorem 4.1. The proof is divided into the following four steps: 

1. First we derive an equivalence for 
2. Using this equivalence and Lemma 4.4 we estimate the discrete quasinorm in the 

theorem by I MI'[B	"(wi)]ll from above. 
3. We prove the estimate from below using a similar technique as in the previous step. 

This completes the proof of part a). 
4. Part b) is derived from the equivalence in the first step. 

Step 1. Recall that the coefficients of M are given by 

I	 ' (se(TM[('O)(.—k)]))	forj=0 
M ' m =	 m	 (j,l € N; /c,m € 7Z').


(se(TM[(i'l)(Azi.—k)]))	ford >1. 

Since Il ses l b ,p( w i)ll is an equivalent quasinorm on B(w i ) we have 

ll(M" 
>1EN lb3 (w i)ll	f 

I TM [(.F'tbo)(. - k)] lB,(wi)ll	for j = 0 
km mE	','	

I I TM [(.7—'01)(421. - IC)] lB,(wi )ll for i 2 1. 

To deal with the terms on the right-hand side' . we use the identity 
17 -1 [, [TM [(T— ' 1 )(A2 . - k)]J] = J' [	. 23 v Mi1 (A;, .)] (. - A2 -, IC) 

which holds for j 2 1 and all u € N. Due to the location of the supports of th and 
only the terms with u = j + r (r 0, ±1) are of interest. This leads to 

TM {()' )(A2, . - k)] B(wi) ll 
= (2u3 llw I (. + A2 -, k) .	[2M1(A2*, )] Ilp)

uEN 
lep 11 

	

sup	Wi (• + A2 -, k) .	' [ j+rMb i (A;, .)]
 lip P
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and a similar equivalence holds in the case of j = 0. Thus we arrive at 

Ib;,(w1)M 

ll w i( . + k) .1 1 [OoçL rM]M p	 for i = 0	(8) 
up 

r=O,±1 1 i w i( • + A2 - k)	' [ 1 (A2* 1	j+rM] 11 P for j > 1.


Step 2. To prove the estimate from above we use the inequality 

w i (x + A2 _ 1 k) :5 C0 . w 1 (x)(1 + IA2_1kI) 

which in combination with (8) yields 

1 SUP 	—'11EN  
kEZ" ()J	

k,m)mEZ b(wi )	C1	sup (1 + IA2 -, kl)d 
kEZ	wo(A2_,k)	(9) 

where
I 11w! . —1 [borM] 11 P	for i = 0


1= sup 1	
r=O,J 11w1	[1(A; • )c5j+rM] 11 P for i > 1 

because the fraction on the right is bounded uniformly in j and k. Now we apply Lemma 
4.4 to estimate the I and we obtain 

lkDl .T	[b 1 (A2'_, ' )c6 jr .Mi lip 
:^ C3 _ 1(1+ .1)d	[7i (A4	ii' "i- 

	

•)] II	w1	[j+rMr] 1 

in the case of .y > 1 and r = 0, ±1. Similar estimates can be proved in the remaining 
cases. Since i'o, tki E S the L-terms are bounded and we get 

Ii 15 C4 sup 11w1 . r—1 kj+rM] lip	(j E N). 
r=O ,± 1 

From this we obtain by (9) the inequality 

sup	1	
I(M :)'	'b' p (wi)Il)

jEN I 11 'I p kEZ (wO)	mEZ 
	II 

<C5 

= C5. IV*MIB(wi)II. 

Step 3. To prove the estimate from below we use the inequality 

(1 + 1A2 _ikI)_ dw i (x) Co . w i (x + A2 _ 1 k)
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which in combination with (8) yields 

	

sup . 2'''Ij	C6 . sup	
1 

kEZ"	(WO)k	 kEZ" (WO)k 

where I, is defined as above. The supremum on the left side can be estimated from 
below by choosing k = 0 which leads to 

	

C7 sup	1	 b,(wi)II .	(10) 
kEZ" (wo)k 

To estimate the Ij from below we use the partition of unity 

	

o(bo()	 = 1 

(following from the definition of ,bo and ) and Lemma 4.4. In this way we obtain 

	

11 W . F' [M]II = Wi	 i+i (A	.)M] 
lip 

	

<c8 . (i + 1 .1) d F- ' [Oi 	II 

x	1 1w, . F' lip 

	

C9 sup	.r* 
i0±1 

because the Lp quasinorms are uniformly bounded in J . Similar estimates can be proved 
in the remaining cases and we get the relation 

	

1w1 F[M]Il	C10 • sup 1,j+	(j E N) 
t=o,±1 

with I_ = 0. By (10) it follows that 

lI .T— ' MIB 0V(w )lI 

	

= (2)	.	 \	elI 

	

'/jEN	II 

	

k,m/mEZ" I ,(wi)II	eqM 

	

