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A Continuation Method
for Weakly Condensing Operators
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Abstract. We present a continuation result for weakly condensing operators between Banach
spaces. There are given also a new fixed point result being in the spirit of Schauder’s fixed
point theorem and some applications to nonlinear operator equations.
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1. Introduction

This paper presents a general continuation theory for weakly condensing operators be-
tween Banach spaces. This extends some results of the author [16] which initially were
motivated by the papers of Banas and Rivero [2], De Blasi [6] and Emmanuele [8]. We
also present in Section 2 a new fixed point theorem for weakly condensing operators de-
fined on a closed, bounded, convex subset of a separable, reflexive Banach space. This
fixed point theorem is used in Section 3 to establish very general existence principles for
nonlinear operator equations. In addition we show, in the case of second order bound-
ary value problems, that the theory developed (m this paper) for weakly continuous
operators can lead to the same conclusions as the theory of compact (strong) operators.
In Section 4 we present a coincidence theory for weakly condensing operators..

For the remainder of this section we gather together some preliminaries that will
be needed in the following sections. Let g be the bounded subsets of a Banach space
E and let K% be the family of all weakly compact subsets of E. Also let B be the
unit ball of E. The DeBlasi [2, 6, 8] measure of weak non-c ompactness is the map
w: Qg — [0,00) deﬁned by

w(X) = inf {t >0 there exists ¥ € K with X CY + tB}

where X € Qg (for other measures of weak non-compactness see [2]).-For convenience
we recall some properties of w. Let S,T € Qg. Then: '

(i) S C T implies w(S) < w(T).:
(ii) w(S) = 0 if and only if S* € K™ where S* is the weak closure of S in E
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(iii) w(S¥) = w(S).

(iv) w(SUT) = max{w(S), w(T)}.
(v) w(rS) =rw(S) for all r > 0.
(vi) w(co(S)) = w(S).

(vii) w(S+T) < w(S) + w(T).

Suppose F: Y C E — E maps bounded sets into bounded sets and is weakly contin-
uous. Wecall F a

a) w-Lipschitzian map if there exists a constant k > 0 with w(F(X)) €< kw(X)
for all bounded sets X C Y;

b) w-condensing map if F is w-Lipschitzian with k = 1 and w(F(X)) < w(X)
for all bounded sets X with w(X) # 0.

Theorem 1.1 (Emmanuele) [8]. Let E be o Banach space, X a non-empty,
bounded, closed, convez subset of E, and F : X — X a w-condensing map. Then
F has a fized point.

~

Also the following results will be used in this paper.

Theorem 1.2 (see [14: p. 147]). Every topological Hausdorff linear space is a
Tychonoff space (T3§)~ ’

Theorem 1.3 (see [9: p. 124]). If A is a compact subset of a Tychonoff space X,
then for every closed set B disjoint from A there ezists a continuous function pr X —
[0,1] such that p(z) =1 for z € A and u(z) =0 forz € B.

Theorem 1.4 (see [13: p. 368]). Let E be a Banach space whose dual 3pac.e E*

is separable and let A C E be weakly compact. Then there ezists a weakly continuous
retraction onto A. ' '

Theorem 1.5 (see [3: p. 126]). A convez subset of a normed space is closed if and
only if it is weakly closed.

Theorem 1.6 (see [7: p. 425]). A subset of a reflezive Banach space is weakly
compact if and only if it is closed in the weak topology and bounded in the norm topology.

Theorem 1.7 (see [10: p 65]). In a Banach space, a bounded weakly closed set
A is weakly compact if and only if for every weakly closed B which is disjoint from A,
d(A,B) =inf{lla—b||: ac A, b€ B} > 0.

Theorem 1.8 (Eberlein and Smulian; see [7: p. 430]). Suppose K is weakly closed
in o Banach space E. Then the following assertions are equivalent..

(i) K is weakly compact.

