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Fréchet Differentiability
of the Solution of the Heat Equation
with Respect to a Nonlinear Boundary Condition

A. Rosch

Abstract. We consider the heat equation 4%(t,z) = A,u(t,z) with a nonlinear function
a in the boundary condition £2(t,z) = a((u(t,z))(J — u(t,z)) depending on the boundary
values z of the solution u of the initial-boundary value problem only and belonging to a
set of admissible differentiable or uniformly Lipschitz continuous functions. For this problem
Lipschitz continuity and Fréchet differentiability of the mapping @ : @ — z under different
assumptions are derived.
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1. Introduction

The dependence of the solution of a partial differential equation with respect to param-
eters is an interesting and well investigated problem. In contrast to this, the theory is
less developed if the parameter is a function of the solution of the partial differential
equation itself. If a partial differential equation contains some type of nonhnea.nty,
then the interesting problem arises, how its solution depends on the function defining
the nonlinearity. In this paper we consider a linear heat equation with a nonlinear
boundary condition

g_‘;(t, z) = a(u(t,z))(¥ — u(t, 7)),

and a corresponding initial condition where « is a sufficiently smooth function defining
the nonlinearity of the corresponding parabolic initial boundary value problem. We.
consider the mapping o — u between appropriate spaces.

This theoretical problem is connected with the cooling of hot steel in water, where
boundary conditions of this type occur (cf. Zurdel and Brennecke [21], Hensel, Troltzsch
and v. Wolfersdorf [8], and Hensel and Tréltzsch [7]). Aiming to identify. the (usually
unknown) function o from certain measurements some ideas from control theory can
be used (cf. Rosch and Troltzsch [16]). This leads in a natural way to the problem of
Fréchet differentiability of the mapping a — u where ais sufﬁcxently smooth. However,
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this question should also be solved for piecewise linear functions a and in our opinion
the Fréchet differentiability of this mapping is a very interesting problem itself, too.

In the literature many basic works on Fréchet differentiability are known. In par-
ticular, differentiablity of Nemytskij operators was studied in many- papers and books.
Most of them are devoted to operators in spaces of real-valued functions. We mention
only.the presentations of Appell [3], Appell and Zabrejko (4], Ioffe and Tikhomirov [10],
Krasnosel’ski, Zabrejko, Pustil’'nik and Sobolevskij [11], Zorié [20], and Vainberg [19].
For Nemytskij operators in spaces of summable abstract functions only a few refer-
ences are known. We refer to Lucchetti and Patrone [13], Tréltzsch [18], and Goldberg,
Kampowsky and Troltzsch [6).

For investigations on Fréchet differentiability of solutions of partial differential equa-
tions with respect to parameters we only refer to Kunisch and White (12] and the
references therein.

In this paper we shall prove Fréchet differentiability of the mapping which aésigns
the solution of the linear heat equation to.a function describing the nonlinear boundary
condition. We shall prove Fréchet differentiability of this mapping in two steps, namely
first we investigate Lipschitz continuity of the. mapping and afterwards we show its
Fréchet differentiability.

We are going to investigate the following parabolic initial bouridary value problem:

Ou .
E(t,z) = Agu(t,z) on (0,T] x Q

u(0,z) = u%(z) on L (11)
g:é(t,z) = a(u(t,.z.))(ﬂ - u(t, z)) ~on (0,T) x T.

In this setting, Q C R™ is a bounded domain with C®-boundary I' = 99, T > 0 is a
fixed time and 9 € R a fixed temperature. We discuss the cases, where the nonlinear
function o belongs to the classes C' or C!. In both cases we assume the values of the
function a to be positive. For that reason the maximum principle holds, and we have

alu) >m; >0 for all u € [9,,9,]

where »
‘9, = min (19, inf uo(:t')) ‘and Y2 = max (19, sup uo(z:))l.
. - TEN : - T zen

We shall use for convenience semigroup methods for investigating the parabolic initial
boundary value problem. Therefore,; we shall discuss the Bochner integral formulation
of this problem. Interpreting the problem as a heating -process, the variable u stands
for the temperature of the material, u® for the initial temperature, ¥ for the constant
temperature of the surrounding medium, and a for the heat transfer function. B