<Cii .	sup	1 
kEZ 

(w0) ll(.M"' 
lEN 'b3

/iEN	It 
Step 4. If w1	1, then (8) implies 

1	
Il(')'	'b' SUP	 mEZ" I p,p1 

kEZ ( WO ) 'k

	

 f 
{ 

Il	100-01-M] for i = 0	(11) 
ti 

	

kEZ (WO) r=O,±1	.r-' [ (A;_, ')qj+rM] 1	for j ^ 1.
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By definition of W we have 

(wo) = wo(A 2 - 1 k) <C12 . wo(x)(1 + IA2 - 1 k - xDd' 

r for a suitable d' > 0. For x € o	A2-1 (k + L —I , ) / the estimate 

(1 +IA2ik_xI)d' 

holds uniformly in j and k, leading to 
_______	 _______	 ii 1 sup	1	> (C12 C13 )' . sup sup	1	

= (C12C13)'. 
kEZ (w0 ) -	 kEZ" xEo w0 (x)	.	iw oo. 

and the theorem is proved I 

5. Fourier . Multipliers 

This section contains the main results of this paper. We start with the following two 
propositions which will be proved at the end of this section. 

Proposition 5.1 (Change of s). Assume 0 < po, p qo,qi < oo, so,s l E R and 
wo,w1 € W. Then the relation 

M(B; q0 (wo) B5 ' (Wi))	M ( B;:°(wo) B° (WI)) 

holds. 

This is usually proved with the help of Bessel potential operators. These operators 
are quite difficult to deal with in our'anisotropic weighted setting. Our proof using the 
discrete characterization is much simpler. 

Proposition 5.2 (Change of q). Assume 0 <po,p i qo,q i ,r , r i <00, s,s 1 E R and 
wo,w 1 € W. If (- - i_) =	- )+' then the relation 

I\4(B'° (wo) 5 B' (w 1 ))	M( .B 30 (wo) B 5 ' ( w 1 )) p o, q o

	

. po,ro	' 

holds. 

Note that the assertion for q > q was already proved by Orlovskij [16] for un-
weighted isotropic spaces in the case of Pa, Pi > 1. 

Now w come to the main theorem of this paper. 
Theorem 53 (Fourier multipliers between Besov spaces). Assume 0 <p0, Pi, qo, qi 

< 00 and s0 , s 1 € R. If w 1 € Wd (d > 0) and w0 E W satisfy, the condition 
(I

_ 00 wo	 then the relation 

M(Bpo
50,qo (w0 ), Bp", , , ,  (w 1 ))	F[B;, , r( ti i)]	(pa	min{ 1, p ' .}) '.  

holds where u	z,(- —1) + i - o ' and = (- -q 1	qo 

This theoiem will be completed 'by negative results in Part II of this paper.
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Proof of Theorem 5.3. Step 1. First assume qo qi, i.e. r = oo. We apply 
Proposition 5.2, Lemma 3.1, Theorem 3.2 and Theorem 4.2 to obtain the equivalence 

II11(B; q0 (wo ), B q , (wi)) II	IIMII'I(B:,0(wo), Bp',1,pjwj))II 

'-' B(M'(wo,wi); so, po,b,) 

p i II 
Step 2. Now let q > q i . We apply Lemma 3.1, Theorem 3.3 and Theorem 4.3 to 

obtain the equivalence 

.iw M (B;00,q0 (WO), B 
,q, (wi)) II 

	

sup 
tj	(wO, W1)') EZfl '61 

)ICND 

IF[8i,r(tt'i)] 

which proves the theorem I 
Remarks. The first theorem of this type goes back to Ta.ibleson [23: Part TI/p. 

8271 and asserts

M(B j (R"; I, 1))	.T[B,,,0(R"; 1,1)] (s E R). 

It can be obtained by choosing po = P1 = qo = q, = 1 and s = so = s, in Theorem 5.3. 
Peetre [17: p. 249] proved the supplement

/O<p.<1 
M(B; ,q (Ilr; 1,1))	F[B'(R; 1,1)]	( O<q<oo


\ sER 

which can be obtained by choosing p = po = P1, q	qo = q i and s = s0 = Si in

Theorem 5.3. Johnson [12: Theorem 61 proved

i.p'oo 

	

M(B'q0 (R; 1,1), B; ,qj (lR*; 1,1))	F[B0(RT1; 1,1)]	(1 < qo	qi < 

	

\
	

so, SiER 

for homogeneous spaces with the help of a characterization of Besov spaces in terms of 
the Gau-Weierstral3 kernel and preliminary work of Taibleson. Due to technical reasons 
the characterization of Fourier multipliers is usually much simpler in the homogeneous 
case than in the inhomogeneous one. Bui [1: Theorem 2] modified Johnson's method to 
deal with inhomogeneous spaces and obtained the counterpart of Johnson's result, i.e. 