(ii) K is weakly sequentially compact, i.e. any sequence in K has a subsequence
which converges weakly. '

Theorem 1.9 (Krein and Smulian; see [7: p. 434]). If E is a Banach space and Q
13 a weakly compact subset of E, then To(Q) is weakly compact. '
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2. Fixed point theory

In this section we present a continuation theory for w-condensing operators. The results
were motivated by ideas'in [12, 16]. Let E be a Banach space and let Q and C be
closed, bounded, convex subsets of £ with Q@ C C. Now let X C Q and A C X with
A weakly closed in X and X weakly closed in Q.

Definition 2.1. We let P4(X,C) denote the set of all w-condensing mappings
F: X — C such that F is fixed point free on A.

We call N: X x[0,1] = C a w-condensing mapi)inlq if N is weakly continuous,
w(N(Y)) < w(nY) for all sets ¥ C X x [0,1] and w(N(Z)) < w(r Z) for all sets
Z C X x[0,1] with w(w Z) # 0 where 7 : X x [0,1] — X' is the natural projection.

Definition 2.2. A map' F € P4(X,C) is essentialif every map in P4(X,C) which
agrees with F on A has a fixed point. Otherwise F is inessential, i.e. there exists a
fixed point free map G € Pa(X,C) with G =F on A.-

Definition 2.3. Two maps F,G € P4(X,C) are homotopic in P4(X,C) written
F = G in P4(X,C) (notice = is an equivalence relation in P4(X,C)) if there is a
w-condensing mapping N : X x [0,1) — C with N¢(u) = N(u,t): X — C belonging
to P4(X,C) for each t € [0,1] -and No = F as well as N, = G. :

Theorem 2.1. Let C, X, A, Q, E be as above with F € P4(X,C). Then the

following assertions are equivalent:
(i) F 1s inessential. -
(ii) There is a fized point free G € P4(X,C) such that F=G in P4s(X,C).
Proof. We first show that assertion (i) implies assertion (ii). Let G € Pu(X,C)
be a fixed point free map with G = F on A. Define N: X x [0,1] - C by
N(:z: t) =tG(z) + (1 - t)F(z).

Remark that (E,w), the space E endowed with the weak topology, is a locally convex
linear topological space (in particular a Hausdorff space). Now N " X x [0,1] — C is
weakly continuous. To see this let (z4,Aa) be a net in X x [0,1] with zo — z and
Ao —. X where — denotes weak convergence. Then

N(zoyra) = 2aG(2a) + (1 = Aa)F(za) — AG(z) + (1 = NM)F(z) = N(z,A)

so N is Moore-Smith sequentially weakly continuous and consequently N-: X x[0,1] —
C is weakly continuous. Also N is a w-condensing map. To see this let Y be a subset
of X x[0,1] with w(nY)# 0. Then

N(Y)C co(G(rY)UF(rY))
since if (z,t) € Y, then N(z,t) = tG(z) + (1 — t)F(z) C co (G(xY)U F(xY)). This
together with the properties of w implies
w(N(Y)) S w(co (G(rY)UF(rY))) =w(G(xY)U F(nY))
= max {w(G(nY)), w(F(xY))} < max {w(nrY),w(r Y)}
=w(rY).
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Thus N.: X x [0,1] = C is a w-condensing map. Also since F=G on A and G is
fixed point free on A we have for z € A that

Ni(z) = tG(z) + (1 ~.t)F(z) = G(z) # =,
so N, is fixed point free on A for each t € [0,1]. It remains to show N, € Pu(X,C)
for each t € [0,1]. Fix t € [0,1] and let Z be a bounded subset of X with w(Z) # 0.
Then
w(N(2)) = w(N(Z x {t})) < w(n(Z x {t})) = w(Z)

since 7(Z x {t}) = Z. Thus for each t € {0,1] we have N; € P4(X,C). Finally
No=F and N; =G so F~G in Pu(X,0).

‘We next show that assertion (:t) implies assertion (i). Let N : X x [0,1] —» C be
the w-condensing mapping from G € P4(X,C) to F with Np = G and Nl F. In
particular NV, is fixed point free on A for each t € [0,1]. Let

B = {zéX:x:N(:c,t) for some t € [0,1]}.

