Zeitschrift fiir Analysis und ihre Anwendungen
Journal for Analysis and its Applications
Volume 15 (1996), No. 3, 579-601

'Fourier Multlphers ’ .
between Welghted Anisotropic Function Spaces
Part I: Besov Spaces

P. Dintelmann

Abstract. We determine classes M(B}2 . (wo), B3} o (w1)) of Fourier multipliers between
weighted anisotropic Besov spaces B;9 . (wo) and Bp! ; (w:) where po < 1 and wo, w: are
weight functions.of. polynomial growth. To this end we use a discrete characterization of
the function spaces akin to the tp—tra.nsform of Frazier and Jawerth which leads to a unified
approach to the multiplier problem. In this way widely generalized versions of known results
of Bui, Johnson, Peetre and others are obtained from a single théore_m.
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1. Introduction

The purpose of thls and a subsequent paper is to give a detailed study of the class
M (X 38 g0(w0), Y1 o (un )) of Founer multipliers between two anisotropic weighted func-
tion spaces X0 . (wo) and Y! o/ (w) of Besov and Triebel type in the case of pp < <1

In this Part I we restrict ourselves to. the case of Besov spaces. So we have to
determine the class of tempered dlstnbutlons M generatmg bounded operators

Ta : By go(wo) = Bjt g (w1),  Tuf=FMFf] (f€).

The general case (Besov and Triebel spaces) will be considered in a following paper
which will also contain some results concerning the case of Besov spaces. The reason for
this splitting is twofold. On the one hand weighted Besov spaces have recently attracted
much attention (cf., e.g., (2, 3, 8, 11, 13]) so that their study has a right in its own. On
the other hand the case of Besov spaces is much simpler to deal with from the technical
point of view (e.g. we do not need a.msotroplc maximal functions). Thus we develope
the basic ideas of our method in the case of Besov spaces and refine them later to deal
with the general situation extending the results presented in this paper. The current
work is selfcontained and has no reference to the forthcoming Part II except for the
proof of a certain characterization of Besov spaces.
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To give an impression of the obtained results we formulate a special case of the main

theorem of this paper. Let By o, (wo) and B;! . (w1) be two isotropic Besov spaces with

weight functions wj(z) = (14(z])%,0 < dy < d;, and 0 < Pj,qj <oo,s; ER(j =0,1).
If po £ min{l,p,}, then . '

M(B;g qo(wo)’B;;,ql(wl)) = f[B;l,r(wl)]

where 1 = (qll - q‘—o)+ and s = n(PlD ~1)+s, — so. A corresponding theorem is proved

for anisotropic spaces and will be sharpened in Part II.

This extends earlier work of the author (6, 7] and generalizes in particular the
following results to weighted spaces and extends them even in the unweighted case:

M(B; @ q) = f[B:,(oi_l)] (0<p <'1) (Peetre 1976)
—
—

M(B;°, ., By f[B;,‘;“] (90 <1, 1 <p<o0) (Johnson 1978).

1,907 “p, ‘h)

Our method of proof is based on a discrete characterization of Besov spaces (proved in
Part II) which will be introduced in the next section. This leads to the study of matrix
operators between sequence spaces instead of the original Fourier multipliers between
function spaces. These matrix operators are discussed in Sections 3 and 4. The results
are applied to the study of Fourier multipliers in the final Section 5.

2. Besov spaces

Let R™ be the n-dimensional Euclidean space and let us start with a real (n X n)-matrix
P the elgenvalues of which have positive real parts. We define

v =traceP..
With the group {(A;)¢>0 lof the dilation matrices
A= exp(P ‘Int)  (t>0)

we associate a positive A,- homogeneous distance function g, i.e. a continuous function
o: R" — R with properties

(A,z)'=tg(z) (t>0) and  o() >0 (z#0).

It is known tha.t any two Aq- homogeneous distance functions are pointwise equivalent
and that there exist constants C,C',C" >0and 0 < a £b< oo so that the estimates

o(z +y) < C - (o(z) + oly))

and »
C'- min {Je*, lz*} < o(z) < C" - max {|z[*, |z|*}
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hold for all z,y € R™. For proofs, examples and further details concerning this concept
we refer to [0, 14, 22]. Stein and Waigner [22] proved that for a given matrix P there
always exists an A;-homogeneous distance function p € C*°(R"\ {0}) and in the sequel
¢ denotes always such a fixed A;-homogeneous distance function. The adjoint matrices
A} of A; form a group of dilation matrices generated by P* via

A; = exp(P* -Int) (t >0).

In the sequel p* always denotes a fixed Af-homogeneous distance function from C*°(R™\
{0}) satisfying the additional condition

{6 €R™: o°(€) <2} C [~m,a]"

which will be used in the proof of the discrete characterization of Besov spaces.

The Fourier transform F and its inverse F~! are defined by
FHO = vy [ f@eF s
(2n)7 Jgo
on the Schwartz space § = S(R™). Since det A, =t we have

FRUf(A) =7 (FE(A] ) and |f(Ae)llp =771l

for all suitable f and 0 < p < oo where ||+||, denotes the usual L, quasinorm for
measurable functions on R".

