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a Capillarity and some Fully Nonlinear


Overdetermined Problems on Exterior Domains 
W. Reichel 

Abstract. We consider two physically motivated problems: (1) Suppose the surface of a body 
in jj2 or JR3 is charged with a constant density. If the induced single-layer potential is constant 
inside the body, does it have to be a ball? (2) Suppose a straight solid cylinder of unknown 
cross-section is dipped into a large plain liquid reservoir. If the liquid rises to the same height 
on the cylinder wall, does the cylinder necessarily have circular cross-section? Both questions 
are answered with yes, and both problems are shown to be of the type

au div (g(IVuI)Vu) + f( u ,I Vu I) = 0 in ci, u = con st,= const on dci, u = 0 at 00 

where ô,f < 0 and ci = JRN \ 0 is the connected exterior of the smooth bounded domain C. 

The overdetermined nature of this possibly degenerate boundary value problem forces ci to be 
radial. This is shown by a variant of the Alexandroff-Serrin method of moving hyperplanes, as 
recently developed for exterior domains by the author in [19]. The results extend to Monge-
Ampere equations. 
Keywords: Overdetermined problems, exterior domains, radial symmetry, electrostatic con-

denser, capillary surfaces 
AMS subject classification: Primary 35 J 65, secondary 31 B 20, 76 B 45 

1. Introduction 

In this paper the following physical statements are shown to be characterizations of 
balls (under suitable regularity conditions): 

A constant charge distribution on the surface of a body G in 1R 2 or J1V induces 
a potential, that is constant inside the body, if and only if the body is a sphere. 

A solid cylinder, if dipped into a large plain liquid reservoir, raises a capillary 
surface to a constant height or the outer cylinder wall if and only if the cross-
section C is a disk. 

The mathematical reason for these physically intuitive statements is the fact, that con-
stant Neumann and Dirichlet (i.e. overdetermined) boundary conditions in nonlinear 
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elliptic boundary value problems force the underlying domain to be radial. This obser-
vation is not new, e.g. see Serrin [20]; and has been shown to apply to a wide class of 
boundary value problems as-long as the underlying domain is bounded. 

Our main theorem concerns the overdetermined boundary value problem on the 
unbounded domain ci = 1R" \ G, which is supposed to be the connected exterior of the 
bounded domain G C

Qu +f(ujVu [ ) =0 mci, 0 u < b in ci 

au u = b = const, = const 0 on 311 a', 
u=0 atc'o. 

If f(u, I Vu l) is (weakly) decreasing in u, then the interior domain G is shown to be a 
ball. Here the operator Q stands for three different types of elliptic operators: (I) the 
locally uniformly elliptic operator in divergence form 

Qu = div (g(JVuI)Vu), g E C 2 (0, ), g(s), (g(s)s)' > 0 for s > 0, 

(II) it's degenerate counterpart allowing g(s) to vanish or explode at .s = 0, e.g. 1u = 
div(IVuIP2 Vu), p> 1, and finally (III) the Monge-Ampére Operator 

Qu = det(D2u) 

as an example for a fully nonlinear operator. In section 2 the electrostatic problem is 
introduced and in section 3 the capillary surface problem is treated; Both problems are 
shown to be special cases of the general overdetermined problem treated in section 4. 

In the case Qu = Au our main theorem was proved in an earlier paper [19], where a 
more general nonlinearity f(u, 1 7ul) was admitted, which was only required to decrease 
for small values of u, I Vu 1. In the case considered here, where f(u, IVul) is decreasing for 
all u, J Vul, an important short-cut in the proof is possible. Our main goal is to present 
this more direct approach, in particular because the two physical -problems fall into 
this category. Furthermore, it is precisely this restriction to nonlinearities decreasing 
in u, which allows us to include degenerate elliptic operators. Since in cases.(I), (III) 
our main theorem is valid if f(u, IVuI) is locally Lipschitz continuous in u, IVul and 
decreasing in u only for u, J Vul small (see also Remark 2 in Section 4), we conjecture 
that this is also true for the degenerate case (II). 

We note the very recently Aftalion and Busca [1] have obtained a symmetry result for 
an overdetermined problem Au + f(u) = 0 on an exterior domain 11, where uf(u) 
is (weakly) decreasing in u, but f ^: 0 may well be increasing. 