The topic of this .paper' 1s closely gﬁéhnectéd with the problem to identify nonlinear
heat transfer laws by optimal control. We refer to Résch and Troltzsch [16] and Rosch
[15). . . A
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2. The initial boundary value problem and the integral
formulation

In this section we introduce some notations and recall known results on the behaviour
of the parabolic system (1.1), which belongs to the class of semilinear problems. For
convenience we shall apply the theory of analytic semigroups. We shall heavily rely
on results by Amann [1, 2] for semilinear parabolic problems. The assumptions and
preparations we shall need here are nearly the same as in Résch and Troltzsch [16],
where well-posedness of the parabolic system is proved.

In all what follows we work in Sobolev-Slobodeckij spaces W2(§2) and W27(S2)
with : ' .
E<2a<2&<1+-1-.

p p

Note that these inequalities ensure continuity of the regarded functions. The solution
u of the heat equation is looked upon in the Banach space C([O,T], W:”(Q)) provided
that the initial value u® belongs to W;&(Q). '
Let A be a linear, positive, and elliptic differential operator. Then the parabolic
‘ equation

u(0) = u°

subject to homogeneous boundary conditions gives rise to an analytic semigroup of
linear continuous operators denoted by {S(t)}¢>0. Following [16] we define A : L,(£2) D
D(A) — Ly(R) by

Aw=(-A+Dw  on D(4)= {wewg(a): g—‘:L:o}.

Then the initial value problem

u'(t) = —Au(t)
u(0) = u®

has the unique solution u(t) = S(t)u®. The semigroup {S(t)}:>0 generated by —A4,
S(t) = ” exp(—At)” is an analytic semigroup of linear continuous operators in Ly(€2).

For solving an initial value problem with an inhomogeneous boundary condition a
special solution of the corresponding elliptic boundary value problem is needed. Let
g € L,(T). The mapping, which assigns to g the solution v of the elliptic boundary

problem
Av—v=0 : .
Ov (2.1)

on Y
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is denoted by N, i.e. v = Ng. Transforming the heat equation through u = we!, we
obtain

Aw(t,z) —w(t,z) = %%(t,z) ' , on (0,T] x Q
w(0,z) = u'(z) | on 9 - (22)
ow

—az(t,x) = d(w(t,x)e')(ﬂ —w(t,z)e')e”" on (0,7 x F

Now the semigroup approach can be applied. The operator —A is known to generate a
strongly continuous and analytic semigroup {S(t)}:>o0 of linear continuous operators in
L,(R2) (see Friedman [5]) and N is a continuous mapping from L,(T') to W, (Q2) for all
s<1+ % (cf. Triebel [17: Subsection 4.3.3)).

Regarding the function w as an abstract function w = w(t) with values in the
Banach space W2°(02) the nonlinear Bochner integral equation '

w(t) = / AS(t — s)NB(rw(s))ds + S(t)u - C(23)

0

is obtained (we refer to Amann [1, 2]) In this equation, 7 denotes the trace operator
mapping W:"(Q) into C(T') and B is the Nemytskij operator defined by

BO)(t,2) = a(v(z)e) (9 < v(@)e)e™  (eCT)),  (24)

t

Inserting the backward transformation w = e~‘u, we get in turn

u(t) = /AS(t - s)Ne('_’)a(ru(s.)) (19 — Tu(s))ds +‘e'5(t‘)u°. (2.5)

In all what follows the general assumptions

a(u) >0 (u € [191,192]) (26)

|a(u1) — a(ug)l < LIU] — u2| (ul,U2 € [191,192]) (27)
Y1 = min {19,:25) uo(a:)}. (2.8)
Y2 = max {19, ilexgu (z)} ' i | (2.9)

are required. For each function « satisfying conditions (2.6) - (2.9) we get a unique
solution u € C®4([0, T), WZ2?(Q)) of equation (2.5). This solution satisfies the maximum
principle

91 Sult,z) <Y, (2.10)
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Let us slightly simplify the notation. Denoting the kernel of the mtegra.l in (2.5) by
k(t —s) = AS(t — s)Nelt=*) | we get

u(t) = /k(t - s)a(ru(s)) (9 — Tu(s))ds + e S(t)u’. (2.11)