For d > 0 the class Wy of weight functions contains all continuous functions w :
R” — R satisfying the estimate '

0 < w(z) < Ca - w(y)(1 + |z — y])*

for a suitable constant C,, > 0 and all z,y € R". The‘typica.l example of such a weight
function is

. w(z) = (1+|z])?.
The class W of admissible weight functions is defined by

W = UW,,.
d>0

It has been studied by several authors in connection with Besov and Triebel spaces-(cf.,
e.g.,[8, 11, 13, 18]). The following estimate is very useful in connection with the matrices
A,. Denote by lub, the matrix norm associated with |+|. From A; = exp(P -Int) we get

lubyAz-; <exp(In277-lub,P) < Co  (j EN)

which leads to g
(1+|As-iz)f <C-(1+ ) (d20). (1)
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To give the definiton of Besov spaces we need a resolution of unity. Let ¢ € C°(R,)
be a fixed bump function with properties supp ¢ C [0,2] and ¢ljo,1) = 1. Define

$o(£) = (2°(€))
8i(6) = 6(270°(9) - 6270 (©) (2 1)
for ¢ € R™. These functions are of C*-type with
suppdo C {€ € R™: p*(¢) < 2}
suppg; € {€ € R™: 2771 <p"(§) <27} (5 >1).

Furthermore, we have

r=-—1

1 ' 0
2 #selO)=1 (€suppd;) and Y 4(6)=1 (£eRY)

where ¢_; = 0.

For 0 < p,g < 00, s € R and w € W the (anisotropic inhomogeneous) Besov space
B; (R™; P,w) (denoted by B, ,(w) for short) contains all f € S’ (the space of tempered
distributions) with finite quasinorm

1918 4()l) = [[ (2o - 78,1, Yyenltel]

These are quasi-Banach spaces which are independent of the choice'of ¢ and o* (cf. {19];
the proof is analogous to (24: p. 46)). In the isotropic case,i.e. P = I (the unit matrix)
the theory of these spaces is extensively studied in [24, 25] (unweighted case) and (18]
(weighted case). Anisotropic spaces were used by Dappa [4], Dappa and Trebels [5],
Seeger (19] and Marschall [14]. : ‘ ' ’

To give a discrete characterization of the Besov space B; ,(w) we use the sequence
space b;,q(R";P,w) which is denoted by b;,q(w) for short (0 < p,q < 00, s € R and

w € W) containing all complex sequences o' = (ai)ig;,, with finite quasinorm

laes,o(w)]| = |27~ [ (wiadbeczn pl])enla]

where w] = w(A,-;k). Note the analogy in the structure of the two norms of by ¢(w)
and B} (w). These sequence spaces are quasi-Banach spaces and we remark that the
finite sequences are dense in by,q(w) in the case of 0 < p,q < co. From the embedding
€y — €, (0 <u < v < o0) we obtain the two embeddings

b go(0) = B0 (@) (0< g0 < g1 < o0)

b;g,q(w) — b;l,q(w) (So -_— PLO =8 — pL‘)
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where 0 < p,pg,p1,9 < 00, s,50,5; € R and w € W, like in the case of Besov spaces.
The unweighted spaces (i.e. w = 1) are denoted by B; , and b, , as usual.

To establish the connection between these sequence spaces and Besov spaces we
furthermore need the two special functions 1, and ¢, defined as

O
Po(§) = { b0(6)2 + $1(€)? for °(¢) <3
0 otherwise
" $1(43¢) |
1\12
¥1(€) = { 61(6)? + $1(A36)? + ¢:1(A36)? for 3 <o (5) <3
0 T otherw1sg. -

These functions are of C*°-type with compact supports
suppyo C {£ € R™: 0'(€) <2} and suppyy C {€€R™: § <p'(€) <2}
The next theorem contains the discrete characterization of B, (w) with the help of

b; (w) and is the basis of our work. It will be proved at the end of Part II of this paper.
Note that the unweighted case was already proved in (8].

. Theorem 2.1 (Discrete characterization of Besov spaces). For f € &' deﬁne the
sequence sef by

sef = ((2m)  F 0 F AN A D))

For finite sequences a = (ak)kGEZ" of complez numbers define the function fua by

fua= Y of - (F ') = B)+ D D ol (F ' )(Ane— k).

kezn

k€Zn j=1kezZn
Assume 0 < p,q < 0, s € R and w € W. Then the operators
se: B} (w) — by (w) and fu: b, (w) = B, (w)

are bounded (the unique exztension of fu to by (w) is denoted by fu, too). Furthermore,
fuose = id on B; (w) and

||sef|b;,q(w)” ~ ”le;.q(w)”
holds for all f € S'.

This characterization is akin to the ¢-transform of Frazier and Jawerth [10] for
isotropic unweighted homogeneous spaces. Similar results for the isotropic unweighted
inhomogeneous case were proved by Sickel using splines [20] and wavelets (21].

The following important corollary is immidiate from the above theorem.

Corollary 2.2 (Discrete characterization of linear operators ). Assume 0 < po, p1,
go,q1 < 00, 0,51 € R and wo,w; € W. The equivalence '

”TlBPo qo(wo) BPl (n(wl)” ~ ”SeTfulequo(wo)’ P\,Ql wl)”
holds for all linear operators T :'S — S'.