In Serrin's interior domain-case, the radial symmetry of the underlying domain C 
in direction ii E RN is established by moving a hyperplane TA perpendicular to 'i from 
right to left up to W. By moving it further left, it starts to cut a right hand cap (A) 
off G, see Figure 1. The right hand cap, at least for small displacements of the touching 
hyperplane, has the property that it reflects int6 C. Thus, the function u(x) -
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comparing the values of u at x and at the reflected point x A , is well defined for points 
x in the right hand cap. 

Serrin shows by comparison principles the positivity of the comparison function up 
to a critical position of the hyperplane. Using the overdetermined constant bound-
ary conditions, Serrin proves that the comparison functions vanishes identically in the 
critical right-hand cap. From that, the symmetry of the domain follows. 

Figure 1: The right-hand cap in the interior and exterior case 

For an exterior domain ci = 1R' \ C, an analogous definition of a right-hand cap 
would be the set of all x E ci, that belong to the right hand half-space of the hyperplane. 
But this procedure fails, since there are always points in this right-hand cap, that 
reflect into G and, thus, do not admit the comparison u(x) - u(x"). The novelty of 
our presentation is the definition of a right-hand cap suitable for exterior domains, see 
Figure 1. 

For the locally uniformly elliptic and the Monge-Ampère operator classical strong 
and weak comparison principles are known and the treatment of these two operators 
differs only in technical details, i.e., the Monge-Ampere operator requires extra work. 

The treatment of the degenerate elliptic operator is more delicate; in fact only few 
symmetry results for such operators are known, [2,3,5,6,10,14]. The difficulty lies in 
the loss of uniform ellipticity at points x with Vu(x) = 0 and, as a consequence, in 
the lack of a strong comparison theorem; for a counterexample see Walter [22]. For 
an interior overdetermined equation, this problem is avoided in Colesanti [6] by the 
hypothesis Vu 54 0 in ci with the possible exception of one point - the symmetry center. 
In our case we do not need to impose this assumption since we suppose f(u, I Vu l) to 
be decreasing in u. This allows an important shortcut in the method of moving planes 
and admits us to use a strong comparison theorem only "close to the boundary of ci", 
as originally found by Alessaridrini, Garofalo [3] and as used in Alessandrini [2) in the 
treatment of on overdetermined problem on annulus-type domains. 

We use the following terminology: a real-valued function h, defined on an interval 
is called decreasing or weakly decreasing if s < t implies h(s) ^: h(t). It is called strictly 
decreasing if .s < t implies h(s) > h(t).
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2. The electrostatic problem 

We consider a bounded C 2 -domain G C RN (N = 2 or N = 3) with connected 
exterior ci = RN \ C. A charge distribution p E C(0ci) is called an equilibrium charge 
distribution if the induced single layer potential 

la G
(2.1) 

is constant in G. Here 7(r) = —logr for N = 2 and 7(r) =	for N = 3. An 
2 7r 

equivalent definition is given by the variational formulation to minimize the energy 

E() 
= Ja G fi (x) ^ (x)da,

=
 fIG J (x)(y)-y([x -y()da

ÔG 

among all E C(OG) with (non-vanishing) constant total charge faG (x) dat . We have 
the following statement: 

Only the ball admits a constant equilibrium distribution. 
The result is known for N = 2 (see Martensen [15]). For N = 3 it was conjectured by 
P. Gruber (see Heil and Martini [13: p. 353]). 

The potential 'I' is harmonic in IRN \ ÔG and both in C2 '(?7) and in C 2"() by 
the C2 ' -regularityof the boundary. Suppose G is a ball and p is constant. Then it 
is easy to show that (2.1) is invariant under rotations, and since the only rotationally 
invariant and smooth harmonic functions are constants, we see that balls do admit 
constant equilibrium distributions. 

Now suppose a general domain C with connected exterior admits a constant equi-
librium distribution p > 0. Then = —p by the jump condition for single layer 
potentials (v always denotes the exterior normal to C). Furthermore, 'I —p W at c 
with %P,, =—ooforN=2and=0forN=3. Inciwe have ,<<WaG. 
The first inequality is obvious for N = 2 and follows from (2.1) for N = 3. Suppose 'I' 
attains in ci a value greater or equal 'P3G. Then 'I' attains its maximum in Q. Since ci is 
connected the maximum principle forces I1 to be constant contradicting the Neumann 
condition	<0 on W. Hence Ii satisfies the overdetermined boundary value problem 

1u = 0 in Ii, u <ti <uan in ci	 (2.2)




au const = uan, - = const <0 on 3ci	 (2.3) 

u=u,, atc'o	 (2.4) 

where u = -oo for N = 2 and u = 0 for N = 3. In Section 4 we shall show the 
radial symmetry of ci for this type of problems. We note that the same result holds for 
N > 3 without any changes. 

