A Non-Degeneracy Property for a Class of Degenerate Parabolic Equations

C. Ebmeyer

Abstract. We deal with the initial and boundary value problem for the degenerate parabolic equation $u_t = \Delta\beta(u)$ in the cylinder $\Omega \times (0,T)$, where $\Omega \subset \mathbb{R}^n$ is bounded, $\beta(0) = \beta'(0) = 0$, and $\beta' \ge 0$ (e.g., $\beta(u) = u|u|^{m-1}$ (m > 1)). We study the appearance of the free boundary, and prove under certain hypothesis on β that the free boundary has a finite speed of propagation, and is Hölder continuous. Further, we estimate the Lebesgue measure of the set where u > 0 is small and obtain the non-degeneracy property $|\{0 < \beta'(u(x,t)) < \epsilon\}| \le c \epsilon^{\frac{1}{2}}$.

Keywords: Free boundary problems, finite speed of propagation, porous medium equations AMS subject classification: Primary 35 K 65, secondary 35 R 35, 76 S 05

0. Introduction

Consider the initial and boundary value problem

$$u_t = \Delta \beta(u) \quad \text{in } \Omega \times (0, T]$$

$$u(x,t) = 0 \quad \text{on } \partial \Omega \times (0, T]$$

$$u(x,0) = u_0(x) \quad \text{in } \Omega$$
(0.1)

where $\Omega \subset \mathbb{R}^n$ is bounded, $T < +\infty$, β is a function with $\beta(0) = \beta'(0) = 0$ and $\beta' \ge 0$, and $u_0 \ge 0$. Written in divergence form $u_t = \operatorname{div}(\beta'(u)\nabla u)$ we see that (0.1) is a degenerate parabolic equation.

The model equation of this type is the porous medium equation

$$u_t = \Delta(u|u|^{m-1})$$
 (m > 1). (0.2)

Equation (0.2) has been the subject of intensive research, surveys can be found in [14, 16]. An interesting feature is the free boundary $\Gamma(t) = \partial \operatorname{supp} u(\cdot, t)$. Its behaviour in one dimension is studied in [2, 3, 6, 13], results in several dimensions are proven in [7, 9 - 11].

In detail the Cauchy problem in n dimensions is treated in [7] and the initial and boundary value problem in [11]. If $\operatorname{supp} u_0 \subset \subset \Omega$ and u_0 is not too flat near $\partial \operatorname{supp} u_0$,

C. Ebmeyer: Universität Bonn, Math. Seminar, Nußallee 15, D - 53115 Bonn

then there is no waiting time [13], that means the free boundary begins to move immediately. In detail $\Gamma(t)$ is strictly increasing for all t > 0 where $\Gamma(t) \cap \partial \Omega = \emptyset$. Further, the free boundary has a finite speed of propagation and $\Gamma(t)$ is Hölder continuous.

One consequence is the following non-degeneracy property [11]: Consider the set $\Omega_0 = \{(x,t) \in \Omega \times [0,T] : 0 < \beta'(u(x,t)) < \epsilon\}$ where $\beta(s) = s|s|^{m-1}$ (m > 1). Then the Lebesgue measure $|\Omega_0|$ of Ω_0 satisfies

$$|\Omega_0| \le c \, \epsilon^{\frac{1}{2}}.\tag{0.3}$$

This estimate plays an important role in finite element analysis (see [11]). If Γ is sufficiently smooth, the better result $|\Omega_0| \leq c \epsilon$ can be shown, for example, if $\Omega \subset \mathbb{R}^1$ or if supp $u(\cdot, t)$ is convex. The reason is that then the velocity of Γ is determined by the slope of u (see [7, 13]).

The aim of this paper is to prove the non-degeneracy property (0.3) in the case of general β . In Section 1 we state the assumptions on the data and the main result. In Section 2 we study the free boundary. We prove that under the hypotheses on β given in Section 1 the free boundary has a finite speed of propagation and is Hölder continuous. The proof depends in a crucial way on the smoothing property $u_t \ge -\frac{c}{t}u$. In Section 3 we prove the non-degeneracy property. There we will use suitable comparison functions.