Here ||A|X,Y || denotes the operator quasinorm of the linear operator A: X — Y.
To apply this corollary to operators Ty with Ty f = F~ 1[M.’Ff] we first study the
boundedness of matrix operators.
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3. Boundedness of matrix operators

)JJEN i \JEN

For a matrix A = (AJ‘ k,mez» and a sequence a = (a})}c;. we define the product

k,m
Aa via

(Aa), = Z Z Al el (leN,mezn).

j=0 keZn

By the following lemma we can restrict ourselves to the case of matrix operators between
unweighted sequence spaces.

Lemma 3.1 (Boundedness of A and A(wo,w1)). Assume 0 < po,p1,q0,q1 <

-— J

50,51 € R and wo,w; € W. For a matriz A = (AL m)i”rﬁzz" define A(wo,w)) by

é(wOQ wi) = <<w1),,, k’m#-)m

( O)i k,mezn

with (wo);, = wo(Az-1m) and (w1)] = wy(Az-i k) (like in the definition of b) ). Then

the relation

”Albpo,qo(wo)’ P1.qr (w])” - ”A(wo’wl)lbpo,qo’ P10 ”
holds for all A.

The next theorem contains a boundedness criterion for matrix operators in the case
of g < q1.

Theorem 3.2 (First boundedness criterion for matrix operators). Assume 0 <

P0,P1,90,91 < o0 and so,51 € R. For a matriz A = (Ailm)i'lf;zz" define

B(A;sommb;i,ql)=]’<2’(*"° sup [|(43 ez | m,q‘H) ||

Then:

a) We always have the estimate

B(A150,70.5: 1) < 14150830

Po0,90° “P1,q1

b) In the case of max{po,qo} <min{l,p1,q1} the equivalence

”Alb;quo’ b o “ ~ B(A§ S0, Po, b;im)

holds for all A.

The case of go > ¢; is covered by the following theorem.



Fourier Multipliers between Function Spaces | 585

Theorem 3.3 (Second boundedness criterion for matrix operators).: Assume 0 <
po,p1 <00, 0 < g <go < oo and so,s1 € R. Additionally assume that all coefficients

A”m with | — 1] > 1 of the matriz A = (Ak m)illfxzz" vanish. We define

l{(Ae)n)mezn 5,
[t ) ez 1€l

where the supremum 1s taken over all sequences o for which the denominator does not
vanish. The numbers Ni(A;po,p1) have the following properties:

Ni(A;po,p1) = sup (l e N)

a) The equivalence

||A|b§§,qo1b§1 ' ” ~ "(2“NI(A; POyPl))IGNIe'"

holdsforallA,s:x/(L—Pll)+sl—so andé.:qu_

1
Po g0’

b) The estimate

sup sup “(AH-t l)mez" |ep1|| < NI(Aipo:Pl)
keZ t=0,%1 .

holds for all 1 € N. In particular there ezists a constant C > 0 by part a) so that

(2 sup sup [[AL R menr 1t} Jé-
k€zZn t=0,%1

114185 000851

Po,90? "P1,01

holds for all A (s and r as in part a)).

c) In the case of 0 < po < min{l,p;} the first inequality of part b) can be reversed
and by part a) the equivalence

141832 40,832 0 | ~ || (2" sup sup (4415 ) mezn 8 l1) .l

holds for all A.

In the proof of these two theorems we use the special sequences

i 1 foryj=landk=m ) "
(eW)m = ‘(],IGN,‘k,meZ ). (2)

0 otherwise

They satisfy the two relations
ekt goll =275 (e N, kezn)

and

(Ael) Z oA (=4, (eNmezm).

u=0vgZ"
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Proof of Theorem 3.2. Step 1. From the above relations we conclude that

| I G| |
B(A 80!p0,bp],q1) = sgg kezl?‘ "eikle:llq:l” - ||Alb}’0 qO’b;:191 ”

which proves assertion a) of the theorem.

Step 2. Now we show the converse of this inequality to obtain the equivalences of
assertions b) and c) of the theorem. Without loss of generality we may restrict to finite
sequences a. Put 7 = min{1,p;,¢,}. From the embedding ¢, < ¢; we obtain

(x4

=0 keZn

(o

(2 (e AL e )

Applying the generalized Minkowski inequality twice this can be estimated by

(20 -
(e

(II(I Ae) [ Viezn 101 e [0/
(it
JEN

< H<|O‘k| “A5k|bm o ” kezr

Now using the definition of B(A; $0,P0, b;:_q‘) and the embeddings

31
b}’l @

<

0 ALY D]

{eN

<

leN

<”<(ak Ask) iizﬂ lfr”)mEZ" |£P1 eql

a/r

)l

jeN L
" kezn

<|(ai' -'Aé‘,’;)inlr>mez" |epx}r||>leNIKQx/r

B30 g0 < D30 o BT (o = s0 +u(t- 1))

Po.go 7 Opo.r Po
we finally get
[l - llaeieg, o, 1265
Ael|ba ; €N
< sup sup ————FfrdiT 4t I q‘” ”( AR A qo||>:.52n| T

JEN kezr lle21632,qo |

= B(A 50’p0’ Pl ‘Il) ”al ”

