Zeitschrift fur Analysis und ihre Anwendungen
Journal for Analysis and its Applications
Volume 15 (1996), No. 3, 637-650

A Non-Degeneracy Property for a Class of
Degenerate Parabolic Equations

C. Ebmeyer

Abstract. We deal with the initial and boundary value problem for the degenerate parabolic
equation u; = AB(u) in the cylinder  x (0,T), where @ C R™ is bounded, 8(0) = 8'(0) = 0,
and 8’ > 0 (e.g., B(u) = u|u|™"! (m > 1)). We study the appearance of the free boundary, and
prove under certain hypothesis on 3 that the free boundary has a finite speed of propagation,
and is Holder continuous. Further, we estimate the Lebesgue measure of the set where u > 0

is small and obtain the non-degeneracy property |{0 < 8'(u(z,t)) < €}| < cet.

Keywords: Free boundary problems, finite speed of propagation, porous medium equations

AMS subject classification: Primary 35K 65, secondary 35 R35, 76 S 05

0. Introduction

Consider the initial and boundary value problem

uy = AB(u) in Q x (0,7]
u(z,t) =0 on 99 x (0,7 (0.1)
u(z,0) = uo(z) in Q

where Q C R" is bounded, T < +o0, 8 is a function with #(0) = $'(0) = 0 and 5’ > 0,
and up > 0. Written in divergence form u; = div(8'(u)Vu) we see that (0.1) is a
degenerate parabolic equation.

The model equation of this type is the porous medium equation
u, = Aufu|™ ) (m>1). (0.2)

Equation (0.2) has been the subject of intensive research, surveys can be found in [14,
16]. An interesting feature is the free boundary I'(t) = dsuppu(:,t). Its behaviour in
one dimension is studied in [2, 3, 6, 13], results in several dimensions are proven in [7,
9 -11).

In detail the Cauchy problem in n dimensions is treated in [7] and the initial and
boundary value problem in [11]. If suppuo CC 2 and ug is not too flat near dsupp uo,
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then there is no waiting time [13], that means the free boundary begins to move imme-
diately. In detail I'(¢) is strictly increasing for all ¢ > 0 where ['(t) N 8Q = 0. Further,
the free boundary has a finite speed of propagation and I'(t) is Hélder continuous.

One consequence is the following non-degeneracy property [11): Consider the set
Qo = {(z,t) € A x[0,T] : 0 < f'(u(z,t)) < €} where B(s) = s|s|™"! (m > 1). Then
the Lebesgue measure |Qg| of Qp satisfies

0] < cet. (0.3)

This estimate plays an important role in finite element analysis (see [11]). If T is
sufficently smooth, the better result {Qg] < ce can be shown, for example, if  c R! or
if supp u(-,t) is convex. The reason is that then the velocity of I' is determined by the
slope of u (see |7, 13]).

The aim of this paper is to prove the non-degeneracy property (0.3) in the case of
general 8. In Section 1 we state the assumptions on the data and the main result. In
Section 2 we study the free boundary. We prove that under the hypotheses on 3 given in
Section 1 the free boundary has a finite speed of propagation and is Hélder continuous.
The proof depends in a crucial way on the smoothing property u; > —$u. In Section 3
we prove the non-degeneracy property. There we will use suitable comparison functions.

1. Assumptions on the data and the main result

Let éo,61,50 and c be positive constants and set (t) = suppu(,t) and Q(0) = suppuo.
We need the following assumptions:

(H1) wo € L*() and 0 S up(z) < M (z € Q).

(H2) Q@ CR" (n > 2)is a connected open domain with Lipschitz boundary.

(H3) Q(0) cc Q, £(0) is a connected domain, and 3Q(0) € C2.

(H4) f'(uo(z)) > c(dist(z,09(0)))*° for z € Q(0) with 0 < § < 2.

(H5) B'(u(z,t)) > c(dist(z, 3Q(t)))* (¢ € (0,8)) if dist(z, 0Q(2)) < 6.
Furthermore, we suppose the following assumptions on 3:

(A1) B e C¥0,]luolloo)

(A2) B(0) = B'(0) = 0 and B(s), B'(s), B"(s) > 0 for all s > 0.

8 1"
(A3) —((;"%gj_) 2 ¢ > 0 for all s € [0, ||u0||oo]

(Ad) O0<ko < é%)—(:—) <k <1 (s€]0,s0]).