We remark, that our problem is complementary to a problem studied by Philippin 
[16]. He studies an annulus type condenser ci = Qo \ cii with separately starshaped 
domains ci i C cio. Here an equilibrium distribution on af2 means that the single 
layer potential is 0 outside ci 0 and constant in ci or, equivalently, that the energy
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,5(x)P(x)do, is minimal under the constraints fani,3(x)dcr = c 1 for i = 1,2 
with constants c 1 , c2 54 0. Philippin proves, that the only annulus type condenser 
that admits a component-wise constant equilibrium charge distribution consists of two 
concentric spheres. For N 2 3 our case can be viewed as a limiting case of Philippin's 
problem, where the outer boundary of the condenser is removed. It is open, whether 
Phillipin's method, based on best-possible maximum principles for the Laplacian and 
Rellich's identity, can be adopted to our exterior-domain problem. Since we have more 
general equations than Au = 0 in mind, we have not pursued Phillipin's approach. 
Because existence results for overdetermined problems are impossible, there is no way to 
approximate our problem by a sequence of overdetermined problems on increasing finite 
annulus-type condensers. Finally we note that treatments of annulus-type condensers 
are also found in Alessandrini [2], Wilims, Gladwell and Siegel [23] and Reichel [18], 
where no starshapedness assumption for Philippin's problem is made. 

3. The capillarity problem 

Here we consider a straight solid cylinder with the simply connected bounded C2 '-
domain G C JR2 as cross-section. If the cylinder is dipped into a plane infinite (physi-
cally: sufficiently large) reservoir of a liquid with constant surface tension situated in a 
homogeneous (non vanishing) gravitational field, then the resulting capillary surface is 
governed by the following boundary value problem in Q = JR2 \ G: 

	

div(Tu) = iu	in Q, Tu =	Vu 
7f IVuI2


	

ziTu= — cosy	on 5G. 

Here -y is the contact angle of the liquid and the cylinder wall, ,c > 0 is the capillarity 
constant, u is the height of the surface above the reference level 0 at cc, and v is the 
exterior normal to C. We only consider -y E (0,), since y = means u 0, and 
nothing can be inferred as to the shape of G. Also we have to exclude y = 0 because 
of the regularity requirements, see Theorem 1. The case y E (, ir) can be transformed 
into the first problem by replacing u with —u. We have the following statement: 

The cross-section C of the cylinder is a disk if and only if the liquid rises 
to the same height on the whole cylinder wall. 

The corresponding interior capillarity problem was studied by Serrin in a paper [20] 
that was most influential for the development of the moving plane device. A variant 
of Serrin's method is used in our proof. If G is a disk, then the solution u is rota-
tionally symmetric by uniqueness, and therefore the liquid rises to the same level. The 
uniqueness and comparison theorem for exterior capillary surface problems is given in 
Appendix 2.  

Now suppose C is simply connected and u rises to a constant level on the cylinder 
wall. It is known that u is positive and tends to 0 at cc (see Appendix 2). By the 
strong minimum principle for nonlinear uniformly elliptic equations (see Protter and 
Weinberger [17: Section 16]) u attains its maximum only on the boundary. Because
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of the constant Dirichiet boundary values we have Vu = v0.u, and from that and the 
boundary condition for the normal derivative we obtain const = - cot y on W. 
Finally, by the C 2 '-regu1arity of SG every solution u  C2 (Q) n C() with bounded 
gradient (here we use -y 54 0) belongs in fact to C2(n) (see Gilbarg and Trudinger 
[12: Theorem 12.5, Remark (1))). Summing up, we find that u e C 2() satisfies the 
following overdetermined boundary value problem in Q = 1R2 \ : 

div(	Vu 
+ I -VU I2) - 

,cu = 0 in c, o< u < uç in Q(3.1) 

= const = uari > 0, 
-OU 

 = const < 0 on aQ	 (3.2) 

u=0 at no.	 (3.3)


By the result of the following section, ci turns out to be radial. 