If B is empty, then in particular F = N; has no fixed points and so F is inessential.
So it remains to consider the case when B is non-empty. First note BNA = 0. Also B
is weakly closed. To see this let z € B¥. Then there is a Moore-Smith sequence (Z4)
(i.e. anet)in B (i.e. o = N(Za,ta)) which converges to z (i.e. z, — z). Without
loss of generality assume t, converges to t € [0,1]. Then since N: X x [0,1) = C is
weakly continuous it follows that z = N(z,t) and thus B is weakly closed. Next we
claim that B is weakly compact. If w(B) # 0, then since B C N(B x [0,1]) we have

w(B) < w(N(B x (0,1])) < w(r(B x [0,1])) = w(B)
since w(B x [0,1]) = B. This contradiction implies B is weakly compact.

Now E = (E,w), the space E endowed with the weak topology, is a locally convex
Hausdorff topological space. Thus E (and hence X, with subspace topology) is a
Tychonoff space by Theorem 1.2. This together with theorem 1.3 implies that there is
a continuous (weakly) function g : X — [0,1] with u(A) =1 and p(B) = 0. Define
J:X — C by J(z) = N(z,pu(z)). Now J is weakly continuous. To see this let
(za) be a net in X with zo.— z. Then p(zs) — p(z) and so p(zq) — u(z) since
strong and weak convergence are the same in finite-dimensional spaces. Consequently
since N : X x [0,1] - C is weakly continuous we have that J(z4) = N(zq,u(zs)) —
N(z,u(z)) = J(z) so J is weakly continuous. We claim that J : X — C is a w-
condensing fixed point free map with J = F on A. If this is true, then J € P4(X,C)
and J is a fixed point free map which agrees with F' on A.. Consequently F is
inessential and we are finished.

It remains to prove the claim. J is fixed point free since J(z) = z means N(z, u(z))
= z which implies z € B and so u(z) =0 (i.e. N(z,0) = z), which is a contradiction
since N(z,0) = G(z) is fixed point free. To see that J = F on A notice if z € 4,
then u(z) =1 and so J(z) = N(z,u(z)) = N(z,1) = F(z). It remains to show J
is a w-condensing map. Let Q be a bounded subset of X with w(2) # 0. Now
Q= {(z,u(z)): 2 € Q} C X x[0,1]. Then since J(2) = N(2*) and 7(Q*) = Q we
have

w(J(Q)) = w(N(Q")) <w(n(2")) = w(§).

Thus J is a w-condensing map il
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Theorem 2.2, Let C, X, A, Q, E be as above. Suppose F and G are two maps
in P4(X,C) such that F = G in Pa(X,C). Then F is essential if and only if G is

essential.

Proof. If F is inessential, then Theorem 2.1 guarantees a fixed point free map
T € Pa(X,C) with F =T in Pa(X,C). Thus G 2 T in P4(X,C) and so G is
inessential by Theorem 2.1. Symmetry will now imply that F' is inessential if and only
if G is inessential i

Theorem 2.3. Let Q and C be closed, bounded, convez subsets of a Banach space
E with Q C C. In addition let U be a weakly open subset of Q with ug € U. Then the
constant map F(UY¥) = ug is essential in Payuy(U¥,C), where U¥ denotes the weak
closure of U in Q and OqU the weak boundary of U in Q.

Proof. Let G: U¥ — C be any w-condensing map with Glagu = Flaqu = uo.
Define L
G(z) forzeUw
I = P
(2) {uo forz € C/U™.
It is easy to see that I : C — C is weakly continuous. Infact I : C —» C is a
w-condensing map. To see this let 2 be a bounded subset of C with w(§2) # 0. Then
since I(Q2) € G(QN'U¥) U {0} we have

w(I() < w(GRNT®) U {0}) < w(GQNT) < w(G(R)) < w(Q).

Thus I: C — C is a w-condensing map. Emmanuele’s fixed point theorem (Theorem
1.1) implies that I has a fixed point, say, y in C. In addition since I(z) = up € U for
z € C/U¥ we have y € U¥. Thus y = I(y) = G(y) and since Glsu = uo we have
y € U. Hence G has a fixed point y € U so F is essential ll

Theorems 2.2 and 2.3 immediately yields the following nonlinear alternative of
Leray-Schauder type which was proved in [16] by different methods.