(A5) Y(as) > ap(s) (s €[0,B(s0)]) where & < 1 and (s) = B'(871(s)).

(A8) B(s)>s™ ((s € [0, s0)) for some constant m > 1.
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Remark. i) Assumption (A5) holds, if §/(87!(s)) is concave for all s € [0, B(so))-
ii) B(s) = s[s|™~! (m > 1) satisfies assumptions (A1) - (A6).

In general, it is not to be expected that all solutions of problem (0.1) will be regular.
But if ug € L°°(Q) and T < +o0, then the existence of a unique weak solution u is
known and it holds (see [15])

u € L®(0,T; L=(2)) N C(Q x (0,T)) and B(u) € L*(0,T; H)()).

" Further, ug > 0 implies u(z,t) > 0 for all (z,t) € Q x [0, T).

The main object of the present paper is to prove a non-degenéracy property for wich
we define the two sets

Qo = {(:z:,t) €N x[0,T]: 0 < B'(u(z,t)) < e}
and ,
Qo(t) = {3: €Q(t): 0< B(u(z,t) < e}
for0<t<T.

Theorem 1.1. For the Lebesgue measure |Q| of Qo

1
IQOI = |UOS¢STQo(t)| <ce?

18 satisfied.

2. The free boundary

Assumption (H3) implies that the support of u has a free boundary for some ¢t > 0. We
define the free boundaries

T =UpccTdQ(t)\ 82  and  T(t) = 0Q(t)\ 82 (t > 0).

Lemma 2.8 below implies Q(to) C Q(t1) for to < ;. Then it follows as in [7] that if a
vertical line segment o = {(zo,t) : to <t < t} satisfies 0 C T, then {{zo,t): 0 <t <
t1} C T, and if T contains no vertical line segment, then T is strictly increasing in every
point. _ .

Further, hypothesis (H4) entails that there is no waiting time, that means 2(0) N
O0(t) = 0 for all t > 0. Hence the free boundary is strictly increasing for all ¢ > 0
where I'(t) N 92 = 0. This result is due to [13), if B(s) = s|s|™"! (m > 1) and @ = R.
The proof to equation (0.1) is similiar (one needs suitable comparison functions; see,
for example, Section 3). Let us note that the conclusion fails, if we allow 6 = 0 in °
hypothesis (H4). o

The set 2(t) is open, thus let W denote its closure. In this section we generalize
the ideas of [7, 11] in order to prove the two following theorems.
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Theorem 2.1. The following assertions are true.

i) Let 0 < 6o St <t+s<T < 400, BCC Qe balland U a (cs'/7)-neighbourhood
of Q(t). Then there ezist two constants ¢ and v > 1 independent of s and t such that
(UNB) C (Qt+s)NB).

i) Let 0 < éo < t and 0 < § < 1. Then Q(t +6) is contained in a (c6'/?)-
neighbourhood of §}(t), where the constant c depends only on 8y and on the data.

This theorem discribes the finite speed of propagation. In particular, let t > 6o,
z € T(to), n € R", |n| =1 and g(s) = z 4 sn such that g(s)NQ(te) = 0 for all s € (0, §),
for some § > 0. Further, let k4(7, z,t0) denote the velocity of I'(¢p) in the direction of
n. Then by Theorem 2.1, there exists a constant ¢, independent of z, 5 and to such that

n“(nvzstO) Z Cy. (21)

The free boundary T' is strictly increasing. Thus for any z € © \ Q(0) there exists a
unique point t; such that z € I'(t) if and only if ¢ = t,. Hence the free boundary is
given by a function t = G(z) (z € 2\ Q(0)) continuous in Q \ Q(0).

Further, the proof of Theorem 2.1 yields the following property of G.

Theorem 2.2. G is Hélder continuous on Q\ Q(0) (with Hélder ezponent v) and
uniformly Holder continuous in any compact set K C (ﬁ\ Q(0)).

Corollary 2.3. Lett) < 3, 21 € I'(t1) and z; € I'({2) such that dist(z;,[(t2)) =
dist(zy,x2). If dist(zy,z2) 1s sufficently small, then

di.st(z;,:cg) S [+ Itl - t2|% (22)
where the constant ¢ is independent of x,,z, and t;,15.