4. The general result 

The two preceding results are special cases of the following general result. Let G C IRN 
be a bounded C 2 -aomain such that ci = RN \ G is connected. We consider solutions 
u of the problem

Qu +f(u ,I Vu I) =0 in Q, 0 u < b in ci	 (4.1) 

u =b=const,	=const 0 on5ci	 (4.2)

av 

u = 0 at no	 (4.3)


under the following assumptions: 

(I) Quasiliriear, locally uniformly elliptic case 
(I) Qu = div(g(IVuI)Vu) with g € C 2 [0,00), g(s) > 0 and (g(s)s)' > 0 for all 

.s >0. 
(1)2 f : [0, b] x [0, no) - JR is decreasing in its first variable and locally Lipschitz 

continuous on [0, b] x [0, no). 
(1)3 u E C2(). 

(II) Quasilinear, degenerate case 
( I1)i Qu = div (g(IVuI)Vu) with  E C 2 (0, no) and constants k 1 , k2 , k3 > 0 and p> 1 

such that g(s) > k 1 s 2 , g(s)+sg'(s) ^! k2 s" 2 and g(s)+sIg'(s) < k3 s" 2 for 
all s>0. 

(11) 2 f : [0, b] - JR is independent on Vu, continuous, decreasing and Lipschitz 
continuous on [0, b]. 

(11)3 u E C"().
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(III) Monge-Ampère case 
(III) Qu = det (D2u). 
(111) 2 f : [0, b] x (0, oo) - 11? is decreasing in its first variable and locally Lipschitz 

continuous on [0, b] x [0, cc). 
(111) 3 u E C 3 () is uniformly convex in every bounded subset of . 

Theorem 1. In the cases (I) - (III) the unique solution of problem (4.1) - (4.3) is 
radially symmetric, and the domain G is a ball. 

Remark 1. The electrostatic problem and the capillary surface problem are of 
type (I) with g(s) = 1 and g(s) = 1/v'1 + s 2 . The electrostatic problem for N = 2 does 
not satisfy the boundary condition (4.3) u = 0 at cc. Nevertheless our method is still 
applicable, and the proof is given in [19]. 

Remark 2. For the quasilinear case (I) the above result is extended in [19] to 
more general functions f(u, iVuI), which are decreasing in u only for u, IVuI small. For 
the Monge-Ampère case (III) such an extended result is also possible, whereas in the 
quasilinear degenerate case (II) this remains open due to the lack of a global strong 
comparison theorem. 

Remark 3. If G is bounded, open with finitely many components and its com-
plement is connected, then Theorem 1 remains valid and G is a ball. In this case we 
only require the Neumann boundary values to be constant on each component of the 
boundary, whereas the Dirichlet boundary values have to be the same for all boundary 
components. 

4.1 Reflection in hyperplanes. Notation. By x = (x 1 ,... , x iv) = (x 1 , x') we denote 
a point in 1R" with x' = (x2,... , X N) e RN-1, by jxj its Euclidean norm and by B(x) 
the open ball with center x and radius r. For partial derivatives of a function u we use 
ôzk U = ak u = U k . It will be convenient to write f = f(p,q) instead of f(p,qi,...,qp.'), 
where q = I( qi,.. ,qN)I. 

We shall show the symmetry of the domain G and all solutions u of problem (4.1) 
- (4.3) in the x i -direction. Once this is done, the symmetry in any other direction and 
hence the radial symmetry follows by considering the function u(Mx), where M is a 
rotation, as a solution of problem (4.1) - (4.3) on MT. For the r i -symmetry we use 
the method of reflection in hyperplanes, which was first used by Alexandroff [4] and later 
refined and applied to nonlinear elliptic and parabolic partial differential equations by 
Serrin [20], (3idas, Ni and Nirenberg [11] and many others. Recently this method was 
modified and applied to unbounded domains by the author [19] and further extended 
by Aftalion, Busca [1]. 