Theorem 2.4. Let Q and C be closed, bounded, convez subsets of a Banach
space E with Q C C. In addition let U be a weakly open subset of Q, with p € U
and F: U¥ - C a w-condensing map. Then either

(Al) F ha.s a ﬁa:cd point
or
(A2) there is a point u € aqU and X € (0,1) with u=AFu+ (1 — /\)

Proof. We assume F|a,u is fixed point free for otherwise (A1) is satisfied. Let G :
U¥ — C be the constant map u — p and consider the homotopy N : U x [0,1] —

joining G and F given by N(u t)=tF(u)+ (1 —t)p. Now N isa w- condensmg map
since if Q is-a subset of U¥ x [0,1] with w(7 ) # 0, then
N(9) € co(F(x 2)U ()

implies

w(N(Q)) < w(co(F(rQ)U {p})) = w(F(x Q) U {p}) = w(F(r Q)) < w(r Q).
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Now either N, is fixed point free on 9qU for each t € [0,1] or it is not. If N, is
fixed point free on dQU for each t € [0,1], then Theorems 2.2 and 2.3 imply that
F must have a fixed point so (41) occurs. If N, is not fixed point free on 9qU for
each t € [0,1], then there exists u € 9gU with u = AFu+ (1 — A)p for some ) with

0<A<1 Now A#0 since pe U and A # 1 since Flaqu was assumed to be fixed
point free. Hence (A2) occurs il

Next we present a new fixed point result for weakly continuous maps in separable,
reflexive Banach spaces.

Theorem 2.5. Let E = (E, ||.]|) be o separable and reflezive Banach space, let
Q and C be closed, bounded, convez subsets of E with Q C C and 0 € Q and let
F: Q — C be a weakly continuous map. In addition suppose the following:

(H) For any Qe ={z € E: d(z,Q) <€} (¢ >0), if {(zj,2;)}2, is a sequence in
Q x [0,1) withz; — z € 89, Q and \; — ), and if = AF(z) with 0 < A < 1,
then A\;F(z;) € Q for j sufficiently large where d(z,y) = ||z — y||, (z,y € E)
and Oq,Q 13 the weak boundary of Q relative to Q. (i.e. Q/Q¥ N Q).

Then F has a fized point in Q.

Remark. A special case of assumption (H) is the following condition which is all
we need for the applications in Section 3:

H)* If {(zj,A;)}52, is a sequence in @ x [0,1) with z; — z and A; — A and if
JrAi)li=1 J j
z=AF(z),0< A <1, then A\jF(z;) € Q for j sufficiently large.

Proof of Theorem 2.5. Let r : E — Q be the weakly continuous retraction

guaranteed by Theorem 1.4 (notice (i) that E* is separable since E is separable and
reflexive and (ii) that Q is weakly compact by Theorems 1.5 and 1.6). Consider

B={z€E:z=Fr(z)}.

We claim B # 0. To see this look at rF. Notice rF : Q — Q is weakly continuous.
Also 7F is a w-condensing map. To see this first notice' F(Q) is relatively weakly
compact by Theorem 1.6 since F(Q) C C and C is bounded. This together with the
fact that r: E — Q is weakly continuous implies r(F(Q)¥) is a weakly compact set
so r(F(Q)) is relatively weakly compact. Thus w(r(F(Q))) =0sorF: Q - Q isa
w-condensing map. Emmanuele’s fixed point theorem (Theorem 1.1) implies that there
exists y € Q@ with y = rF(y). Let z = F(y) and we have

Fr(z) = Fr(F(y)) = F(y) = ,

so z € B and B # 0. In addition the weak continuity of Fr implies that B is
weakly closed. Also B is weakly compact since B C Fr(B) C F(Q) and so w(B) <
w(F(Q)) = 0.

We now show BNQ # 0. To do this we argue by contradiction. Suppose BNQ = 0.
Then since Q is a weakly closed set (since Q is closed and convex) and B is a weakly
compact set we have from Theorem 1.7 that :

d(B,Q) =inf{[lz—y||: z€B,yeQ} > 0.
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Thus there exists € > 0 with Q. N B =@ where Q. = {z € E : d(z,Q) < €} and 0,
is weakly compact from Theorem 1.6 (since Q. is a closed, convex, bounded subset of
E). Also the weak topology on 2, is metrizable [3: p. 136]; let d* denote the metric.
For ¢ € N let

Ui={x€Q¢:d'(:c,Q)<j—,}.