An essential property of u is the smoothing property (2.3). A proof which uses
semigroup theory can be found in [8). Let us prove (2.3) using a comparison argument
(see also (1, 5], if B(s) = s|s|™~! with m > 1). Hence we need the following comparison
theorem [4]. ’ '

Theorem 2.4. Let L(u) = u; — AB(u) and suppose (in the weak sense)
1) L(u1) €0 and }L(ug) >0 for all (z,t) € 2 x (to,t1]

2) u1(-, %), u2(-,t0) € LE(R) and (u) — uz); € Ll(to,tl;Ll(Q))

3) uyi(z,t0) < ua(z,to) for allz € Q

4) uy(z,t) < up(z,t) for all (z,t) € IN x [to, 1]

Then
uy(z,t) < uq(z,t)

for all (z,t) € & x [to, t1].

Lemma 2.5. Suppose assumptions (Al) - (A3). Then there ezists a constant k > 0
such that k

U 2 —?u (23)
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for t € (0,T].
Proof. We will show k .
(Bu))e > - =B(w) (2.4)
for t € (0,T]. Then the convexity of 8 entails
k B(u) k
>_Z >_Z
HETY @ S TE"

Consider the function w = ¢ (8(u)); = t 8'(u) u,. Since

= B'(w)ue + ¢ f"(u) (ue)® + ¢ B'(u) (AB(w)):

we get
w ,H"(u)

?—Ww —ﬂ(u)Aw:O

L(w) := we —

Further, —kf(u) satisfies

L(-kB(u)) = . ﬂ(u) (k ﬂ;’;;()fﬁ:))

and it follows L(—kB(u)) < 0 where k = 1 with ¢ given in assumption (A3). Assume
up to be smooth (otherwise one uses approximations (see, e.g., [15]). Then it holds

wo(z) =0 > —~ kﬂ(uo(z)) and w(z,t) = 0 = —k B(u(z,t)) for all (z,t) € 82 x (0, T)
Hence the comparison theorem yields w = ¢ #'(u)u, > —kf(u) 0
Let

BR) = {yeR":ly-s| <R}, BR=BOR, §r=[r

Now we can establish two fundamental lemmas.

Lemma 2.6. For arbitrary éo > 0 letty > 8o, zo € Q\_Q(to), Ry :=dist (zo,aﬂ(to)),
< dist (z9,00) and 0 < R £ Ry. There exist two constants ¢ and ¢ depending only on
bo, ko, 50, k,n and M such that, for 0 < 0 < ¢,

2
B(u(z,t0)) =0 (z € B(zo,R)) and f ﬁ(u(z,to +0))dz<c R7 N

B(zo,R)
implies
(u(a: to +0)) =0 (zeB(xo, %))'

Corollary 2.7. If B(u(z,to)) = 0 for all z € B(zo, R) and if (:co,to + o) belongs
to I(to + o), then

R?
f B(u(z,to +0))dz > c—.
B(zo,R) o
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Proof of Lemma 2.6. First we note that dist(zo, 8Q(t)) < dist (zo, ) entails
the inclusion B(zo, R) C Q. Define the function v = #'(u). Some easy calculations
show that v is a weak solution of the equation

ﬂl(u ﬂl!l ‘
vy =vAv+ (1 - W))(;‘)) |Vl (2.5)
Let o = g5 and
i(z,t) = B (aﬂ(u(zo + Rz, to + at))).
By some direct calculations it follows that ¥ = (u) is a weak solution of the equation
S S O Y 4 o). B@)B" @)\ \gs2
i =ayp(a'PpT(9)AT+ a 7@ < TZOR ) V3| (2.6)

where ¢ = 8'(87!) (and a¥(a'¢7(9)) = aB’(u)). We distinguish two cases:
Case o < 1. The assumptions yield 8(ii(z,0)) = 0 for all z € B(1) and

f B(i(z,1))dz = a% B(u(zo + Rz,to + o)) dz < c (2.7)
B(1) B(1)
and from (2.3) it follows that
AB(E) = aAB(u) > —a 65 ou > —eg , (28)
0
where g9 = ¢ £4 Hence we get A(B(@) + £ |z|?) > 0, thus B(@t) + £2 |z|? is subhar-

monic. We obtain for z € B(3)
Bate )+ 52l < (BGE )+ 2 IeF) e
f B(a(E, 1 )d§+€—°.
From (2.7) it follows that B(i(z,1)) < (2"c+ 2) forall € B( ). Using (2.4), we get