We use the following definitions: 

	

TA = {xi x 1 = A)	—the hyperplane 

	

HA = {xI r 1 > A)	—the right-hand half-space 

	

= (2). - x i , x')	 —the reflection of r at TA
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A" = {xI x E Al	 -the reflection of the set A at T 

= {x E GI x i > A}	-the inner right-hand cap 

= {x E aGI x 1 > A} -the inner right-hand boundary 

M I = sup {x 1 I x E C)	-the x 1 -extent of C 

= H \ G"	 -the reduced half-space. 

IIIIiI' 
Figure 2: A reduced half-space with two components 

Let us move the hyperplane into its critical position which is defined as follows: 
For A E (rn 1 - e,m i ) the reflection of E I (A) lies inside C and the positive x1-direction 
is non-tangential on r 1 (A). If we decrease A, there will occur a critical value m at 
which fi ( A)" meets t9C tangentially,. or the normal on r 1 (A) becomes orthogonal to the 
x 1 -direction (see Figure 3). 

C  G

Figure 3: The critical positions of Tm 

For this critical value in, let us define the comparison function 

w(x) = v(x) - u(x) = U(Xm) - u(x)	(x E E(m)).
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Since the inner right-hand cap E i (m) reflects into G, we have E i (m) C C tm . Therefore 
x E E(m) implies x V E I (m) and, by definition, x m V C. Hence the comparison 
function is well defined on (m). Note that w = 0 on at(m) fl Tm and w = b - u 0 
on ÔE(m) fl 9G**, i.e., w > 0 on a(m). We shall show that in fact w 0, and from 
that the x i -symmetry of 9 will be derived. 

4.2 Proof of Theorem 1. Step 1: We shall show w 2 0 in >(m) and strong versions 
of this inequality by an elliptic comparison argument. First we note that v(x) = u(2m - 

x') satisfies the equation

Qv + f(v, I Vv I) = 0	on c m	 (4.4) 

For the quasilinear cases this follows from Vv(x) = (— u1(xm),2(xm),... ; 
UN* (xm)), 

but also the Monge-Ampère operator is invariant under isometric coordinate transfor-
mations. Furthermore in the Monge-Ampère case we note that v and Ou + (1 — are 
locally uniformly convex on (m) for all 9 E E0, 11. 

In the quasilincar locally uniform case (I) we use the standard linearization 

W, (X) = tv(x) + (1 — t)u(x) 

a,(s) = g(Iss 1 (s E	N) 

aj(x) = 
j	

(Vw i (x)) di	 (45) 

b(x) = L1 L(w(x),Vw,(x)) di 
qi 

C(X) = f
I af

(wg(x),Vw t (x)) di 

and obtain 

Qv — Qu + f(v,Vv) - f(u,Vu) =.EIj (a1j wj ) + bw + cw = 0	in .E(m) 

In any bounded subset of E(m) the coefficients a 3 , ôa 13 , bi and c 0 are bounded 
and the linearized operator is uniformly elliptic. Since w 2 0 on 19E(m) and w = 0 at 
oo we see by the strong maximum principle that w cannot have a non-positive interior 
minimum in any component Z of E(m) unless it vanishes identically in Z. Hence either 
w >0 or w 0 in Z. 

In the Monge-Ampère case (III) we define 

• D(s) = dets,3 ,	.s = (s e,) E JRNxN	.	•	S • -. 

	

M 3 (s) = aD —(s), the co-factor of s,	 •	(4.6) 

rn(x) = f M(D2 w t )dt	•	.•.	 S
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and find the following linearization (b1 and c as above): 

det D 2 - det D2 u + f(v, Vv) - f(u, Vu) = m ij w ij + b1 w, + cw = 0 in E(m). 

Since (M1 j (D 2 w t )) = det D 2 w j . (D2 w) 1 is uniformly positive definite in any bounded 
subset of E(m) (here we need the locally uniform convexity of Wt), we have the lo-
cally uniform ellipticity of the above linearized operator. Therefore we have the same 
conclusion as before: In every component Z of E(m) either w > 0 or w 0. 

The degenerate quasilinear case (II) is different. First we define v(x) = v(x) + 
(x E E(m)) and observe that vf (x) 2 u(x) + for lxi 2 R and a suitably large R. 