Fix 1 € N. Now U, is d*-open in Q. so U; is weakly open in Q.. Also

UP =UF = {xeng . d*(z,Q) < ;} and p Ui = {:c € Q. : d*(z,Q) =§}

Now Theorem 2.4 (with Fr and p = 0) implies (since 2 N B = ) that there exists
yi € O Ui and X; € (0,1) with y; = A Fr(y;) (notice that Fr: (_]:“7 — C where U_:"
is the weak closure of U; in 2, is a w-condensing map since F(Q) is relatively weakly
compact so w(Fr(U¥)) = 0). Consequently for each j € N there exists (yj,A;) €
O, U;j x (0,1) with y; = A; Fr(y,). Notice in particular since y; € o U, that

X Fr(y;) € Q for je{1,2..). (2.1)

We now claim that
D= {z € E: z=AFr(z) for some X € [0, 1]}

is weakly compact. Clearly D is weakly closed since Fr : E — C is weakly continuous.
Also since D C co(F(Q) U {0}) we have w(D) < w(co(F(Q)U {0})) = w(F(Q)) = 0.
Thus D is weakly compact (so weakly sequentially compact by the Eberlein-Smulian
theorem (Theorem 1.8)). This together with d*(y;,Q) = § and |};| < 1 (j € N) implies
that we may assume without loss of generality that ‘A; — A* and y; — y* € Op Q;
also y; = AjFr(y;j) so y* = MFr(y*) = ME(y*). If A* =1, then y* = F(y*)
which contradicts BN Q = 0. Hence we may assume 0 < A* < 1. But in this case
assumption (H) with z; = r(y;) € Q, z = y* = r(y*) € 0q,Q implies A\ ;Fr(y;) € Q
for j sufficiently large. This contradicts (2.1). Thus BN Q # @, so there exists z € Q
with z = Fr(z), i.e. z=F(z)ll

3. Applications to operator equations

In this section we present existence principles for nonlinear operators. We motivate our
study by first considering the second order boundary value problem

(3.1)

y' + f(t,y,y')=0 ae. on [0,1] }
y(0) =y(1) =0

where f: [0,1}) x R? —» R is a LP-Carathéodory function with p > 1. By the last we
mean the following:

(a) t— f(t,u,v) is measurable for all (u,v) € R2.
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(b) (u,v) — f(t,u,v) is continuous for a.e. t € [0,1).
(c) For any r > 0 there exists h, € L*[0,1] such that |f(t,u,v)| < h.(t) for a.e.
t€[0,1] andall [uf<r and |v| < 7.

By a solution to problem (3.1) we mean a function y € W2»[0, 1] (i.e. ¥ € AC0,1]
and y" € LP[0,1]) which satisfies the differential equation in (3.1) a.e. and y(0) =
y(1) = 0. We now combine the fixed point theory of Section 2 together with some ideas
in Corduneanu [4] to obtain an existence principle for the boundary value problem (3.1).

For this define first operators
H,, H, : L?{0,1] — C[0,1] C L*[0,1]
by .
1 1 .
Hyu(t) = / G(t,s)u(s)ds and Hau(t) = / G(t,s)u(s)ds
0 0 :
where '
(t—1)s for0<s<t<1
- G(t,s) =
(s=1) for0<t<s<1l.
It is easy to check that solving problem (3.1) is equivalent to finding a solution u €
LP[0,1] to the equation
u = —f(t,Hl(u),Hg(u)). (3.2)
Remark that if u is a solution of equation (3.2), then y(t) = fol G(t,s)u(s)ds is a

solution of problem (3.1) whereas if w is a solution of problem (3.1), then v = w" is a
solution of equation (3.2). ' -