(B = a(B(u))e 2 . = B(u) 2 —1B(3) (2.9)

where £, = ¢ & 6 We obtain ﬂ(u(z 1)) > e""(l ')ﬂ(u(x t)) thus for all z € B(}) and
te(0,1)

B(a(z,1)) < et (2mc + ;—:’l) and  i(z,t) < ¥ (e (2nc ;_:;)) . (2.10)

Now we will apply the cdmpa.rison theorem. We define the function

Az,1) = A(mo — 1) {azt‘+ a (r*— %) }+ (r = |z, A > 0)
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where mg > 1 and a = ;. Then suppz(z,t) = {z € R": |z > %—%}. If A is sufficently
small, then z satifies the inequality

1

mo—l

2y > at/:(a'lt,/)'l(z))Az +

|Vz|%. (2.11)
For it holds a¥(a~'%~!(2z)) = 0 if 2 = 0, next in supp z we have
zi = Mmg — 1)a®, Az = A(mg—1)(n - l)g, V22 = A%(m — 1)%a?

and assumption (A5) entails a9 (a™'yp~(z)) < aa™'Pp(3"!(2)) = 2, thus

Aar

o2 > <a’¢)(a‘1(¢_1(2))) (n— l)a2 +a2> A

if A is sufficently small. Let my = f—:—ig where kg is given in assumption (A4). Using
(2.6), we get

1
mo — 1

o < ay(a”'YT(9))AD + |Vo|2, (2.12)

for from assumption (A5) it follows that
B'(@) = B' (87 (aB(w)) 2 af'(871(B(w)) = af'(w).
The comparison theorem and (2.10) - (2.12) yield %(z,t) < z(z,t) for all (z,t) € B(3) x

[0,1] if ¢ and ¢ are sufficently small. In particular we obtain #(z,t) = z(z,t) = 0 for all
(z,t) € B(3) x [0,1].

Case a > 1. Now the assertion follows if we consider u instead of & and use R? < o.
We get like above

v(z,t) <9 (6" (Z"C + -;%)) for all ‘.(:c,t) € B(zo, %) x [to, to + o).

Next, we apply the comparison theorem in B(zq, %) x {to,to + o) B

Lemma 2.8. Let to > 6, zo € 2\ Q(t), 2Ro = dist(z0,09), 0 < R < Ro and
0 < 0 < € where T is sufficently small. If ’ S :

2

)
e

' 'R
f Bu(z,to))dz = p
B(zo,R)
then there ezists a constant A > 0 independent of o; R, zo and to such that

B(u(zo,to + Aa)) > 0.

In particular A is small, 3f u 13 large.
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Proof. We consider @ as above. The assumptions entail
f B(i(z,0)) dz = a}{ B(u(zo + Rz, t0)) dz > .
B(1) B(1)
Using (2.9), we get (B(w)): > —e,8(i1) wheree; = ¢ % Consider

o(t) = /B RCCOED

It follows that ¢'(t) Z —e19(t), thus

e(t)>e ' u  forall tel0,) (2.13)
If the assumption is not true, then

B(#(0,t)) =0  forall t€[0,) (2.14)

and in particular (%(0,A)) = 0. Using m given in assumption (A6) we obtain as in {7]
the existence of constants c, cz,c3 and § such that

[etrds <cr [ B0, ds + eaer)* +estoten (2.15)

and ¢z, c3 and § depend only on m and n. Let Ao := 3 and D(}) := c5(g; )8 (e *p~1) .
Then from (2.13) - (2.15) it follows that

/ @(s)ds < (cs + DA))(p(t)=  for all te (Ao, AL

0

Now the function ¥(t) = fot w(s)ds satisfies

(%' ()= > By(t)  forall te€ (Ao,
where B = (c3 + D(A))™! and ¢(Ao) > Ape ™ .
Next we compare 3 with the solution x of the problem
X'()=(Bx(t)™  (t€(ro,A])
x(Ao) = ¥(Xo).
We get ¥(t) > x(t) for all t € [Ag, A]. The function x fulfills the equation
(m - 1)(x(®)™ =(C - B™)!

where the constant C satisfies the equation’(m — 1)(¥(X))™ ! = (C — B™Xp)~ 1.
It follows that x(t) — +oo if t — BL"" thus ¥(t) —» +oo if A > B%‘ This is a
contradiction. Hence 8(%(0,A)) > 0 holds if ‘

C A 1
A2gm=3t (m — D)%) 1B™"

In particular this is true for small A if u is sufficently large B
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The proofs of Theorem 2.1 and Theorem 2.2 follow now as in [7].