< C - B(4;s0,po, b;‘hql) . “alb"’ €N

Po, qo

which proves the theorem i
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Proof of Theorem 3.3. We write Ny = Ni(A4; po,p;) for short.
Part a) Using the Hélder inequality with 1 = £ 4 % we get the estimate

”Ao‘lbm.qx |
< '("—ﬁ)||<(4")£">mez"|e”‘“>leu|e‘“ ”
<

H< 21750 Ni(4; po, pr) || (@) ;xeo'zf]|evo||>leN|£"“l
(e ml e vizg ity Je] ™
< ||(|213N1|q1>16N|er/<11 ”* ’ ”(‘21(’

<Cy- “(2"1\71 ler ” ||a|b

lEN

1
1 0,1 o Ty
+! :"EZ" |epo ” 9

>,€N|£qo/m

Po,qo ”
which yields .
4155 852 < G 2 Nihenle |

P0,90° "P1,q1

To prove the converse inequality we split up the set of I-values in three disjoint parts
which will be put together in the end. Therefore define

I,={3j+u:jeN} (v =0,1,2).
There exists a sequence a = (a;) jéN of complek numbers satisfying the two conditions
. ”(llu(j)aj>jeN|eQO/q1 " =1

and

l

(Zm“w |a,|> (3)

el

12" Mi)ier 16| = |1{[2"* N)* Vier,

where
1 Q¢

— =1

(qo/q1)’ Qo
The second condition states that a 1s a maximal element for the converse of the Holder
inequality. Since the coefficients Ak 'm With:|7 — 1| > 1 vanish we can find a sequence &
satisfying the condition

Ny (G e s || <2 [[{(A) ) S 5, | 4)

for all I € I,. This follows from the definition of N; and the structure of the set I,.
Note that the numbers {+t and (I+ 1)+t with t = 0, %1 are pairwise'different for each
two successive values of . Since this inequality stays true if we dilate the sequence &
by a positive constant we can adjust & to satisfy the additional condition

21(60——)” 1+t):ngi=§l|epo||'= |a1|717 (5)
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for all I € I,. We show that & is an element of the space b0

(z[

59,90+ Formula (5) leads to

1

)mez" |e}’o ”] )

1185540l

Po,qo

A g0 ;%
lel,
L
" {0
=C;- (Z |a,|n)
lel,

1
=C;- ”(11..(I)al>1enleqo/qx ” “
=C.

Now we use & to estimate the operator quasinorm of A from below. To this end we use
the estimates from (3) - (5) to obtain

1

o
[1$2* NiYier, [e:]| = (2[2“*"’!]‘“ ‘ |a1|>

\l€l,
= [ m sz ), Lo

<2 (2 (s mezn 6 ), [

=2 || A&t . |l

P1,q1

Po,90’ "P1,q1

<2C; - ||AIBR ... 55 -
Summing up in u yields the desired estimate
2
12" Niyienler|| < 3 12 Nidier, €] < Ca- || A1533 40, b2 .||
u=0

Part b) The assertion follows from the simple inequality

AEI-H I} . ?
Sup sup |I(Alk+v:x )m€Z°|£m” = ”« >’"€z l p‘” <

KEZn t=0,%1 ez'- t=0,21 ||{(e '“)'*’):eozflw,,o” a

Note that the denominator alWays equals 1.

Part c) It remains to show the estimate

Ni< sup sup [[(A}t5 ) mezn 16



Fourier Multipliers between Function Spaces | 589

Put v = min{1,p,}. Applying the same technique as in the proof of Theorem 3.2 we use
(Aeft), = A:f,:ll, the embedding ¢, — ¢; and the generalized Minkowski inequality to
obtain '

"((Aa)l )mezn |Zp‘“ = “ < Z Al+il l+l>
. mezn

el’l

t=—1kezZ"
< Ik (st )i 1) |

=0,% .
< (et - cact i ), o

t=0,+1
< [|{lak1- Ak Vo) e |e,,,||>kez" e
< sup sup (A ) megn 1l - [tk Viezn 6]l

k€eZr t=0,%

Because of £, — £, and (Aeit!)!, = A;:"l we have
(A ) mezolbnill < sup sup AL ez 6, ] ) 2 e

Dividing this by ” (a}t! ;eoz’,f“ €5, || and taking the supremum in o completes the proof i

«4. Matrices associated with Fourier multipliers

For M € S’ the operator T is given by
Tmf=F'MFf] (f€S)

and the class of Fourier multipliers between the two spaces B;S . (wo) and Bj! o (w1)
is defined by

M(B;2 oo (wo), B! 4 (w1)) = {M € S'\ Ty : By go(wo) = Byl o (wh) is bounde_d}
equipped with the quasinorm :

“MlM(B;:’qo(wo) B;: m(wl))“ = "TMlBPo,vo(wo) BPI.Q: (wl)” :
The matrix operator associated with Ty is

M =se Tym fu
and a simple calculation shows that its coefficients are
Mi'm = (se Ty fu)i’fm

(Se(TM [(F~ o )(s - k)]))lm -~ forj=0
(se(TM [(F41)(Azie - k)]))lm forj > 1

B 1 {.7:-1 [¢1'¢0M](A2-:m—k) for; =0
T (2m)F | F[gu(AY ) M(AY +)](Agi-im — k) for j > 1.
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We make the important observation that due to the overlapping of the supports of
¢1(A3;*) and 1o,1 all coefficients M,Z:fn with [§ — | > 1 vanish and thus

M(wo,wi)in =0 (i =11 > 1; wo,wy € W).