1. Assumptions on the data and the main result

Let δ_0, δ_1, s_0 and c be positive constants and set $\Omega(t) = \operatorname{supp} u(\cdot, t)$ and $\Omega(0) = \operatorname{supp} u_0$. We need the following assumptions:

(H1) $u_0 \in L^{\infty}(\Omega)$ and $0 \leq u_0(x) \leq M$ $(x \in \Omega)$.

(H2) $\Omega \subset \mathbb{R}^n$ $(n \ge 2)$ is a connected open domain with Lipschitz boundary.

(H3) $\Omega(0) \subset \Omega$, $\Omega(0)$ is a connected domain, and $\partial \Omega(0) \in C^2$.

(H4) $\beta'(u_0(x)) \ge c (\operatorname{dist}(x, \partial \Omega(0)))^{2-\delta}$ for $x \in \Omega(0)$ with $0 < \delta < 2$.

$$(\textbf{H5}) \hspace{0.2cm} \beta'(u(x,t)) \geq c \big(\operatorname{dist}(x,\partial\Omega(t)) \big)^2 \hspace{0.2cm} (t \in (0,\delta_0)) \hspace{0.2cm} \text{if} \hspace{0.2cm} \operatorname{dist}(x,\partial\Omega(t)) \leq \delta_1.$$

Furthermore, we suppose the following assumptions on β :

(A1)
$$\beta \in C^3(0, ||u_0||_{\infty}).$$

(A2)
$$\beta(0) = \beta'(0) = 0$$
 and $\beta(s), \beta'(s), \beta''(s) > 0$ for all $s > 0$

(A3)
$$\frac{\beta(s)\beta''(s)}{(\beta'(s))^2} \ge c > 0 \text{ for all } s \in [0, \|u_0\|_{\infty}].$$

(A4)
$$0 < k_0 \leq \frac{\beta'(s)\beta'''(s)}{(\beta''(s))^2} \leq k_1 < 1 \ (s \in [0, s_0]).$$

$$\textbf{(A5)} \hspace{0.2cm} \psi(\alpha s) \geq \alpha \hspace{0.1cm} \psi(s) \hspace{0.2cm} (s \in [0,\beta(s_0)]) \hspace{0.1cm} \text{where} \hspace{0.1cm} \alpha \leq 1 \hspace{0.1cm} \text{and} \hspace{0.1cm} \psi(s) = \beta'(\beta^{-1}(s)).$$

(A6) $\beta(s) \ge s^m$ $(s \in [0, s_0))$ for some constant m > 1.

Remark. i) Assumption (A5) holds, if $\beta'(\beta^{-1}(s))$ is concave for all $s \in [0, \beta(s_0)]$. ii) $\beta(s) = s|s|^{m-1}$ (m > 1) satisfies assumptions (A1) - (A6).

In general, it is not to be expected that all solutions of problem (0.1) will be regular. But if $u_0 \in L^{\infty}(\Omega)$ and $T < +\infty$, then the existence of a unique weak solution u is known and it holds (see [15])

$$u\in L^\inftyig(0,T;L^\infty(\Omega)ig)\cap Cig(\Omega imes(0,T)ig) \qquad ext{and}\qquad eta(u)\in L^2ig(0,T;H^1_0(\Omega)ig).$$

Further, $u_0 \ge 0$ implies $u(x,t) \ge 0$ for all $(x,t) \in \Omega \times [0,T]$.

The main object of the present paper is to prove a *non-degeneracy property* for wich we define the two sets

$$\Omega_0 = \left\{ (x,t) \in \Omega \times [0,T] : 0 < eta'(u(x,t)) < \epsilon
ight\}$$

 and

$$\Omega_0(t) = \left\{ x \in \Omega(t) : 0 < \beta'(u(x,t)) < \epsilon \right\}$$

for $0 \leq t \leq T$.

Theorem 1.1. For the Lebesgue measure $|\Omega_0|$ of Ω_0

$$|\Omega_0| = |\cup_{0 < t < T} \Omega_0(t)| \le c \,\epsilon^{\frac{1}{2}}$$

is satisfied.

2. The free boundary

Assumption (H3) implies that the support of u has a free boundary for some t > 0. We define the free boundaries

 $\Gamma = \bigcup_{0 \le t \le T} \partial \Omega(t) \setminus \partial \Omega$ and $\Gamma(t) = \partial \Omega(t) \setminus \partial \Omega$ (t > 0).