Remark. Another approach can be found in [12]. Instead of the smoothing property
up > —"—“ﬁ a generalized Harnack inequality and Moser iteration are used to study the

free boundary of the porous medium equation with absorption
ug = Au™ —uf in R™ x (0, 00)

(m>1,p>1).

3. The non-degeneracy property

In this section we will prove Theorem 1.1. We consider the set
Qo(t) = {:r, €Q(t): 0<v(z,t) < e}
and define
r*(t) = {z € T(2) : dist(2,R"\ D)) > o}.
Let 7 > 60 and z € Qp(7). We distinguish the following three cases:
i) = near I'(7)
ii) £ near 9Q N OQYT)
iii) z near I'*(¢) for some ¢t € (0,7)

(the last case arises if there is a close in, that means a hole in the support disappears).
We define for 7 > 6o the following three sets:

Ms(7) = {:z: € Q(r): dist(z,I*(t)) < dist(x,@Q(r)) for some t € (0,7‘)}
Ma(r) = {:z: € Q) \ My(r) : dist(z, 30 N 8Q(r)) < dist(::,F(r))}
Mi(r) = {z €Q(r): z ¢ My(r)U Mg(r)}.

First we study the measure |M;(7)|.

Propostion 3.1. Let to > 8, zo € I'(to), z, € ['(to + s) and dist(z,z,) =
dist (zo,T(to + 5)), further let dy(zo) = dist (zo, 0NV (Uro<e<7 T*(t))). There ezist two
constants ¢o > 0 and d, > 0 such that if dist(zg,z,) < min{dl,dg(zo)}, then

v(zo,to +5) 2 co(dist (:z:_.,,:c.o))2 ) (3.1)

where cg and dy are independent of zy, to and s.

Proof. Let R := dist(zo,z,), B(z,,R) C 2\ Q(to) and dB(z,,R) N Q(te) = zo
(otherwise consider a suitable set B'(z,, R) C B(z,,R) with B'(z,, R) N Q(te) = o).
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Let n(zo,%0) denote the inner normal to dB(z,, R) in 2o and |n| = 1. We define the
function

9(z,t) = (mo - 1) {Aa*(t — to) + a(r ~ R)}*  (r = |al) (3.2)
where ,\ > 1, a> 0, mg = %:_:%’ z € B := B(:B,,R)QQ and ¢ € [to,to + %)

Let t;, € (to,to + ,\—ﬁ) and |t; — to| sufficently small, further let a < ¢; where ¢; is
given in (2.1). This yields

i) g¢ > gAg + (mo — 1)7!|Vg|? in B x (to, 1]
ii) g(z,t0) = v(z,t0) = 0 for all = € B.
Let us now suppose that
iii) g(z,t) > v(z,t) for all z € B x [to, ;).

From (2.5) and assumption (A4) it follows that v is a weak solution of the inequa.lit;y
vy < VAV + (mo.— 1) 71| Vo2

Thus the comparison theorem entails g(z,t) > v(z, t) for all (z,t) € B x [to,t1]. Hence
the velocity xy(n,zo,t0).of [(¢y) satisfies

ku(n,Zo,t0) < kg('l,lo,to) =la<c’
if |]A — 1| is sufficently small. This contradicts (2.1). The continuity of v yields
v(zo,t0 +5) > 0os for all s € [0,6%] . (3.3)

for some 'small 6* and 0 = (mp — 1)5}

Next we consider the function

{ os o for s < da(z)

29 = ody(a) - (s = da(a)) for s > daf)

For fixed z € Q\ Q(&) there is a point ¢, such that z € O0(t;) and = ¢ Q(t) for all

t <t;. Let s >0 and

F(s):= min _ (v(z,t; + ) - p(z, s)).
€O\ (60)

It holds F(0) = 0, F(s) > 0 for sufficently small s and F is continuous. Therefore there

exists a d; > 0 such that F(s) > 0 for all s € [0,d;]. We conclude in view of (3.3) and
(2.2) that dist (z¢,z,) < min{d;,d(zo)} implies

v(zo,to +5) 2 o [(to + ) — t5| > c (dist (z0,2,))* (3.4)

where ¢ is independent of z¢, to and s il
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Now we construct some suitable comparison functions in order to estimate the mea-
sures |M>(7)| and |M;(7)|.