In the remaining region ER = E(m) fl BR(0) we have v > u on ÔER, and we can use a 
weak comparison principle (see Tolksdorf [211) for 

Qu+f(u)=0=Qv+f(v)> QV, +f(v )	in E 

to deduce ye 2 u in E,. Letting e - 0 we obtain v u in E(m). A strong comparison 
result as above is not available for degenerate quasilinear equations. Nevertheless we can 
do strong comparison "close to the boundary of C" as in Alessandrini [2] and Alessan-
drini, Garofalo [3]. Let Z be a component of E(m). By the strong maximum principle 
and its boundary point version, which hold for (4.1) (see Tolksdorf [21: Propositions 
3.2.1 and 3.2.2]), the inequality Vv 54 0 holds on 311' = 3Gtm , where v attains its max-
imum, and remains true in a small open smooth neighbourhood U of ÔGtm in E(m); we 
choose U in such a way that ZflU remains connected (see Figure 4). By local boundary 
regularity (see Fleckinger-Pellé, Taká [9:Lemma 5.2]) we get v E C 2 (U) . Now we can 
use the strong comparison theorem of Tolksdorf [21: Theorem 3.3.2] to deduce v > u or 
v u in Z fl U.

Figure 4: The choice of U 

Step 2: Here we show that there is a component Z of E(m) with w 0 in Z reap. 
ZflU, where in the degenerate case (II) U is a suitable neighbourhood of 3G'. Suppose 
this were false, i.e. w > 0 in_E(m) resp. E(m) fl U. Recall that the critical point of T 
originates either from (a) E 1 (m) 

'n 
meeting ÔG tangentially or from (b) the x 1 -direction 

becoming tangent to 9E1(m). 
(a) Internal tangency: Let q E E i (m) m n 3Q be the point where the reflected inner 

cap meets OC tangentially, i.e., q ptm with p E 3E 1 \ T. Since w(p,m) = 0 we can 
use the Hopf lemma at the smooth boundary point p E ÔE(rn) to deduce 3 ( )w(p) 0 0;
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for the degenerate quasilinear case (II) see Tolksdorf [21: Theorem 3.3.1]. On the other 
hand v(q) = v(p) m by the internal tangency (here &i(q) is the common exterior normal 
of aG and ÔE(nz) m at q). Hence we calculate 

3v	au	 ôuI 
ôzi(p)	= ô-(q)	

= const - 

which results to ô()w(p) = 0 contradicting our previous statement. 
(b) There is p E T. flöG with v 1 (p) = 0: At p Hopf's lemma is no longer applicable 

since there is a right-angled corner of (m). Instead we show that w has a second-order 
zero at p in contradiction to Serrin's version of Hopf's lemma at corners (see Serrin [20] 
and Appendix 1). Recall that in the quasilinear degenerate case (II) the function v is 
of class C2 in a neighbourhood of Ô2'' and u is C2 in a neighbourhood of an for the 
same reason. Hence we can carry out a C 2 -analysis for w close to the point p. Let us 
define a local coordinate frame with the a-axis along the normal v(p) and the 1-axis 
collinear to the x 1 -axis. In this frame (see Figure 5) e3G is locally given by 

=	 h(0) = 0, Vh(0) = 0	(h EC2) 

and the normal v(C') at (c', h(e'))

= ( - Vh('), 1) 
__________ 

/I V_h(') I 2 + 1 

with v(0) = (0,... , 0, 1) E iNN. The new functions 

u(e) = u(x),	i5() = v(x) = U(Xm),	t13(e) = w(x) 

have the relations 

With the help of the parametrisation (c', h(')) of ÔG we can differentiate the constant 
Dirichlet and Neumann boundary conditions with respect to the tangent directions 

eN-i and find

ü3(0) =0	(j = 1,...,N-1)	 (4.7) 

U Nj(0) =0	(j = 1 1 .. ,N— 1).	 (4.8) 

Notice that ü,,(0) = i ofl(0) = tZ ii (0) = 0 for a,/9 E {2,... ,N}. Furthermore, t7b i (0) = 
—2u 1 (0) = 0 by (4.7) and W NI(0) = — 2Ü N1 (0) 0 by (4.8). For the second order zero 
of th at = 0 it remains to calculate 5 j ti(0) for a = 2,... ,N - 1. To do this we need 
the Taylor expansion of t13 close to = 0 

=
O1(0)10 + °( 1C1 2 ) .	 (4.9)
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Since tS > 0 for small values of fi > 0,	e (—,e) and N > 0 we see that in fact 
= 0. Hence zZ' and w have a second-order zero at p in contradiction to Serrin's 

corner lemma. This finishes the proof of Step 2 and shows that w 0 in a component 
Z of (m) (resp. w 0 in Z fl U). 