Lemma 2.8 below implies $\Omega(t_0) \subset \Omega(t_1)$ for $t_0 \leq t_1$. Then it follows as in [7] that if a vertical line segment $\sigma = \{(x_0, t) : t_0 < t < t_1\}$ satisfies $\sigma \subset \Gamma$, then $\{(x_0, t) : 0 < t < t_1\} \subset \Gamma$, and if Γ contains no vertical line segment, then Γ is strictly increasing in every point.

Further, hypothesis (H4) entails that there is no waiting time, that means $\overline{\Omega(0)} \cap \partial \Omega(t) = \emptyset$ for all t > 0. Hence the free boundary is strictly increasing for all t > 0 where $\Gamma(t) \cap \partial \Omega = \emptyset$. This result is due to [13], if $\beta(s) = s|s|^{m-1}$ (m > 1) and $\Omega = \mathbb{R}^1$. The proof to equation (0.1) is similiar (one needs suitable comparison functions; see, for example, Section 3). Let us note that the conclusion fails, if we allow $\delta = 0$ in hypothesis (H4).

The set $\Omega(t)$ is open, thus let $\Omega(t)$ denote its closure. In this section we generalize the ideas of [7, 11] in order to prove the two following theorems.

Theorem 2.1. The following assertions are true.

i) Let $0 < \delta_0 \le t \le t+s \le T < +\infty$, $B \subset \subset \Omega$ a ball and U a $(cs^{1/\gamma})$ -neighbourhood of $\Omega(t)$. Then there exist two constants c and $\gamma > 1$ independent of s and t such that $(U \cap B) \subset (\Omega(t+s) \cap B)$.

ii) Let $0 < \delta_0 \leq t$ and $0 < \delta < 1$. Then $\overline{\Omega(t+\delta)}$ is contained in a $(c\delta^{1/2})$ -neighbourhood of $\overline{\Omega(t)}$, where the constant c depends only on δ_0 and on the data.

This theorem discribes the finite speed of propagation. In particular, let $t \ge \delta_0$, $z \in \Gamma(t_0), \eta \in \mathbb{R}^n, |\eta| = 1$ and $g(s) = z + s\eta$ such that $g(s) \cap \overline{\Omega(t_0)} = \emptyset$ for all $s \in (0, \delta)$, for some $\delta > 0$. Further, let $\kappa_u(\eta, z, t_0)$ denote the velocity of $\Gamma(t_0)$ in the direction of η . Then by Theorem 2.1, there exists a constant c_1 independent of z, η and t_0 such that

$$\kappa_u(\eta, z, t_0) \ge c_1. \tag{2.1}$$

The free boundary Γ is strictly increasing. Thus for any $x \in \Omega \setminus \overline{\Omega(0)}$ there exists a unique point t_x such that $x \in \Gamma(t)$ if and only if $t = t_x$. Hence the free boundary is given by a function t = G(x) $(x \in \Omega \setminus \overline{\Omega(0)})$ continuous in $\overline{\Omega} \setminus \overline{\Omega(0)}$.

Further, the proof of Theorem 2.1 yields the following property of G.

Theorem 2.2. G is Hölder continuous on $\overline{\Omega} \setminus \Omega(0)$ (with Hölder exponent γ) and uniformly Hölder continuous in any compact set $K \subset (\overline{\Omega} \setminus \overline{\Omega(0)})$.

Corollary 2.3. Let $t_1 < t_2$, $x_1 \in \Gamma(t_1)$ and $x_2 \in \Gamma(t_2)$ such that $dist(x_1, \Gamma(t_2)) = dist(x_1, x_2)$. If $dist(x_1, x_2)$ is sufficiently small, then

$$dist(x_1, x_2) \le c |t_1 - t_2|^{\frac{1}{2}}$$
(2.2)

where the constant c is independent of x_1, x_2 and t_1, t_2 .

An essential property of u is the *smoothing property* (2.3). A proof which uses semigroup theory can be found in [8]. Let us prove (2.3) using a comparison argument (see also [1, 5], if $\beta(s) = s|s|^{m-1}$ with m > 1). Hence we need the following comparison theorem [4].