Due to Amann (1], the estimate
B Ly —wie) S ct™?  (t>0) (2.12)

holds true for certain 0 < 8 < 1. The right-hand side of the Bochner integral equation
(2.11) depends only on the boundary values of u. For that reason, we shall investigate
this equation only on the boundary. Therefore, it is convenient to introduce the trace
of u by z = ru with 7 : C%%([0,T],W2?(Q)) — C([0,T] x T') and to consider the
boundary integral equation

z(t) =7 / k(t — s)a(z(s)) (9 — z(s))ds + re' S(t)u’. (2.13)
0

Finally we define a mapping & by
(Pa)(t) = z(t) (2.14)

where z(t) is the solution of the boundary integral equation (2.13). The underlying
spaces are specified in the next sections. It is also possiple to work with weak solutions
under reasonable assumptions, but in this case the derivation of the results is much
more complicated.

3. Lipschitz continuity of the mapping ®

In this section we shall prove Lipschitz continuity of the mapping ¢ : C%![¢,,92] 3
a+— z € C([0,T] x ') defined by (2.14). We investigate the behaviour of this mapping
at a point ap which fulfils our general assumptions (2.6) and (2.7). Let z¢ = ®(ao)
and a € C%[9;,9;] be a sufficiently small increment. In other words, ag is a given
"heat transfer function”, and z is the boundary value of the corresponding solution
up of problem (1.1), zo(t,-) = Tug(t,-). Then our general assumptions (2.6) and (2.7)
hold for the element ap + «, too. Therefore, the associated solution zo = ®(ao + @) is
defined. We denote the increment of the image by éz, i.e.

81 = 24 — 29 = ®(o + a) — P(ag).
a) Preparatory estimation of ||6z||c(pj. Next, the norm of the increment éz
will be estimated with respect to the function a. Using our new notations we get

t

zo(t) =7 / k(t — s)ag(zo(s)) (9 — zo(s))ds + Te' S(t)u° (3.1)

0
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To(t) =7 / k(t = s)aq(za(s)) (9 — za(s))ds

+7 / k(t — s)a(za(s)) (9 —'za(s))ds + re'S(t)u’ (3.2)

bz(t) = 7 / k(t — s)(ao(za(s)) (8 — 2a(s)) = ao(zo(s)) (¥ — :z:o(s)))ds

+7 / k(t — s)a(za(s)) (9 — za(s))ds . (3.3)
o
=I1+1IL
For the C-norm the inequalities

[16z(t)llc(ry

<

r / K(t = 5)(@0 (2a($)) (9 — za(s)) — a0 (20(s)) (9 - 20(s)) ) ds

T / k(t — s)a(za(s)) (9 — za(s))ds

0

-

c(r)
< HMUley + e

are obtained. For simplicity we start to estimate term II using a generic constant c:

Mlew) < lImllwze@)—cr

t
x / Ik(t = $)llz,(ry—wre @ la(za())(® = za()llz, vy ds
0

<efu- 5P lle(za(8))( — ()L, (ry ds

t .
<e / (t = )P lellop, oall® — za(s)llL, (o ds.
0

In view of our assumptions and the maximum principle we have 9,z4(s) € [91,92],
hence '

t . .
Mo < e / (t = )P llellcre, 00 (B2 — 91) ds
/ (3.5)

< cllallcga,,vqt' 77 < cllallcps,, 0T 2.
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The last inequality holds for all ¢ € [0, T7.

To handle term I, similar estimates are needed. However, the situation is slightly
more difficult:

. t
IMew < ||T||w:~(n)~6(r)/||k(t = S,y —wze o)
0

x |ao(za(s))(® = 2a(s)) = a0(zo(s)(@ = za(s)|,  ds

Ly(T)
< [(t= 9 Janta(6))(0 = 20(s)) — ao(ao(oN - 2o,
J |
Using assumptions (2.6) and (2.7), we estimate the inner || - |[¢(r)-term by
|oo(za())(® ~ za(s)) = ao(za())(F - zo(s))"cm
< [leo(za())(9 ~ za5)) ~ ao(za(eN@ ~zalN)]| 1,
+ oo @o())(F = 2a(s)) = aa(zo(s))(8 - zo(”)”c(r)
< [ (aoza()) — aozo(s))(# ~ za()) .,
+ [lan@o(e)io(s) = zae)]| 5,
< |ILéz(s) - (92 — I)llery + llaollcps, o) 162(s)llc(r)
< clféz(s)llcry-
Applying this result, we arrive at
IMleq < ¢ / (t = )P l16z(s)llcqr) ds. (3.6)
0