C:TT. ------------ 

Figure 5: The c-coordinate system at p 

Step 3: w 0 in Z fl U for a component Z and a neighbourhood U of aGm forces 
ci to be symmetric. By the definition of Z we find 5Z \ Tm C OG-. Since w 0 on 
we obtain u b on 3Z \ Ti,, and hence t9Z \ Tm C ÔG by (4.1). The observation that 

Z \ Tm belongs both to ÔG tm and to ÔG is the essential reason for the symmetry of C. 
The following formal topological argument shows that Z U zm extends across Tm to an 
open subset of Q. Let

X = z  Z m U (Z n ci) U (ôZ m n ci). 

We show that X is open. Following from this we conclude 

OX c (OZ U OZ m )\ (OZ n ci) \ (OZ tm fl ci) C Oci 

which implies ci = X since X is non-empty and ci is connected. To prove that X is 
open we frequently use OZ \ Tm C OG = Oci and OZ m \ Tm C OG = Oci. Observe first 
that Z U Z m C int X.' 

(a) Take x E c9Z n Q. Since OZ \ Tm c Oci we see that x E Tm fl Q. There exists a 
ball B = B(x) c ci, and we can define 

B> =Bfl{x i >m},	B< =Bfl{x i <m},	E= Bfl{x i =rn}. 

Notice that OZflB> C (OciUTm)flB> = 0. Since ZflB> 0 Owe get B> C Z and 
B< C Z m . Together with E C ci fl (Z n Tm) C ci fl OZ this results in BC X, i.e. 
xEintX. 

(b) Take x E aZ"1 fl Q. The proof of x E mt X works with notational changes as in 
part (a),I 

Remark. This last part of the proof goes back to lecture notes of L. E. Fraenkel 
(University of Bath, U.K.).
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Appendix 1 

As an important extension of Hopf's maximum principle Serrin formulated in [20] the 
following lemma, which we quote for the reader's convenience. 

Lemma. Let D be a domain with C'-boundary and let T be a plane containing 
the normal to 5D at some point p. Let D then denote the portion of D lying on some 
particular side of T. Suppose that w E C 2 (D) satisfies the elliptic differential equation 

ã 1 (x)w 1 + ,(x)w < 0	in D 

where the coefficients are uniformly bounded. We assume that the matrix à, is uniformly 
definite,

	

a1(x),e ^!	(k = const > 0)	 (All)


and
Ia1(X)e71I < K( . + IeI d( x)) (K const > 0) (A1.2) 

where is an arbitrary vector in li1', i is the unit normal of the plane T and d(x) is 
the distance from T. Suppose also that w > 0 MD and w = 0 at p. 

Then either
5w	 52w 

or -->0	at p
19A 2 aju

unless w	0, where ji is any direction at p which enters D non-tangentially. 

Figure 6: Serrin's lemma 

We showhow the lemma applies to our situation, where- T = Tm, D corresponds 
R'to " c" and D to E(m). Since the analysis is of local character at p, it is enough 

to verify the hypotheses in a neighbourhood of p, i.e. we intersect D and D with a 
small ball around p. Recall that both in the quasilinear locally uniform case (I) and in 
the Monge-Ampère case (III) w satisfies a linear equation 

aij w ij + b 1 w + EW = 0	in D	 (AL3) 

which is uniformly elliptic with bounded coefficients in every bounded subset of E(m).
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For the quasilinear degenerate case (II) we found a neighbourhood U of the point p 
such that u, v and w are C 2 -functions in E(m) fl U with Vu, Vv 0 0. Knowing this we 
can use the same linearization argument as in the locally uniform case (I) (see (4.5) and 
notice Vw j 0 0 on E(m) fl U) to obtain the linearized equation (A1.3) which is valid in 
D = E(m) fl U. 