Theorem 2.4. Let $L(u) = u_t - \Delta \beta(u)$ and suppose (in the weak sense)

- 1) $L(u_1) \leq 0$ and $L(u_2) \geq 0$ for all $(x,t) \in \Omega \times (t_0,t_1)$
- **2)** $u_1(\cdot, t_0), u_2(\cdot, t_0) \in L^2(\Omega)$ and $(u_1 u_2)_t \in L^1(t_0, t_1; L^1(\Omega))$
- 3) $u_1(x,t_0) \leq u_2(x,t_0)$ for all $x \in \Omega$
- 4) $u_1(x,t) \leq u_2(x,t)$ for all $(x,t) \in \partial \Omega \times [t_0,t_1]$.

Then

$$u_1(x,t) \leq u_2(x,t)$$

for all $(x,t) \in \Omega \times [t_0,t_1]$.

Lemma 2.5. Suppose assumptions (A1) - (A3). Then there exists a constant k > 0 such that

$$u_t \ge -\frac{k}{t}u \tag{2.3}$$

for $t \in (0, T]$.

Proof. We will show

$$(\beta(u))_t \ge -\frac{k}{t}\beta(u) \tag{2.4}$$

for $t \in (0, T]$. Then the convexity of β entails

$$u_t \geq -\frac{k}{t} \frac{\beta(u)}{\beta'(u)} \geq -\frac{k}{t} u.$$

Consider the function $w = t(\beta(u))_t = t\beta'(u)u_t$. Since

$$w_t = \beta'(u)u_t + t\,\beta''(u)(u_t)^2 + t\,\beta'(u)(\Delta\beta(u))_t$$

we get

$$L(w):=w_t-\frac{w}{t}-\frac{\beta''(u)}{t(\beta'(u))^2}w^2-\beta'(u)\Delta w=0.$$

Further, $-k\beta(u)$ satisfies

$$L(-k\beta(u)) = \frac{k^2\beta(u)}{t} \left(\frac{1}{k} - \frac{\beta''(u)\beta(u)}{(\beta'(u))^2}\right)$$

and it follows $L(-k\beta(u)) \leq 0$ where $k = \frac{1}{c}$ with c given in assumption (A3). Assume u_0 to be smooth (otherwise one uses approximations (see, e.g., [15]). Then it holds $w_0(x) \equiv 0 \geq -k\beta(u_0(x))$ and $w(x,t) = 0 = -k\beta(u(x,t))$ for all $(x,t) \in \partial\Omega \times (0,T)$. Hence the comparison theorem yields $w \equiv t\beta'(u)u_t \geq -k\beta(u)$

Let

$$B(x,R) = \{y \in \mathbb{R}^n : |y-x| < R\}, \qquad B(R) = B(0,R), \qquad \oint_{\Omega} f = \frac{1}{|\Omega|} \int_{\Omega} f.$$

Now we can establish two fundamental lemmas.

Lemma 2.6. For arbitrary $\delta_0 > 0$ let $t_0 \ge \delta_0$, $x_0 \in \Omega \setminus \overline{\Omega(t_0)}$, $R_0 := \text{dist}(x_0, \partial \Omega(t_0))$ < $\text{dist}(x_0, \partial \Omega)$ and $0 < R \le R_0$. There exist two constants c and \overline{c} depending only on δ_0, k_0, s_0, k, n and M such that, for $0 < \sigma < \overline{c}$,

$$\beta(u(x,t_0)) \equiv 0 \quad (x \in B(x_0,R)) \quad and \quad \oint_{B(x_0,R)} \beta(u(x,t_0+\sigma)) \, dx \leq c \, \frac{R^2}{\sigma}$$

implies

$$\beta(u(x,t_0+\sigma))\equiv 0 \qquad (x\in B(x_0,\frac{R}{6})).$$

Corollary 2.7. If $\beta(u(x,t_0)) = 0$ for all $x \in B(x_0,R)$ and if $(x_0,t_0+\sigma)$ belongs to $\Gamma(t_0+\sigma)$, then

$$\oint_{B(x_0,R)}\beta(u(x,t_0+\sigma))\,dx>c\,\frac{R^2}{\sigma}.$$

642 C. Ebmeyer

Proof of Lemma 2.6. First we note that $dist(x_0, \partial\Omega(t)) < dist(x_0, \partial\Omega)$ entails the inclusion $B(x_0, R) \subset \Omega$. Define the function $v = \beta'(u)$. Some easy calculations show that v is a weak solution of the equation

$$v_{t} = v\Delta v + \left(1 - \frac{\beta'(u)\beta'''(u)}{(\beta''(u))^{2}}\right)|\nabla v|^{2}.$$
 (2.5)