The preparatory step ends up with an integral inequality combining estimations (3.5)
and (3.6):
t
H6z(t)llccry < cllalicis, 0. + C/(t = 8)78)162(s)llc(ry ds.
- i

b) Discussion of the integral inequality. For the next steps it is convenient to
introduce a new norm || - ||a by

19l = IR oy
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where h(t) = g(t) - e~** and X is a positive real number which will be specified below.
This norm is eqmva.lent to || - ficp, 71- Therefore, we get -

. v
e M[6z(t)llcry < Ce_'\t"a"cwl,o,] + C/(t —s)Pe M ||6z(s)lc(ry ds
t. 0 0

e~ M|8z(t)llory < ceMlallcqe, 0, + C/(t ~ 8)7Pe A =e= 2152 (s)l| oy ds

t
5=Vl < max ¢ {e‘*‘nallcm.o,] (e s)"’e-“'-”n||6z(~>||cmllxds}
0
t
Msz(llerlla < [hax, ¢ e Mlallcie, 0, + I|||6z(-)||c"(r)llx/(t - s)"’e'*("”ds}.
0

The generic constant ¢ does not depend on A. Next the integral on the right-hand side
of this inequality is estimated. Keeping in mind that 0 < 8 < 1, we are able to find
such p' > 1 that (t — s)™# € L,(0,t). For that reason we use the associated Holder
inequality with p' and ¢':

t ¢ ;lr t q_lr
Jistesras (fu-sma) (o)
0 . o

0 AN]

1 71\
< tl—ﬂP' —_
“\1-8p Agq'

1

-ss’ i

<ch ( ) .
Ag'

For positive A the inequality e=** < 1 holds true for all ¢ € [0,T]. Thus we are able to
derive an estimate which does not depend on t:

h 1
s
l=Oomlla < clilets, e+ F (5 M8zl

The term ¢ T 7~ (%q,) ¥ is less than 1 for sufficiently large A: Therefore there follows
easily the inequality

6z(Mllemlia < clielicie,00)-
Returning to the orlgma.l norm, we also find as main result of this sectlon

llllcyo,,05)
P < 1,92 3.7
l|6z(- )"C(IO TIXF) ¢ { ||a||co Moveal ( )

TlS mequa.hty expresses the Lipschitz contmulty of the mapping & from co 1[191 ,92] to
C([0,T) x T'). This is the key relation to deal with the Fréchet differentiability of this
mapping.
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4. Fréchet differentiability of the mapping &

Let us assume in addition that the function a from problem (1.1) belongs to the space
C!'[9;,92]). The directional differentiability of the mapping ® defined by (2.14) is proved
in Rosch and Troltzsch [16). Moreover, we know the concrete form of this directional
derivative. For that reason the expression for the Fréchet derivative is also known,
provided that it exists. The main problem consists in the estimation of certain remainder
terms. According to Section 3, zo and z, are the solutions of the Bochner integral
equation (2.13) corresponding to the functions oo and ag + «, respectively. Analogously,
we define 6z = z, — Zo. In contrast to the last section we restrict ourselves to the case
that besides « also ag belongs to the space C'[9,,92].

In what follows we write z, — o in the form
To — 2o = ®'(ag)a + 1. (4.1)
The operator ' has the complicate structure
&' (ag)a = (I - K) 'Ka

where
t

(Ka)(t) =7 / k(t — s)a(zo(s))(¥ — zo(s)) ds

and
(I - K)z)(t) = =(t) — 7 / k(t - s)(ag(xogs))(o ~ zo(s)) - do(o())) z(s) ds.