Recall that ﬁ(wo,_wl) is the corresponding operator for unweighted spaces (see Lemma
3.1). :
Combining Corollary 2.2 and Lemma 3.1 yields the relation

| MIM(B2 g, 00), B g, o) ~ [FT183, 5, C0), B3, ()|
= [0, 01)183 00,53 ]

Po,g0?

where the last quasinorm on the right side is equivalent to B(ﬁ(wo, w1 ); S0, Po, by ,ql)
under certain restrictions on the parameters p,q and s by the results of the previous
section. So we are interested in a characterization of B(M(wo,wl);so,po,b;;’ql) in
terms of M. This is done with the help of the following theorem.

- Theorem 4.1 (Characterization of the matrices M) Assume 0 <p<o00,0< g <
oo and s,0 € R.

a) If wy € Wy (d > 0) and wo € W satisfy the condition ”—IL(Hw: )4”00 < oo, then
the equivalence S : Y o R ! .

holds for all M € S'.
b) If wo-€ W with ”wLo"oo = 00, then

~ [MIF (B~ (wi)] |

2

; 1 i1 \IEN
27 _||(pf2 5
< kSEuZI: (wo)i “< k,M>m€Z"| PyP“>j€N

£

< o0

. 1 —~
QJalsup 5 ”(Mi:m)isgznlb;,p(wl)” .
kezr (wo)k JEN

implies M = 0.

The following two corollaries specialize this theorem which will be proved at the
end of this section to the conditions appearing in the boundedness results for matrix
operators (Theorems 3.2 and 3.3).

Corollary 4.2 (First characterization of ﬁ(wo,wl)). Assume 0 < po,p; < o0,
0 < q £ and sg,5; € R.

(1+]*)*

wo <oo
o0

a) If w; € Wy (d > 0) and wy € W satisfy the condition , then the

equivalence

B(M(wo,wl);so,po,b;‘l-"‘“) ~ ”MI.?-'[B” (wl)] ||

P1,00
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with 0 = u(pLo — 1)+ 51 — s holds for all M € S'.
b) If wo € W with “-u—f;”oo = 00, then

B(M(w011);30:p01b})‘l 91) oo
implies M = 0.
Proof. We only prove part a) because the second assertion follows in exactly the
same manner.

Since the coefficients M(wo,wl)i',lm with |j — I| > 1 vanish only three terms in !
occur for a fixed j. Thus we can change the parameter ¢; to p; and by the definition of
M(wo,wy) we are lead to the equivalence

"(M(wo’wl i’lm LSGNZ" b;’lhqx " “(M(wo’wl e trsgz" b;ll.m”
iSGNZ" px,pl(wl)”

An application of Theorem 4.1 yields the relation

B(M(UI(), 'LU]), sOaPO)bSI

Ply‘h)
21’(L— o) leN .
< 7o sup (wo S 1ML, pl,pl(wn)||>j€N

~ [ MIF (B, oo(wn)] |

(257 g W it i)

le

which proves the corollary B

Corollary 4.3 (Second characterization of M(wo,w;)). Assume 0 < p < oo,
0<r<ooands € R Ifw € Wy (d 2 0) end wo € W satisfy the condition

||(1_'tvl%|ﬁ”°° < 0o, then the equivalence

~ || M|F (B (w1)] |

Is v 14,1 ¢ ¢
<2 sup sup [[(M (w0, w1) i >mEZ"|P”>IEN r

with 0 = u(-’- — 1)+ s holds for all M € S'".

Proof. We write A" for M(wo,wl)k - Note that the sequence space b,,p is
identical with the ¢, space on N x Z". We have the estimate

2’532!1 e (ALY ezt < 2 sup sup (AL Vimean 192

1
s2" ) sup II(Ai+,$." ez 152l

!:—l
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Now applying the £, quasinorm in [ yields

¢,

kE€Zn t=0,%1

<2” sup sup ||(AI+,;')m€zn|€,,”>
leN

(6)
<o (2" mp a2 2% ) e
lEN
In the same way we show the reverse inequality starting with
fe suP "(Ai’Jm ‘:negz,. "/”” <C -2 sup sup ”(AI l+")m€zn|€ I
k€EZ™ u=0,%
S sup [[(ALT ") meze 16|
u=-1
Z 215 sup sup ||(Al+t l+u)m€Z" |ep”.
u=r,  t=0,%1keZn
This leads to
(2 s stz e
leEN (7)

<Cs- ¢,

<2' sup sup ||( A'+,:,I)mezn |£,,||>
k€Zn t=0,%1 leN

A combination of formulae (6) and (7) finally results in

¢,

B I+t
<=’- Sp 2y, (3 7on w0 mw""”>,€~

<2I’ kseuz];: ”(M(WOawl m>m€Zn| "/P”>

erH

¢,

JEN

<2“ ksgze (w )) ”< k m)m€zn bulp(wl)">

~ | MIF (B (wi)]

JEN

and the assertion follows from Theorem 4.1
To prove Theorem 4.1 we need the following lemma.