Let z, 2" € Q, 5 = I:I'—:l parallel to the z,-axis, z! > z,, 2’ = z + A with
0 < M < dist(z,2") and tg > §p. We define for z € R®* N {z, < zi} and t > t;

f@t) = (my = 1) {er(t = to) + azl(za) — a3 (d(er, . zan))’} (35)

where ay,a2,a3 >0, ! is a linear function with {(z},) = 0 and I(z]]) = |z}, — z,,|, and

n—1
d(zy,...,Tn-1) = min ; lzi — (z + An)il.
Let us consider the shape of f: It holds f(z + An,t) =0if 0 < A < X' and

d ' ~
ﬁf(z-i-/\n,to) = (ml —-1)02 =: Q9

if A FS A < dist (2, 2"). Further, in any direction normal to 7, the function f is decreasing
and supp f(z,t') C supp f(z,t") for t' < t".

Now put the point ¢; such that it holds 2 € K where K = supp f(z,t) and
suppose K C Q. Further, we define S = 0K N {z, = 211 }.

Lemma 3.2. Let 6y < to < t,. For any 2,2',2",ty and c* there ezist oy, a2,a3
and t; such that

f(z",tll) =c . (3.6)
flz,t) < —az(d(z1,. ., 2n1))" ((z,8) € S x [to, 11]) (3.7)
fe S AT+ (my = 1) TVSR S (3.8)

In particular it holds A
f(z 4+ An,t1) = a2 A = (my = 1)azA

for 0 < A < dist(z,2").

Proof. Set hy = 48mS ' p  — dist(z, z"), dist(z,z') = vhy and dist(2’,z") = (1 —

2
Y)hy with 0 < v < 1, and a@; = aa? with 0 < @ < 1. The definition of S yields
a3 = (—m—‘-c_‘lﬁ; We require the following:
0

(i) enlts — to| = azvhy
(i) a2(1 = 7y + ey |ts — to] = 755
(ii1) 2azc® = (1 — a)a3.

Then (i) yields z € dsupp f(z,t;), (ii) and (iii) entail (3.6) and (3.8) (note that in
supp f(z,t) it holds f; = (my — V)ay, fAf = —2a3(m; — 1)f, |[Vf|? > (m; — 1)%a? and
0 < f < c¢*). Now (i) requires

Th

= — 3.9
az|ty — tol (3-9)
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Inserting (i) into (ii), we obtain azh; = r Noting the above definition of a3, (iii)
yields

1 — (3.10)

Hence the constant a is determined by (3.9) and ho is determined by (3.10). Finally
note that —9~ must fulfil a special relation il

Now let us study the measure |M;(7)|.

Proposition 3.3. Let 6o < to < 7, 2 € M3(7) and dist(z,*(to)) < dist(z, [*(¢))
for allt € (0,7). Then for any suﬂicently small € there ezist two constants ¢; and c;
such that

v(z,t) > e for all t € [to,T) (3.11)

if dist(z,T*(t0)) > cie? and if dist(z, on) > co€. Further, ¢, and cy are independent
of € and tg.

Proof. We fix a point z* € M;(tg). Let d := dist(z*,*(¢0)) = dist(z",zo) where
zo € I'*(t0). Then (3.1) provides two constants ¢y and d; such that
‘U(.”L“,t[)) Z Cod2 (312)

if d < d;. Now let us use f from (3.5) as a comparison function (all denotations are as
above): We suppose d < ce¥ where € is sufficently small such that 3e1 < ¢ohy where
& = min{l,co}. Further, put k) = c3d (c3 < 1 will be determined later), n = ];:—_";;—I

and

-1 1 -1 1
z2=29—Cy e?r], z'=zo+colezn, z”=xo+(c;;d—coleﬁ)n.