This form of ®' was obtained in [16 Formula (5.1)). Instea.d of estimating the remainder
rin (4.1) directly, we deﬁne a new remamder Rby R= (I K)r. This way equation
(4.1) is transformed into

(I — K)(zo — o) = Ra+(1—Kjr —Ra+R (4.2)

a) Discussion, of the new remainder R. To estimate the new remainder R it is
desirable that all of its terms are expressed by integrals. For that reason we recall
equations (3.1) a.nd (3 2) and get. for the left-hand side of equation (4.2)

(I - K)(zo - 20)(t) = za(t) — o(t) — K62(t)

o [re e )
0 o 4 (4.3)
+ a(za(s))(P — zal(s)) — ao(zo(s))(P — zo(s))

— (ab(eo(s))9 = aa(s)) = aofaa(s))) () s
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Transforming equation (4.2), we have

R(t) = (I - K)(zo = zo)(t) - (Ka)(t). (44)
By means of (4.3) and (4.4), the following integral form for the remainder R is derived:

t

R(t) = / k(t — s){ao(zé(s))(ﬂ — za(s))

0

+ a(za(s))(9 = 7a(s)) - a0(z0(3))(9 ~ zo(s))
= (@b(za())(# = 20(s)) - ao(zo(s)))

(4.5)

X (za(s) = 20(s)) — al2a($))(9 — zo(s)) }ds.

b) Splitting of the remainder and corresponding estimates. Next we estimate
the norm of the term in { }-brackets of (4.5). To do this, the { }-expression is splitted
into the sum of the following five terms T} — Tj:

Ti: 9 (ao(za(s)) — ao(zo(s)) — ag(zo(s))8z(s))

T2 9-(afza(s)) — a(zo(s)))

Ts: —ao(za(s))zals) + ao(zo(s))za(s) + ap(zo(s))za(s)6z(s)
Ty: —ag(zo(s))zals)éz(s) + ag(ze(s))zo(s)éz(s)

Ts: —a(za(s))zal(s) + alzo(s))zo(s).

To see this, remark first that the term aj(zo(s))za(s)6z(s) is added in T3 and subtracted
in Ty and second that the term ao(zo(s))zo appears in equation (4.5) with different signs.
Now the C([0,T] x I')-norm of these five expressions will be estimated separately.

Term T): Note the estimation

u+h
/ (ap(v) = a(w))do

u
u+h

< [ labw) - ajw)las

u

.. lao(u+ h) — ao(u) - aj(u)h| =

where u,u + h € [9,,9;]. Since o' is a continuous function on the compact interval
[J1,9), it is also uniformly continuous. Hence we get

uth

|qo(u + h) — ao(u) — ag(u)k| < edv| < ¢fh| (4.6)

u
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for a sufficiently small h. Using this estimate pointwise, we get
”0(00(10) — ao(zo) - 08(30)61)”0([0,7*],([‘) < |9l 16z llcfo,T1xr)- (4.7

For the Fréchet differentiability of the mapping & an estimate with respect to a is
needed. Inserting the result (3.7) on Lipschitz continuity of & into (4.7), the inequality

”19(010(2:,,) — ag(zo) — 06(10)52:) ”C([o,T]xr‘) < |lecllallce, 84 (4.8)

holds. The convergence ||a|c1fs,,5,) — O implies ||6z||c(jo,ryxr) — 0. Because of the
derivation of inequality (4.6) we can choose € arbitrary small. We summarize this idea
by the inequality

19(c0(za) = @0(z0) = @(20)82) [l go ryry = olllellcrion o) (4.9)

and aim to derive relations of this type also for the other terms.

Term T,: Denoting the Lipschitz constant of & by Lo (ll'||1, = Lo), we obtain

19((za) - a@0)llcqompury < 191Ea I182llcqo,mxry
< Bl llealiciis, 0 ll6zllc(o,1yxr) (4.10)
= o(llallcr(a,,0,))-
Term T3: This term is similar to 7. Using inequality (4.6), we get
| - ao(za)za + ao(zo)za + aa(IO)I"’&z”C([o,T]xI‘)

< lIzalleqo,mxr) || ao(za) — ao(zo) — “3(30)5”)“0([0,7'] xI)

< lzalicqo,mxry € 16zllc(o, 11 xr) -
Analogously, inequality (3.7) implies
I - co(za)za + ao(zo)za + ab(z0)zadell oo 1yxry < € llellcrion o
Consequently,
| = @0(za)za + ao(z0)za + aﬁ(xO)xa&’llc‘([o,T] «r) = olllellcrpay,6))- (411)
Term Ty: We have .