Lemma 4.4 (simple Fourier multipliers for Ly). Asume 0 < p < 00 and w €
W4 (d > 0). Then there ezists a constant C > 0 such that

[ - f"[fg]ll,, <Cla+en* - F Az, - o F ol
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with p = min{1,p} holds for all j € Nand all f € S and g € S’ satisfying the condition
supp f,suppg C {{ € R": 0%(£) < 27}. 4

Proof. Since the supports of f(A};+) and g(A;};+) are both contained in the com-

pact set {£ € R™ : 0*(£) < 1} and the relation w(z) < Cp - w(y)(1 + |z - yl)d holds
there exists a constant C; > 0 by [18: Theorem 1.7.2] for which

“w . f_][fg]”;{ = 2)./(1-;)”""(‘42-5 o) FT[f(A3#)g(A3 .)] ”p
< CoCy - 27D 4 |Ag-sel)® - F (A5 9] |
- x ||w(Ag-se) - FM o459, -

To estimate the L; quasinorm we apply formula (1) which in connection with a substi-
tution leads to the desired estimate

llw- 72 1fqlll, < CoCiCa- [I(1 41D - 77 [f(AL )] - o F 7',
and the assertion is proved i
Proof of Theorem 4.1. The proof is divided into the following four steps:

1. First we derive an equivalence for ||( Mz’m)ifgz,, b3 (w1)]-

2. Using this equivalence and Lemma 4.4 we estimate the discrete quasinorm in the

theorem by ”MI.T[B"“’ “(wy)] “ from above.

3. We prove the estimate from below usmg a similar technique as in the previous step.
This completes the proof of part a). : :

4. Part b) is derived from the equlva.lence in the first step.
Step 1. Recall that the coefficients of M are given by

(se(Tm [(F o)(e - k)]))'m forj =0

M, = ,
(se(TM [(F~ 1) (Ao — k)]))m for j > 1.

(7,1 eN; k,me Z™).

Since ||se-|b;,p(wl)|| is an equivalent qua.sindrm on B) (w) we have
| Tma [(F~ b0 )(s — k)] 1B}, (wr)| forj=0
ol Oll~ { | Tae [(}-—]1/)1)(‘42:‘ = K)]IB; ,(wy)|| forj >1.
To deal with the terms on the right-hand side we use the identity
6o [T [(F ) Az e = B)]] | = 7 (8 27 M (45 )] = Ag-i )

which holds for j > 1 and all u € N. Due to the location of the supports of 1, and ¢,
only the terms with u = j + v (r = 0, £1) are of interest. This leads to

o [ 902 = ][ B, o)
= [[(2**llwr(e + Az-s8)- F {8277 My (45-54)] | )ueNI%H

wi(e + Az-ik)- -7:—1[¢;+rM1/)1(A

(o8t

m mEZ"

~ sup 21(s=v)
r=0,%1
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and a similar equivalence holds in the case of 7 = 0. Thus we arrive at
(M2 0, ) ez 185, ()| .
llwi(s + k) - f_l[¢o¢rM]||P for j =0 (8)
[wi(s + Ag-s k) - F=1 [h1(A}-; )bjar M] |, forj>1.

~ (s—v) sup
r=0,%1

Step 2. To prove the estimate from above we use the inequality
wi(z + Az-ik) < Co - wi(z)(1 + |Ag-i k])?

which in combination with (8) yields

il yieN i(s=v) o (1 +]Az-; k))¢
su 102 (w <C-2 . I
kezn (wo)] o kimdmezrlty,(w)]] < G- vezr wo(Ayik) (9)

< Cy-21C7,

where

s - 5 o), for j =0
I = .
J r=0,+1 ||u)l . ]:—l [1/)1(A;-i .)¢j+Y‘M] ”P for ] 2 1

because the fraction on the right is bounded uniformly in j and k. Now we apply Lemma
4.4 to estimate the I; and we obtain

[|w1 - F7 b1 (A= *)jsrM] I,
SCa- [+ 1o FH (A - [lwr - F7 654 M] I,

‘in the case of 7 > 1 and r = 0,+1. Similar estimates can be proved in the remaining
cases. Since 1p,%; € S the Lj-terms are bounded and we get

I;<Cy sup wr - F7 {g54rM]||, (G €N).

From this we obtain by (9) the inequa.lify

H <2’” sup (wo), 1322, ez 185, (wl)ll>jEN\€q
<Cs- ||<2,<,+,_u>“wl . f‘l[¢jM]||p>j€N|€qH
Cs - |7 MIBG L ()|
Step 3. To prove the estimate from below we use the inequality

(1 + |Az-5 k) "wi(2) < Co - wi(z + Ap-ik)



Fourier Multipliers between Function Spaces | 595

which in combination with (8) yields

up LA E)™ oy

] i IGN b2
w
keZ" (wo)i kezr ( 1%, l)”

where I; is defined as above. The supremum on the left side can be estimated from
below by choosing k = 0 which leads to

2j(’_")Ij < Cq7- sup

0P o T )] (10)