‘Further on, define an operator N : LP[0,1] — LP[0,1] by
Nu(t) = — £ (t, Hy (u(t)), Ha (). (3.3)
Consequently solving equation (3.1) is equivalent to finding a fixed point u € LP[0,1]
to
u=Nu. (3.4)
Let Q be a bounded, closed, convex subset of L?{0,1]. We claim that N : Q — L?[0, 1]
1s weakly continuous (we need only check N is weakly sequentially continuous (5: p.
93]). Suppose yn,w € Q with y, — w in L?[0,1] (i.e. fo] Yngdt — fol wgdt for all
g € L90, 1) where %+% = 1). We must show Ny, — Nw in LP[0,1]. Let g € L0, 1].
Notice

1 .
/(Ny,, — Nw)gdt
0

[ 17 ), Hatun) = 12, B (), Ho(w)) | g

0

1

< /‘f(t,Hl(yn),Hg(y,,)) -f(t,Hl(w),_Hz(w))"’dz) , (/ |g|th) B
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If we show

1

[ Ham) o) - £t Haw) Haw)) [ dt =0 a5 va—w,  (39)

0

then fol(Ny,.)gdt - fol(Nw)gdt. As a result Ny, — Nw in L?[0,1] and so N :
Q@ — LP[0,1] is weakly continuous. It remains to prove (3.5). First we show, for each
t € [0,1], that

bnmw = Hi(ya() = Hi(w(t) (=1,2) (3.6)
We prove (3.6) with ¢ = 1 (the case = 2 is similar). Fix ¢ € {0,1]. Then

—0 as yp,—w

|Hi(yn(2)) — Hi(w(t))| =

/ G(t, 5)lyn(s) — w(s)) ds

since G(t,-) is in L9[0, 1] for fixed t € [0,1]. Now (3.6) together with the fact that f is
a LP-Carathéodory function gives

_ Yn — w implies _ } (3.7)
f(t,Hl(y,,(t)),Hg(y,,(t))) — f(t,Hl (w(t)),Hg(w(t))) a.e. on [0,1]. '

Also for u € @ we have

|Hyu(t)| =

jG(t,s)u(s)ds

1 ’ 1 ‘
< /|u|” dt sup / |G(¢,$)|? ds for all ¢t € [0,1).
tefo.1) \ 4

0

Since Q C L?[0,1] is bounded there exists r > 0 with
|Hiu(t)| <r forall t€[0,1]]andu€e @ (: =1,2). (3.8)

Now (3.5) follows immediately from (3.7), (3.8), the fact that f is a LP-Carathéodory
function, and the Lebesgue dominated convergence theorem (see [7: p. 151]) 11

Theorem 3.1. Let f be a LP-Carathéodory function with p > 1. In addition
suppose there is a constant My, independent of A, with

1 H
ly"“lles = (/ ly"|? dt) < M,
0
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for any solution y to the problem

Y +2f(ty,¥')=0 ae on [0,1]
(3.9)x

y(0)=y(1) =0

for each X € (0,1). Then problem (3.1) has at least one solution.

Remark. Theorem 3.1 could be proved using the theory of compact (strong) op-
erators (see [15: Chapter 3]). However here we will supply a proof based on Theorem
2.5. This has the added advantage of automatically yielding a new and very general
existence principle for nonlinear operator equations.

Proof of Theorem 3.1. Let
Q={ve 0] ulir < Mo +1)

and notice @ is a closed, bounded, convex subset of LP[0,1]. Solving problem (3.9)x
is equivalent to finding a fixed point u € LP[0,1] of

u = ANu (3.10)x

where N is as defined in (3.3). Notice if y is a solution of problem (3.9),, then u = y"
is a solution of equation (3.10)x whereas if w a solution of equation (3.10), then
u(t) = fol G(t, s)w(s)ds is a solution of problem (3.9),.

We know N : @ — LP[0,1] is weakly continuous. Also since N(Q) is rela-
tively weakly compact, then the Krein-Smulian theorem (Theorem 1.9) implies that
C = T (N(Q)¥) is a closed, bounded, convex subset of LP?[0,1]. The result follows
immediately from Theorem 2.5 once we show that condition (H)* is satisfied. Take a
sequence {(zj,A;)}32, in @ x[0,1] with A\; = X and z; — z with z = AN(z) for
0 < XA < 1. We need to show A;N(z;) € Q for j sufficiently large.