| = ag(z0)zabz + 06(20)105$||C([o,7]xr) < lxollcrio,, 01621120, 79xT)
< lleolleifs, 92 € lellErpo, 9, (4.12)

= ollelicr(s,,94))
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Term Ts: We have

| - a(za)za + G(IO)xOHC([o,T]xF)

<l - alza)za + a(x"’)IOHC([O,T]xF) +|| = a(za)zo + a(IO)IOHC((O,T]xF)
< llelicrs, vallézlico nixry + llallcr s, o2 Izollcio, 19x ) 18zl (o, 7y x Ty -

Thus .
|| - G(IQ)IQ + a(ZO)IOHC([O,T]xI‘) = 0(”0”0‘[61,0;]) (413)

c) Final discussion of the remainder R. Now we return to equation (4.5). Denoting
the expression in { }-brackets by p and using estimations (4.9) - (4.13), we end up with

llellcgo,myxry = olllallcra,,94)- (4.14)

Keeping in mind equation (4.5), we are now able to estimate the rcmainder R in the
following way: . :

. t
HR(®)llcr) < ||T||w;v(n')—‘0(‘r)/||k(i = 8)lle, (ry—wze () lo(s)ll 2, ryds
0

ot
< clitllwze@)y—cr) /(t - S)_a|lp||¢([o,71xr)ds
o - o ’

< Ctl_p”P”c([o,T]xr) ’
< T Pllpllcqo.mxry

and
1 Rlleqo,myxry < clipllcgonxry = olllellcrs,,0))- ' (4.15)

It is well known that the operator (I— K)~! (see equation (4.2)) is linear and continuous

from C([0,T] x T) into C([0,T] x I'). For that reason wé find r = (I — K)™'R and

Irllcqo,mxry < I = K) ™ lico,mxry—c(o.rixmy I Rllc(o,myx1)

(4.16)

= of|lelicr(9,,05))-
Equations (4.1) and estimation (4.16) express the Fréchet differentiability of our map-
ping ®. We summarize this result in the following

Theorem 1. Let ag be a C'[9;,92]-function which fulfils assumptions (2.6)—(2.9).
Then the mapping & defined by (2.14) is' Fréchet differentiable from C'[9;,9,] into
C([0,T] x T) at the point aq.



Fréchet Differentiability of the Solution of the Heat Equation 615

5. Fréchet differentiability of the mapping ® for piecewise
differentiable functions

For the numerical solution of identification problems it is convenient to work in problem
(1.1) with piecewise linear functions a. Therefore, it is desirable to generalize the
foregoing Theorem 1 to Lipschitz continuous functions. We only sketch the arguments
for this case. Let us investigate the existence of the integral in (4.5) in this case.

It is well known that the derivative aj of a Lipschitz continuous function «q is
measurable and bounded. Hence, aj belongs to Loo[P1,72]. But for the existence of the
integral (4.5) we need that the composition ag(zo(t)) is measurable with respect to the
time variable. That means that the pre-image of every set with measure zero should
have measure zero, too. '

Due to Lusin, we find in the literature the following definition of the co-called N-
property of a real function (see Natanson [14: Chapter IX/Section 3]).

Definition. A real function f = f(z) has the N-property, if the f-image of each
set of measure zero has mecasure zero, too.

If we assume that the temperature u(-,z) is a function strongly monotone with
respect to the time t we have to require additionally the absolute continuity of the inverse
function u~!. For instance, an estimation of the form [t — ¢,| > Alz(t2, &) — z(t1,€)]
fulfils this requirement. However, such a type of assumption is difficult to verify. For
that reason we shall restrict ourselves only to the simpler case of piecewise C!-functions
with a finite number of jumps of the derivative. Then we are able to generalize our

differentiability theorem using the following additional assumption.

Additional assumption. The boundary temperature z(t,€) = u(t,§) is at every
fixed boundary point € a strongly monotone function with respect to the time t.