Let $\alpha = \frac{\sigma}{R^2}$ and

$$\tilde{u}(x,t) = \beta^{-1} \Big(\alpha \beta \big(u(x_0 + Rx, t_0 + \sigma t) \big) \Big).$$

By some direct calculations it follows that $\tilde{v} = \beta'(\tilde{u})$ is a weak solution of the equation

$$\tilde{v}_t = \alpha \, \psi \big(\alpha^{-1} \psi^{-1}(\tilde{v}) \big) \Delta \tilde{v} + \alpha \, \frac{\beta'(u)}{\beta'(\tilde{u})} \left(1 - \frac{\beta'(\tilde{u}) \, \beta'''(\tilde{u})}{(\beta''(\tilde{u}))^2} \right) |\nabla \tilde{v}|^2 \tag{2.6}$$

where $\psi = \beta'(\beta^{-1})$ (and $\alpha \psi(\alpha^{-1}\psi^{-1}(\tilde{v})) = \alpha \beta'(u)$). We distinguish two cases:

Case $\alpha \leq 1$. The assumptions yield $\beta(\tilde{u}(x,0)) = 0$ for all $x \in B(1)$ and

$$\oint_{B(1)} \beta(\tilde{u}(x,1)) dx = \alpha \oint_{B(1)} \beta(u(x_0 + Rx, t_0 + \sigma)) dx \le c$$
(2.7)

and from (2.3) it follows that

$$\Delta\beta(\tilde{u}) = \alpha\Delta\beta(u) \ge -\alpha \,\frac{k}{\delta_0} \,\sigma u \ge -\varepsilon_0 \tag{2.8}$$

where $\varepsilon_0 = \bar{c} \frac{kM}{\delta_0}$. Hence we get $\Delta(\beta(\tilde{u}) + \frac{\varepsilon_0}{2n} |x|^2) \ge 0$, thus $\beta(\tilde{u}) + \frac{\varepsilon_0}{2n} |x|^2$ is subharmonic. We obtain for $x \in B(\frac{1}{2})$

$$\begin{split} \beta(\tilde{u}(x,1)) + \frac{\varepsilon_0}{2n} |x|^2 &\leq \oint_{B(x,\frac{1}{2})} \left(\beta(\tilde{u}(\xi,1)) + \frac{\varepsilon_0}{2n} |\xi|^2 \right) d\xi \\ &\leq 2^n \oint_{B(1)} \beta(\tilde{u}(\xi,1)) d\xi + \frac{\varepsilon_0}{2n}. \end{split}$$

From (2.7) it follows that $\beta(\tilde{u}(x,1)) \leq (2^n c + \frac{\varepsilon_0}{2n})$ for all $x \in B(\frac{1}{2})$. Using (2.4), we get

$$(\beta(\tilde{u}))_{t} = \alpha(\beta(u))_{t} \ge -\alpha \frac{k\sigma}{\delta_{0}} \beta(u) \ge -\varepsilon_{1}\beta(\tilde{u})$$
(2.9)

where $\varepsilon_1 = \bar{c} \frac{k}{\delta_0}$. We obtain $\beta(\tilde{u}(x,1)) \ge e^{-\varepsilon_1(1-t)}\beta(\tilde{u}(x,t))$, thus for all $x \in B(\frac{1}{2})$ and $t \in (0,1)$

$$\beta(\tilde{u}(x,t)) \le e^{\epsilon_1} \left(2^n c + \frac{\epsilon_0}{2n} \right) \quad \text{and} \quad \tilde{v}(x,t) \le \psi \left(e^{\epsilon_1} \left(2^n c + \frac{\epsilon_0}{2n} \right) \right).$$
(2.10)