First notice since z; — = we have (as in (3.5)) that

[0 - Nl

1

= [ |#(t Ha(es(0), Haas ) - £t a0, Ha(ae)

—0.
Then given € > 0 (say € < %) there exists jo € N with
INGz)lles S IN@)ee +€ (G2 Jo). (3.11)

Also z = AN(z) together with the fact that |[u]|z» < My for any solution u to equation
(3.10), implies
AN ()llL» < Mo. (3.12)
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Consequently (3.11),(3.12) and Aj — A implies that there exists j; > jo with
1 . .
A N(Eller < Mo+ 5 (52 51)-

Thus A;N(z;) € Q for ; sufficiently large so condition (H)* is satisfied. Theorem 2.5
now guarantees that equation (3.10); has a solution (and consequently problem (3.1)
has a solution) il

Essentially the same reasoning as in Theorem 3.1 now establishes immediately a
general existence principle for the operator equation

u=T(u) (3.13)

where T : L?([0,1],R™) — L?([0,1]),R") with p > 1.

Theorem 3.2. Let Q be a closed, bounded, convez subset of LP([0,1],R™) with
p>1. Also assume T: Q — LP([0,1],R™) is weakly continvous and

{z;}52,.Cc@Q,z; =z = /|T(z,—(t)) - T(z(t))|pdt —0. : (3.14)

In addition suppose there 13 a constant Mo, mdependent of A, with |jul|rr < Mo for
any solution u to the equation .

cu = AT (u) © (3.15)a
for each X € (0, 1) Then equatwn (3.13) has at least one solution in Q. '

Remarks. (i) In Theorem 3.2to show T: Q — L”([O, 1},R") is weakly continuous
we need only show that T : Q@ — L?([0,1],R") is weakly sequentially continuous which
follows immediately from [5: p. 93}. (ii) In Theorem 3.2, LP([0,1],R™) may be replaced
by L?([0,1], B) where B is a separable and reflexive Banach space (notice L?((0, 1], B)
is a separable and reflexive Banach space [7]).

4. Coincidence theory

A coincidence theory is developed for w-condensing maps. Let E be a Banach space
and let Q and C be closed, bounded, convex subsets of E with Q C C. Also X CQ
and A is a weakly compact subset of X, X weakly closed in Q. Welet L: X - C
be a weakly continuous operator. .

Definition 4.1. We let P4(X,C; L) denote the set of all w-condensing maf)pings
F: X — C such that L — F is zero free on A.

Definition 4.2. A map F € Pa(X,C; L)is

(i) L-essential 1f for every G € Pa(X,C;L) which agrees w1th F on A we have
that L — G has a zero in Xj;
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(ii) L-inessential if there exists a G € PA(X,C; L) which agrees with F on A
and L — G is zero free on X.

Definition 4.3. Two mappings F,G € P4(X,C; L) are homotopicin P4(X,C; L)
written F'= G in P4(X,C; L) if there is a w-condensing mapping N : X x 0,1]—-C
with Ny(u) = N(u,t) : X — C belonging to Pa(X,C;L) for each t € [0,1] and
No=F aswell as N; =G.

Theorem 4.1. Let C, X, A, Q, E, L be as above with F € PAo(X,C;L). Then

the following assertions are equivalent:
(i) F is L-inessential.

(ii) There is ¢ G € Ps(X,C;L) with F2G in Ps(X,C;L) and with L—G zero
free on X.

Proof. We first show that assertion (z) implies assertion (i:). Let G € Pa(X,C; L)
with G=F on A and L - G zero free on X. Define N: X x [0,1] = C by

N(z,t) =tG(z) + (1 — t)F(z).

As in Theorem 2.1, N : X x [0,1) — C is a w-condensing map. Also since F = G on
A and L — G is zero point free on A we have for z € A that

L(z) - Ny(z) = L(z) - [tG(2) + (1 - )F(z)) = L(z) - G(z) # 0

so L — Ny is zero free on A for each t € [0,1]. Then (as in Theorem 2.1) N, €
PA(X,C;L) for each t € [0,1]. Finally Ny = F and N} = G so F = @ in
Py(X,C;L). .