With the standard substitution IU = exp (fix 1 )w equation (A1.3) transforms into 

ä 13 Eijj + b17Y, + ëi7 = 0	in D	 (A1.4) 

where bi = Il, - 2/3ã 11 and ë = ä 11 /3 2 - b1 fi + . In a neighbourhood of p in E(m), the 
operator a 1 9i , is uniformly elliptic, b 1 is bounded and E > 0 for a suitably large 0, i.e., 

	

ä 1 ii j + bJ	0	in D.	 (A1.5) 

It remains to verify (A1.2). For x E Tm the vectors Vw and 77 = (1,0,. .. , 0) are collinear 
(recall w = 0 on Tm), i.e., Vw(x) = 1(x)77 . We use the definition of ii ij and find in the 
quasilinear cases (I) and (II) the following from (4.5) for x E Tm 

= (g(IVvDVv - g ( I Vu I)Vu ) . 

= g(IVuD(Vv - Vu). 

= l(x)g(IVu) .7). 

If I(x) 54 0, the estimate àjji1,j < K16 - i7l follows. For those X E Tm with 1(x) = 0 we 
find 0 = Vw(x) 77 = 20,7 v(x). From the definition of ä j in (4.5) we get 

1	 1 

o7j
*(Is I) a ij	 (s.e)(s.dt+J9(IsDIe.77Idt=Ii+12 
Isi 

0	 0 

with .s = tVv(x) + (1 - t)Vu(x), i.e., .s	= (2t - 1)5,1 v = 0. So 11 vanishes in those

points X E Tm, where l(x) = 0, and 12 is bounded above by KI .771. Therefore we have 

	

< K	7 1	(x E Tm). 

For the Monge-Ampère case (III) it is convenient to use r	(1,0,... ,0) and to

calculate a 1 1 (x) 1 according to (4.6) for x E Tm, where 

u 11	(1 - 2i)u 12 . . . ( 1 - 2i)ulN 
2	 (1 - 2t)u 12	U22	. . .	Uj\T 

Dwj(x)=
 

(1-2t)U IN	U2N	...	UNN 

For a = 2,... ,N the co-factor M 1 (D2 w t ) has the form (1 - 2t) co-factor of D2u(x). 
Hence äai(x) = f' Ma i ( D 2 w t ) dt = 0 (a = 2,... ,N), and we have the estimate 

= a11( x )e21	= KI .771	(x E Tm)
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which is the same estimate as in the quasilinear cases. By the smoothness of the 
expression	in x E D we find 

Ia 1 (x)eI <K(I	I + IeI d(x ))	(x E D) 

where d(x) is the distance of x to Tm. Recall that we required g E C2 (0, oo) in the 
quasilinear cases and u E C 3() in the Monge-Ampère case, which gives a, (x) E C'(D) 
(see (4.5) and (4.6)). 

Since the hypotheses of Serrin's lemma are verified for (A1.5), we can conclude that 
= exp (x i )w does not have a second-order zero at p unless it vanishes identically 

and, by a simple calculation, the same is true for w. 

Appendix 2 
The following theorem of Finn and Hwang [8] extends a well known comparison theorem 
for the capillary surface operator, see Finn [7: Theorem 5.1), to unbounded domains. 

Theorem. Let r. > 0 and suppose aQ admits a decomposition ÔQ = EUE, where 
E0 E C 1 and ii is the interior normal to Q on E fl . Let u,v E C2 (Q) fl C'(cl) with the 
properties

div(Tu) - ,cu div(Tv) - v for x E Q such that u > v. 

uvonEa,	v.Tu>v•Tv onE, 

then u v follows, lithe differential inequality holds everywhere in Q and if u(x) = v(x) 
for one x E Q, then u v results. 

We draw two conclusions: 
(1) The solution u of the exterior capillary surface problem (as introduced in section 3) 

on the unbounded domain f2 = 1R2 \ C is unique. 
(2) The solution u is positive and tends to 0 at oo. 

Proof. (1) follows from the comparison theorem. (2) Since 0 is a subsolution, 
we obtain u > 0 by the comparison principle. We assume 0 E C and define p(r) = 
aeT ( > 0), where ) is chosen so small that for sufficiently large r = IxI ^! R0 we 
have	

wit + W I = A2 — A) W 
< r.W. 

It follows from the convexity of cp(r) that 

p" + çd/r  
div(T) 

=	 (1 + ihI2)3/2 

Next we choose a > 0 such that	u for IxI = RO and find by the above comparison 
principle	u for lxi -:> J?, i.e., 0 < u = O(exp(—Ar)) as r - oo.I 

Acknowledgement. The author thanks the referee for valuable suggestions, which 
led to an improvement of this paper.	.
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