Now we will apply the comparison theorem. We define the function

$$z(x,t) = \lambda (m_0 - 1) \left\{ a^2 t + a \left(r - \frac{1}{3} \right) \right\}^+ \qquad (r = |x|, \, \lambda > 0)$$

where $m_0 > 1$ and $a = \frac{1}{6}$. Then supp $z(x,t) = \left\{x \in \mathbb{R}^n : |x| \ge \frac{1}{3} - \frac{t}{6}\right\}$. If λ is sufficiently small, then z satisfies the inequality

$$z_{t} \geq \alpha \, \psi \big(\alpha^{-1} \psi^{-1}(z) \big) \Delta z + \frac{1}{m_{0} - 1} \, |\nabla z|^{2}.$$
(2.11)

For it holds $\alpha \psi(\alpha^{-1}\psi^{-1}(z)) = 0$ if z = 0, next in supp z we have

$$z_t = \lambda (m_0 - 1)a^2$$
, $\Delta z = \lambda (m_0 - 1)(n - 1)\frac{a}{r}$, $|\nabla z|^2 = \lambda^2 (m_0 - 1)^2 a^2$

and assumption (A5) entails $\alpha \psi(\alpha^{-1}\psi^{-1}(z)) \leq \alpha \alpha^{-1}\psi(\psi^{-1}(z)) = z$, thus

$$a^2 \geq \left(rac{lpha\psiig(lpha^{-1}(\psi^{-1}(z))ig)}{\lambda ar}\,(n-1)a^2+a^2
ight)\lambda$$

if λ is sufficiently small. Let $m_0 = \frac{2-k_0}{1-k_0}$ where k_0 is given in assumption (A4). Using (2.6), we get

$$\tilde{v}_t \le \alpha \, \psi \big(\alpha^{-1} \psi^{-1}(\tilde{v}) \big) \Delta \tilde{v} + \frac{1}{m_0 - 1} |\nabla \tilde{v}|^2, \tag{2.12}$$

for from assumption (A5) it follows that

$$eta'(ilde{u})=eta'ig(eta^{-1}(lphaeta(u))ig)\geq lpha\,eta'ig(eta^{-1}(eta(u))ig)=lpha\,eta'(u).$$

The comparison theorem and (2.10) - (2.12) yield $\tilde{v}(x,t) \leq z(x,t)$ for all $(x,t) \in B(\frac{1}{2}) \times [0,1]$ if c and \bar{c} are sufficiently small. In particular we obtain $\tilde{v}(x,t) = z(x,t) = 0$ for all $(x,t) \in B(\frac{1}{6}) \times [0,1]$.

Case $\alpha > 1$. Now the assertion follows if we consider u instead of \tilde{u} and use $R^2 < \sigma$. We get like above

$$v(x,t) \leq \psi\left(e^{\varepsilon_1}\left(2^n c + rac{\varepsilon_0}{2n}
ight)
ight) \qquad ext{for all } (x,t) \in B(x_0,rac{R}{2}) imes [t_0,t_0+\sigma].$$

Next, we apply the comparison theorem in $B(x_0, \frac{R}{2}) \times [t_0, t_0 + \sigma]$

Lemma 2.8. Let $t_0 \ge \delta_0$, $x_0 \in \Omega \setminus \overline{\Omega(t_0)}$, $2R_0 = \operatorname{dist}(x_0, \partial \Omega)$, $0 < R < R_0$ and $0 < \sigma < \overline{c}$ where \overline{c} is sufficiently small. If

$$\oint_{B(x_0,R)} \beta(u(x,t_0)) \, dx \geq \mu \frac{R^2}{\sigma},$$

then there exists a constant $\lambda > 0$ independent of σ , R, x_0 and t_0 such that

$$\beta(u(x_0,t_0+\lambda\sigma))>0.$$

In particular λ is small, if μ is large.

Proof. We consider \tilde{u} as above. The assumptions entail

$$\oint_{B(1)} \beta(\tilde{u}(x,0)) dx = \alpha \oint_{B(1)} \beta(u(x_0 + Rx, t_0)) dx \ge \mu.$$

Using (2.9), we get $(\beta(\tilde{u}))_{t} \geq -\varepsilon_{1}\beta(\tilde{u})$ where $\varepsilon_{1} = \bar{c} \frac{k}{\delta_{0}}$. Consider

$$\varphi(t) = \int_{B(1)} \beta(\tilde{u}(x,t)) dx.$$

It follows that $\varphi'(t) \geq -\varepsilon_1 \varphi(t)$, thus

$$\varphi(t) \ge e^{-\varepsilon_1 \lambda} \mu$$
 for all $t \in [0, \lambda]$. (2.13)