Next we show that assertion (ii) implies assertion (i). Let N : X x [0,1] — C be
a w-condensing mapping from G € P4(X,C;L) to F with No =G and N; = F. In
particular' L —'N, is zero free on A for each t € [0,1]. Let

B= {x € X : L(z) = N(z,t) for some t € [0,1]}.

If B=0,then F is L-inessential. So assume B # 0. As in Theorem 2.1 (since L
is weakly continuous) we have that B is weakly closed. Also A is a weakly compact
subset of X. Then there exists a continuous (weakly) function px: X — [0, 1] with
#(A) =1 and p(B) = 0. Define J: X — C by J(z) = N(z,u(z)). As in Theorem
21, J: X — C is a w-condensing map with J = F on A. Also L — J is zero free
since L(z)—J(z) = 0 means L(z) = N(z, p(z)) which implies z € B and so p(z) = 0
(ie. L(z) = N(z,0)), which is a contradiction since L(z) — N(z,0) = L(z) — G(z) is
zero free. Thus J € P4(X,C;L) and so F is L-inessentialll

Remark. We can remove the assumption that A is a weakly compact subset of
X provided extra conditions are put on L. For example suppose 4 C X with A
weakly closed in X and X weakly closed in Q and suppose all maps considered
F, G, N, N; (in Definitions 4.1 - 4.3) are w-compact (w-condensing with k = 0, i.e.
T:YCE— E isa w-compact map if T maps bounded sets into bounded sets, is
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weakly continuous and w(T(Z)) = 0 for all bounded sets Z C Y). Assume L: X —C
is a weakly continuous operator with

Q C C weakly compact => L7'(f) relatively weakly compact (4.1)

holding where L~! denotes the inverse image. Then assertions (i) and (ii) in Theorem
4.1 are equivalent. The same reasoning as in Theorem 4.1 establishes this. There is
only one place where the arguement is different — we need to guarantee the existence of
a weakly continuous u: X — [0,1] with u(A) =1 and p(B) = 0. This is immediate
once we show B is weakly compact. Since L(B) C N(B x [0,1]) we have, since
N: X x{0,1] = C is a w-compact map, that L(B) is relatively weakly compact. Also
since B C L™(L(B)) € L~}(L(B)¥) we have that B is weakly compact.

Essentially the same reasoning as in Theorem 2.2 establishes the next result.

Theorem 4.2. Let C,X,A,Q,E,L be as above. Suppose F and G are two maps
in Po(X,C; L) such that F = G in Pa(X,C;L). Then F is L-essential if and only
if G is L-essential. :

We also have the following nonlinear alternative of Leray-Schauder type.

Theorem 4.3. Let Q and C be closed, bounded, convez subsets of a Banach space
E with Q C C. In addition let U be a weakly open subset of Q and L : Uv - C
o weakly continuous map. Also suppose OoU is a weakly compact subset of Uv and
G e PaQU(W,C;L) is L-essential. Then every w-condensing map F : U¥ — C has
at least one of the properties

(A1) L(z) = F(z) for some z € U¥
or

'(A2) there ezist u € 9QU and A € (0,1) with L(u) = AF(u) + (1 — A)G(u).

Proof. Assume L—F|a,u is zero free and consider the homotopy N : U x[0,1] —
C joining F and G given by

N(u,t) = tF(u) + (1 - t)G(u).

As in Theorem 2.4, N : U¥ x [0,1] — C is a w-condensing map. Now either L — N,
is zero free on OgU for each t € [0,1] or it is not. If L — N is zero free on QU
for each t € [0,1], then Theorem 4.2 implies that L — F' has'a zero in U so property
(A1) occurs. If L — N; is not zero free on QU for each t € (0,1], then there exist
u € 09U and X € [0,1] with L(u) — [AF(u) + (1 — A)G(u)] = 0. Now X # 0 since
G € Psou(U¥,C;L) (in particular L — G is zero free on 8qU) and A # 1 since
L — Flaqu was assumed to be zero free. Hence property (A2) occurs 1
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