To estimate the I from below we use the partition of unity

Bo(E)Bo(6) + D ()1 (45-5€) =1

=1

(following from the definition of ¥ and ;) and Lemma 4.4. In this way we obtain

1
llw - F~Hg;M]|l, = “wl -F [¢j > ¢j+t¢1(A;—(i+:)')M]

t=—1

P

< Co- |1+ 1D F 7 [85(Asi4a)] I

x Z llws - 2 [$5401(A3- 40 ) M] |,
t=-1
<Cy- sup, ||w1 -F [¢1(A'-(;+:)')¢j+¢M] ||

t=0

because the L,, quasinorms are uniformly bounded in 7. Similar estlmates can be proved
in the remaining cases and we get the relation

fwi - F7 ;M| < Cro- sup Liye (JEN)
. t=0,%1

with I_; = 0. By (10) it follows that
”}- lMlBs+o u(w])”

= [[(2+e = - 211 ) e |

<Cyy- qu .

<21 o= (wo)’ I022:.) "ng" s (w‘)“>

JEN

Step 4. If w;, = 1, then (8) implies

”(Mkm lrsgl" ;,p" 4

1 ”'7:—-l [¢0¢rM] “P forj =0 (11)
17 (1 (A3-s ) biar M|, for j > 1.

sup
kezZ» (w )J

o 0i0=1) qup L
keZ" (wo)k r—0 :u
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By definition of W we havé
(wo)i = wo(Ag-sk) < Crz - wol2)(1+ [ Ag-sk — 2l)¢
for a suitable d’' > 0. F.or T € 0 1= Ap- (k+[-2,3)") the estimate
| 1+ |A2-i.k - Ii)d’ < Cis |

holds uniformly in j and k, leading to

1 - > (Cmc‘l?)“ © sup sup ! = (012.013)_l “ “‘u)io“oo

sup =
kezr (wo)l kEZ™ reoi wo(z) .

and the theorem is proved

5. Fourier Multipliers
This section contains the main results of this paper. We start with the following two
propositions which will beé proved at the end of this section.

Proposition 5.1 (Change of s). Assume 0 < pg,pgo,q1 < o0, 50,51 € R and
wo,wy; € W. Then the relation

M(By; o(wo), By g, (w1)) 2 M(By, 50 (wo), By, -, (w1))

Po.90 Po,9o
holds.

This is usually proved with the help of Bessel potential operators. These operators
are quite difficult to deal with in ouranisotropic weighted setting. Our proof using the
discrete characterization is much simpler.

Proposition 5.2 (Change of q). Assume 0 < Po,P190,q1,7,71 < 00, Sp,51 € R and
wo,w; € W. If (l - i)+ = (l - rl—o)+, then the relation

N g0 n
M(B;g,qo(wo)’ B;:JJ! (wf)) pam M(B;g.."o(wo)’ B;:,H (wl))
holds. ‘ A

Note that the assertion for ¢y > ¢q; was already proved by Orlovskij [16] for un-
weighted isotropic spaces in the case of pg,p; > 1.

Now Vyé come to the main theorem of this paper.

Theorem 5.3 .'(Fourier mulfipliers between Besov spaces). Assume 0 < po,p1, 90, q1
< o and sg,57 € R. Ifwy € Wg (d > 0) and wy € W satisfy the condition

||(_‘iwl%)L‘“°° < 00, then the relation

M(B32 ,, (wo), By o, (w1)) S F[BS, (1)) (po < min{1,p1})

holds where o = V(plo - 1) + 81 — 5o and % = (qu - qLo)+'

This theoremn will'be completed by negative results in Part II of this paper.
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Proof of Theorem 5.3. Step 1. First assume gy < ¢;, i.e. r = co. We apply
Proposition 5.2, Lemma 3.1, Theorem 3.2 and Theorem 4.2 to obtain the equivalence
1MIM (B33, 0y (wo), By g, () | ~ [|MIM(B}3 5, (wo), B! 5, (w1)) |
~ ||M(wo,w1 | LS |
~ B(M(wo,wl);so,Po,b
~ |MIF[BF, oo (wi)]]-

PnPl)

Step 2. Now let gg > g;. We apply Lemma 3.1, Theorem 3.3 and Theorem 4.3 to
obtain the equivalence

[1MIM (B33 4 (wo), B2 ()|

Po,90

~ ”M(wo,wl)|b b3 “

Po,90 "Pi,qh
l .
~ H<2‘ Sup sup (M (wo, w15 ,,,eulfm||>IEN|fr

~ |MIF(B;, (wn)]|
which proves the theorem

Remarks. The first theorem of this type goes back to Taibleson [23: Part II/p.
827] and asserts

M(B],(R™1,1)) & F[B} o(R™%1,1)] (s €R).

It can be obtained by choosing pp =p1 =g =¢ =1 and s = sp = $3 in Theorem 5.3.
Peetre [17: p. 249] proved the supplement -

n(o1) O<p<l1
M(B;,Q(IR";I, 1)) = f[Bp,o% (R";I,l)] 0<g<
seR

which can be obtained by choosing p = py = p, 9=q =q and s = so = s in
Theorem 5.3. Johnson [12: Theorem 6] proved

1 <pioo
M(B J(R™I,1), Bm a(R%L1)) 2 f[B;;;;°(1R";I,1)] 1<g <q1 <o
s0,81 €ER

for homogeneous spaces with the help of a characterization of Besov spaces in terms of
the Gau-Weierstrafl kernel and preliminary work of Taibleson. Due to technical reasons
the characterization of Fourier multipliers is usually much simpler in the homogeneous
case than in the inhomogeneous one. Bui [1: Theorem 2] modified Johnson’s method to
deal with inhomogeneous spaces and obtained the counterpart of Johnson's result, i.e.