It is difficult to ensure this assumption. Nevertheless, from physical point of view
this assumption is natural, keeping in mind that we regard a cooling process without
any outer influences. : '

Remark. We need the additional assumption and the piecewise differentiability
of a only to ensure the measurability of the function ay(z¢). Requiring a priori the
measurability of this function aj(zo) the additional assumption is not needed.

Using the additional assumption, it is possible to prove that ag(zo) belongs to
Loo([0,T) x T). It is well known that this space is not embedded into Leo([0, T}, Loo(T'))-
However, the embedding of Leo([0, T} x T') into L, ([0, T}, Lp,(T")) with arbitrary chosen
p1 and p is continuous. So we can ensure the existence of the integral in equation (4.5)
in the case of piecewise C!-functions ap. We can find some useful properties of such
embeddings in Hille and Phillips [9: Subsection 3.4 (pp. 67 - 71)].

We are able to use equation (4.5) for our proof in this case. But in contrast to our
first proof, we must split the integrals itself in these five parts. Only the first and the
third integral contain new difficulties. Now ajg is not a uniformly continuous function
and consequently we must not use the inequality (4.6). We restrict ourselves to the
estimation of the first integral. Analogously, we can deal with the third integral.
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For our purpose we apply the following idea. Assume that a sequence of L.o-
functions {gn}n>1 is given with properties

a) gn — 0 a.e. forn — oo
b) |ga(t,€)f < C for all n,t and €.

Then gn — 0 in the sense of Ly([0,T] x T) according to the Lebesgue dominated
convergence theorem. This implies that g, — 0 in the sense of L,([0,T], Lp(T)), too.
Using embedding arguments we get, for sufficiently large p, IGnllco,ryxry — 0O if
Gn(t)=r fot k(t — s)gn(s)ds. Now we consider a sequence of increments {an}n>i. We
denote the solutions of the related integral equation (2.13) by z, = ®(ag + an), the
corresponding increments by éz, = r, — z5 and assume that a, — 0 in the norm
of C%[9;,9,]. The Lipschitz continuity of our mapping ® implies that §z, — 0 in
C([0,T} x T).
Let us set in the first integral of (4.5)

I(ao(zan(5)) = ao(ze(s)) — ah(z0(s))8zn(s))
16z nllco,mxr)

gn(s) =

Returning from this formulation, we obtain the property gn(s,£) — 0 for n = oo if oy
is differentiable at the point zo(s,€). The function aq is non-differentiable at most at
a finite number of temperature points. Using our additional assumption, we get that
ag(zo(s)) does not exist on a set of measure 0. Otherwise we have

9(ao(za,(s)) — ao(zo(s)) — ah(zo(s))éza(s))
6z nlic(o, 79Ty

< 29| L.

Then the sequence {gn}n>; fulfils our assumptions a) and b). Consequently we get
Jim {IGnllcgo,11xry =0
with

o [ a2 (@0(E0n(5)) = aofeo(s)) = ab(za(sDoza(s))
Ga(t) = 0/Ic(t ) Bz nllo.mem ds.

For an arbitrary sequence {an}n>1 of increments this property delivers
t
T / k(t — s)d (ao(:z:a"(s)) — ap(zo(s)) — ozf,(:co(s))ézn(s)) ds
0 : C((0,T]xT)
= ofllellcon oy 0a))-

Analogously, we can deal with the third integral in (4.5). The other integral esti-
mations will be proved in an easy way. So we ensure an equality of the type of (4.15)

(5.1)

IRllc(o.ryxry = o(llanllconsy,8a))- (5.2)
Using the same arguments as in the C!-case, we get
Irllcqo,mxry = ollanllcons,,s,))- (5.3)

We summarize this result in a final theorem. Alltogether we have shown the following,.
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Theorem 2. Let ag be a C¥}[J,;,9;]-function which fulfils the assumptions (2.6) —
(2.9) with a finite number of jumps of the derivative. Furthermore let the boundary
temperature 2o = $(ap) dbe a strongly monotone function in every boundary point £ with
respect to time. Then the mapping ® defined by (2.14) is Fréchet differentiable from
C%'[9;,9,]) into C([0,T} x T) in the point ay.