	

' 1	ipi<• 

	

M(B Oq0 (lR'; 1,1), B ,q, (R*; 1,1))	.F[B(R*; 1,1)] 
( 

1	qo :5q i < oop * 00
So, Si € R
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which can be proved by choosing p0 = 1 in Theorem 5.3. Bui recently generalized 
his method in order to deal with weighted spaces (cf. [2, 3]) and proved embedding 
theorems for classes of Fourier multipliers between isotropic Bcsov spaces with power 
weights. 

The unweighted version of the above theorem was already proved in [6] (q qi) 
and [7] ( qo > qi) . Similar results in the periodic setting (inhomogeneous, unweighted 
case) were proved by Mizuhara [15]. 

Proof of Proposition 5.2. First we consider the case of qo	q i . If M E 
M(B;oo qo (wo),B; q ,(w i )), then M : b°0,g0 (wo) - b;-', I (w i ) is bounded. Consider 
the sequences a3 defined as

(a)Th = 't-i,ii(i —1) . 

associated with the sequence a. Since the coefficients	for j - 1 > 1 vanish we 
have (Ma) = (Ma,) and thus 

2'' -	II ((wi ) . (JcIa) )kEZ" e, 

^ 1	l	,qjW1) jj 

po,g (Wo), b ,q i ( W I )I JIcijIb;,g0(wo) 

3+1 
C0 M I b	 l( ,g0 ( W0), b°'	(w)II 

pig,	 >	3o_ P )IK(W)iai)	Ie0II 0 

Applying the £r, quasinorm in j and using the embedding trQ ' £r, we obtain 

,r, (w )	Ci . MIb 0	( W0), b ,q, (Wi ) . IaIb ,ro (n0) p 0 go" 

Therefore
M(Bg0(wo), B g, (Wi))	M (B;° ,ro(W0), B, rj (wi)) 

Reversing the roles of q and r yields the assertion. 

Now let qo > q i . Since M(wo,w i ) satisfies the hypothesis of Theorem 3.3 and 
because of the relation L - 1. = 1 = -	we obtain the equivalence q 1	go	r	r1	r0

S	b3'	II .MIM(B° (wo) BS1 (wi )) 'S.' Af(wo, w 1 )Ibp0,q0, p, g,


	

po,go	'	pig,

1R2'°N1(M(wo, wI);po,pl))lENIerII 

°	b3 ' I(Wo, W i)I bpo,ro, piT, 
M I M (B	B ,ro (WO), p°' ri (wi)) 

from Lemma 3.1 and Theorem 3.31 
Another way to prove the assertion of this proposition for the case of qo < q is the 

method of real interpolation.
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Proof of Proposition 5.1. For 	E M(B 0 q0 (wo), B q ,(w i )) the operator M: 
b'° (w0 ) - b" (w 1 ) is bounded. Note that the mapping po,qo

I, CNXZCNXZ,	Icr = (2a JEN k)kEZ 
is an isometric isomorphism 

I	bp' °o qo' (wo) —4 b(wo),	I., : bp", , ,, 	- b"(wi). 

	

I	pi,qi 
We show the boundedness of 

	

M, 0	I_ o M o I, : b ,q0 (wo) —* b; 	(w i ).	 (12) 

To this end we decompose 'a = a0 + a 1 + a2 , where 
(a r)=1 j (j) a	with Jr = 1 3j+ r: jEN). 

Observe that li ar I b, 90 (wo)II	Ik I b q0 (wo). Since the M" vanish for Ii — 1 > 1

we are lead to

00	 1+1 

	

(M,0a '1 — 2"°	 2"°(a,.) =	
(J-1)30 	

m (Qr) r)m — k 
j=0 kEZ"	 j=1-1 kEZ" 

In the sum over j only one term appears due to the definition-of ar and so 

I 

1+1 

< 2"°	II	II	(ar)J= 2"°' 
j=1-1 kEZ°	 I 

Hence we obtain
2 

lkt,0aIb31 (wi)M < Co	MarIb	(w)lI
II 
r=0

2 

	

< CoMb'°I	( —	I	 bp",,,, (wi )II .	arIb;q0(wo) 
i-=0 

< 3Co . I Mb ''° -	I pj,q ,(w), b ,qi (w )I 
which shows the boundedness of M, 0 from (12) with bound 

II A;i-	b'° II	3oI p0q0(Wo), b''pi ,qi (WI )II	 3C0	11Ib ,qo (Wo), b'1 ,q, (w )I 
Since the I, are isometric isomorphisms the mapping 

M =	 p q 

	

o .M o	b0q0(wo) —i b" 3°(w) i , 
is bounded with bound 

II J'rfIb°	(W0) b31 '°(w )II	3C0 I LlvuIb 3o	(w0), b' 1	(w1) II	p a q a pI,ql	ii	II	Po,qo p1 ,qi 
showing the embedding 

	

M(B;,q0(wo), B; ,q , (W 0)'—+ M(B° q (wo), B	0(w)) 

Since s0 and s are arbitrary we get • the reverse embedding from the same argument 
and the proof is complete U, 
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