'

P11 P1,00
S0,51 € R

' 1<p <00
M(B;°q°(R";I,l) B! (R%1,1)) & [B"‘_“(R";I,l)] 1< g <q <o
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which can be proved by choosing py = 1 in Theorem 5.3. Bui recently generalized
his method in order to deal with weighted spaces (cf. [2, 3]) and proved embedding
theorems for classes of Fourier multipliers between isotropic Besov spaces with power
weights.

The unweighted version of the above theorem was already proved in (6] (g0 < q1)
and (7] (g0 > ¢1). Similar results in the periodic setting (inhomogeneous, unweighted
case) were proved by Mizuhara [15]. _

Proof of Proposition 5.2, First we consider the case of g0 < q. IfMEe
M(B;g’qo(wo),B" (wl)), then M : b2 (wo) — b3 (w) is bounded. Consider

P Po.90 P1:h
the sequences «; defined as

(o) =Ly (G = 1) - o,

associated with the sequence a. Since the coefficients Mi:in for |7 — I| > 1 vanish we
have (Ma)j = (Maj)i and thus

2D (i)l - (M) egn O |

< | Majlbd: ,, (wi)|

P1,q1
< NM1632 4o (10), 52 g, (w)]| - fles 185 o (o)
i+l

< Co- [[M16 40 (w0), B3 g, (wn)]] - 3 275 [[{(w0)matn), e ol -

I=j-1
Applying the £, quasinorm in j and using the embedding _Z,o — {,, we obtain

| M s ()| < C1 - || Ml (wo), 058 g, (w1 )] - |}l B3 (w9)||~

P1," Po.9o Po,To
Therefore

Po.90 PoiTo

M(B:° (wo),B;:,ql(wl)) — M(B3° (wo), By! ,, (w1)).

Reversing the roles of ¢ and r yields the assertion.

Now let go > ¢;. Since M(wo,wl) satisfies the hypothesis of Theorem 3.3 and
1 1 _1_1 1

because of the relation T RS TS T e ve obtain the equivalence

IMIM(B3S g 100), B3 g o) ~ (13100, 83|

Po.90 P0,90° "pP1,q1
~ [[(2" N (M (w0, w1); po, P1) ) el |
~ || M (wo, wy) b3 b

Po,To’ P11

~ [MIM(B; ., (wo), B3 1, (w)) |

Po,To0
from Lemma 3.1 and Theorem 3.3 1

~ Another way to prove the assertion of this proposition for the case of go < ¢ 1s the
method of real interpolation.
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Proof of Proposition 5.1. For M € M(B2° . (wo), B3 , (w1)) the operator M :

: Po.90 PLq1
bye. qo(WO) by 4, (w1) is bounded. Note that the mapping
I, : CN¥Z" _, CN*xZ" Ia= (2’°ai)i§’;n
is an isometric isomorphism .
Lo & b33 g (wo) = bja2 (wo), Dby (w1) = b1 (1)
We show the boundedness of
Myg = I_sg 0 Mo Ly : b5 g, (w0) = b1 o, (w1). (12)

To this end we decompose a =+ a) + ay, where
(ar)i =15(j) o}  with J,={3j+r:j€N}.

Observe that ||a, |63 < ”a]b;g 40(wo)||- Since the M,:’m
we are lead to :

59,90 vanish for [j = 1] > 1

(=% 41
(Mygor)yy =271 " MPL -2 )i = ) Y 20" ')’°M" (ar)) -
j=0 keZn j=l-1kezn
In the sum over j only one term appears due to the definition of a, and so
+1 :
y ! il j ~
(Mogar)y| <2801 5™ N ML - ()i =2 [(Mar)l].
j=l-1k€Zn

Hence we obtain

”M-’Oalbm,(h (wl)” < CO Z ”Ma"lb}’l,ql (wl)”

Co - ”Mlb;z,%(wo)’ P1 91(w1)” Z ”a"lbpo qo(wo)“

r=0
<3G ||M|b§2,qo(w0)’ P11 w‘)”,',”alb;g,qo(wo)”
which shows the boundedness of M,o from (12) with bound '
||M,°|bp°|q°(u{o),b;’] m(wl)" <3Co - ||M|bp°'q°(wo),b,’,: m(w')” ‘
Since the I, are isometric 1somorphlsms the mappmg
M—I,,,oM,oof_,0 : (wo)—-»b;‘l';?(w;)
is bounded with bound

1165, g, (o), b33 532 ()| < 3Co - [M153%, 5 (w), 8314, (won)]| -

TP Po,90

Po go

showing the embedding
(B’° (wo), B2 (w1)) — M(B’,o w(wo), Byt 250 (wy)) .

Po.qo PG P10
Since sg and s, are arbitrary we get ‘the reverse embedding from the same argument
and the proof is complete
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