Finally, we express the Fréchet derivative ®'(ag)a in terms of partial differential
equations. Let v be the solution of the initial boundary value problem

v . \
a(t,:c) = Au(t, z) ' on (0,T]xQ
v(0,z) =0 on
av( ) (5.4)
a_n(t:z) = (a{,(uo(t,x))(ﬂ - u(t,:c)) - ao(uo(t,z)))v
+ a(uo(t, 2))(9 — uo(t, z)) on (0,T] xT. |

Then the Fréchet derivative ®'(aq)a is the trace of the solution v of problem (5.4) on
the boundary I

Acknowledgement. The author is very grateful to Prof. F. Troltzsch for several
helpful discussions and to the referees for their helpful hints.

References

[1] Amann, H.: Parabolic evolution equations with nonlinear boundary conditions. Proc.
Sympos. Pure Math. 45 (1986), 17 - 27.

[2] Amann, H.: Parabolic evolution equations with nonlinear boundary conditions. J. Diff.
Equ. 72 (1988), 201 - 269.

(3] Appell, J.: The superposition operator in function spaces - a survey. Expos. Math. 6
(1988), 209 - 270.

(4] Appell, J. and P. P. Zabrejko: Nonlinear Superposition Operators. Cambridge: Univ.
Press 1990.

(5] Friedman, A.: Optimal control for parabolic equations. J. Math. Anal. Appl. 18 (1967)
479 - 491.

[6] Goldberg, H., Kampowsky, W. and F. Troltzsch: On Nemytskij operators in Ly-spaces of
abstract functions. Math. Nachr. 155 (1992}, 127 - 140.

(7] Hensel, A. and F. Troltzsch: Mathematische Untersuchungen zur Auslegung und Steue-
rung von Kthlstrecken fiir Stabstahl- und Drahtwalzwerke. Neue Hiitte 25 (1980), 384 -
386.

[8) Hensel, A., Troltzsch, F., and L. von Wolfersdorf: Berechnung der Abkuhlung von Feinstahl
und Draht in Kthistrecken. Neue Hitte 25 (1980), 299 - 301.

[9] Hille, E. and R. S. Phillips: Functional Analysis and Semigroups. Providence: Amer.
Math. Soc. 1957.

[10]) Ioffe, A. D. and V. M. Tikhomirov: Theorie der Eztremalaufgaben. Berlin: Dt. Verlag
Wiss. 1979.



618 A. Rosch

[11] Krasnosel’skij, M. A., Zabrejko, P P., Pustyl’nik, E. 1. and P. E. Sobolevskij: Linear
Operators in Spaces of Summable Functions (in Russian). Moscow: Nauka 1966. -

{12] Kunisch, K. and L. White: Estimation of a boundary heat transfer coefficient. Control
Theory Adv. Techn. 7 (1991), 55 - 71.

(13] Lucchetti, R. and F. Patrone: On Nemytskij’s operator and its application to the lower
semicontinuity of integral functionals. Indiana Univ. Math. J. 29 (1980), 703 - 713.

(14] Natanson, I. P.: Theorie der Funktionen einer reellen Verdnderlichen. Berlin: Akademie-
Verlag 1975. ’

(15] Rosch, A.: Identification of nonlinear heat transfer laws by optimal control. Num. Funct.
Anal. Opt. 15 (1994), 417 - 434.

[16] Résch, A. and F. Tréltzsch: An optimal control problem arising from the identification of
nonlinear heat transfer laws. Arch. Cont. Sci. 1 (1992), 183 - 195.

(17] Triebel, H.: Theory of Function Spaces. Basel et al.: Birkhauser Verlag 1983.

(18] Tréltzsch, F.: Optimality Conditions for Parabolic Control Problems and Applications
(Teubner-Texte zur Mathematik: Vol. 62). Leipzig: B.G. Teubner Verlagsges. 1984.

[19] Vainberg, M. M.: Variational Method and Method of Monoton Operators. New York:
Wiley 1973.

[20] Zori¢, V. A.: Mathematical Analysis (in Russian). Vol. II. Moscow: Nauka 1984.

(21} Zurdel, K. and N. Brennecke: Untersuchungen zum Warmetibergang bei der Wasser-
kihlung von Feinstahl und Walzdraht. Thesis. Magdeburg: Techn. Hochschule 1974.

Received 06.03.1996