Now we apply Lemma 3.2. Let ¢* = e‘ihl_where c* is given in (3.6). This yields &, = €3.
Then the function f satisfies f(2',40) = 0 and f(2",t5) > €, and there exists a point t,
such that

flz,t1) =0,  flzo,t1) 2¢,  f(2',t1) 22,  f(z",t1) > 3e.
We assume t; = T (this is true if dist(z’,z") is suitable or if severel functions fi are
considered one after another). Using d < cer, we get suppf(z,T) C Q if c; is suitable.

Now we are able to apply the comparison theorem. Below we will prove that
v(z,t) > f(z,t) for all (z,t) € S x [to,T). (3.13)

It follows
(i) v(z,t) 2 f(z,t) for all z € dsuppf(z,T) x [to,T]
Inequahtxes (3.12) and (3.8) entail
(i1) v(z,t0) 2 f(z,to) for all z € supp f(z,T)
(iii) fo < fAf+ (my = 1)1 VS
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Put m, = Hll where k) is given in assumption (A4). Then (2.5) yields
(iv) v¢ 2 vAv + (m, — 1)71|Vy|2

Thus by the comparison theorem we obtain v(z,t) > f(z,t) for all (z,t) € suppf(z, T)x
[to, T). In particular it holds v(z",t) > € for all t € [to, T]. This yields the assumption.

Finally we prove inequality (3.13). Note that c* is defined by c* = €3 h,. Consider
the Barenblatt solution

k - — o*|2 +
glz,t)=m(t + 'r)_"("‘l‘l) {b2 _ (mi—-1) |z —z°| }

2nm;  (t +7)%/n

where k = (ml -1+ %) This function is a weak solution of the porous medium equation
gt = gAg + (my — 1)71|Vyg| (see, for example, [14]). Let supp g(z,to) = B(z*,r) where
r < d and c3 (see above) are choosen such that S C B(z®,r). Now let g(z*,to) = cqd?
sufficently small. Then we obtain in view of (3.12) g(z,to) < v(z,to) for all z € B(z*,r).
Next there exists a constant cs > 1 such that suppg(z,t) C B(z*,csr) for all t € [to, T)
and B(z*,cs7) C Q if ¢, is suitable and if d < cei. Thus the comparison theorem and
(1v) entail g(z,t) < v(z,t) for all z € B(z*,csr) x[to, T]. Further, it holds g(2",t) > csd?
for all t € [to, T]. Noting that ¢* = e*h; = eicad, (3.7) yields f(z,t) < g(z,t) < v(z,t)
for all z € S x [to, t] if €2 < r'nin{cs_lcc,d,éoc;g} | I

Proposition 3.4. Let tg > 8y and z € My(tg). For any sufficently small ¢ there
ezists a constant c; such that

v(z,t) > ¢ for all t € [to,T) (3.14)

if dist (z,00) 2 c1€3. Further, ¢, is independent of € and to.

Proof. It follows like above by comparing f and v (here we use the fact that 2 has
a Lipschitz boundary in order to choose a suitable constant ¢;). Then supp f(z,T) C Q
and f(z,t) < v(z,t) for all (z,t) € supp f(z,t) x [to, T|

Now the proof of the main theorem follows immediately.

Proof of Theorem 1.1. Hypotheses (H4) and (H5) entail |Q(7)| < ce? for 0 <
T < 6o (near I'*(7) proceed as above and use hypothesis (H5) instead of (3.12)). Next we
consider 7 > §p. Let z € (7). If € is sufficently small, then by (3.1), (3.11) and (3.14)
we obtain a constant ¢ such that v(z,t) > € if dist (z,0Q(7) U (Us,<e<r T7(2))) 2 ce.
Noting that | Us,<e<r I'*(t)] = 0 we obtain the assumption B

Remark. Let g > 6g,z0 € T'(to) and z, € T'(to + s) such that dist(zg,z,) =
dist (zo, (o + s)). In order to prove (3.1), we have used (2.2):
‘ dist (zs,20) < c|(to + s) — to|% (3.15)

where a = 2. But if this estimate holds for some a € (1,2}, then the proof of Theorem
1.1 yields the better result || < ce=. For example let us assume © C R!. Then we
can prove (3.15) for @ = 1 as in [13].
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In general this is not to be expected: if (3. 15) is satisfied for @ = 1, then the velocity
of the free boundary has not only a lower bound (see (2.1)) but a.lso an upper bound.
For example this is impossible if there are holes in the support of u, even if I" is smooth.
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