If the assumption is not true, then

$$\beta(\tilde{u}(0,t)) = 0 \quad \text{for all } t \in [0,\lambda]$$
(2.14)

and in particular $\beta(\tilde{u}(0,\lambda)) = 0$. Using m given in assumption (A6) we obtain as in [7] the existence of constants c_1, c_2, c_3 and δ such that

$$\int_{0}^{t} \varphi(s) \, ds \le c_1 \int_{0}^{t} \beta(\tilde{u}(0,s)) \, ds + c_2(\varepsilon_1)^{\tilde{\delta}} + c_3(\varphi(t))^{\frac{1}{m}} \tag{2.15}$$

and c_2 , c_3 and δ depend only on m and n. Let $\lambda_0 := \frac{\lambda}{2}$ and $D(\lambda) := c_2(\varepsilon_1)^{\delta} (e^{\varepsilon_1 \lambda} \mu^{-1})^{\frac{1}{m}}$. Then from (2.13) - (2.15) it follows that

$$\int\limits_{0} \varphi(s)\,ds \leq (c_3+D(\lambda))(\varphi(t))^{rac{1}{m}} \qquad ext{for all } t\in [\lambda_0,\lambda].$$

Now the function $\psi(t) = \int_0^t \varphi(s) ds$ satisfies

$$(\psi'(t))^{rac{1}{m}} \geq B \, \psi(t) \qquad ext{for all } t \in (\lambda_0, \lambda]$$

where $B = (c_3 + D(\lambda))^{-1}$ and $\psi(\lambda_0) \ge \lambda_0 e^{-\epsilon_1 \lambda} \mu$.

Next we compare ψ with the solution χ of the problem

$$\chi'(t) = (B\chi(t))^m \qquad (t \in (\lambda_0, \lambda])$$
$$\chi(\lambda_0) = \psi(\lambda_0).$$

We get $\psi(t) \ge \chi(t)$ for all $t \in [\lambda_0, \lambda]$. The function χ fulfills the equation

$$(m-1)(\chi(t))^{m-1} = (C - B^m t)^{-1}$$

where the constant C satisfies the equation $(m-1)(\psi(\lambda_0))^{m-1} = (C - B^m \lambda_0)^{-1}$.

It follows that $\chi(t) \to +\infty$ if $t \to \frac{C}{B^m}$, thus $\psi(t) \to +\infty$ if $\lambda \geq \frac{C}{B^m}$. This is a contradiction. Hence $\beta(\tilde{u}(0,\lambda)) > 0$ holds if

$$\lambda \geq \frac{C}{B^m} = \frac{\lambda}{2} + \frac{1}{(m-1)(\psi(\lambda_0))^{m-1}B^m}.$$

In particular this is true for small λ if μ is sufficently large

The proofs of Theorem 2.1 and Theorem 2.2 follow now as in [7].

Remark. Another approach can be found in [12]. Instead of the smoothing property $u_t \ge -\frac{ku}{t}$ a generalized Harnack inequality and Moser iteration are used to study the free boundary of the porous medium equation with absorption

$$u_t = \Delta u^m - u^p$$
 in $\mathbb{R}^n \times (0, \infty)$

 $(m > 1, p \ge 1).$

3. The non-degeneracy property

In this section we will prove Theorem 1.1. We consider the set

$$\Omega_0(t) = \left\{ x \in \Omega(t) : \ 0 < v(x,t) < \epsilon \right\}$$

and define

$$\Gamma^{*}(t) = \left\{ x \in \Gamma(t) : \operatorname{dist}\left(x, \mathbb{R}^{n} \setminus \overline{\Omega(t)}\right) > 0 \right\}.$$

Let $\tau \geq \delta_0$ and $x \in \Omega_0(\tau)$. We distinguish the following three cases:

- i) x near $\Gamma(\tau)$
- ii) x near $\partial \Omega \cap \partial \Omega(\tau)$
- iii) x near $\Gamma^*(t)$ for some $t \in (0, \tau)$

(the last case arises if there is a *close in*, that means a hole in the support disappears). We define for $\tau \ge \delta_0$ the following three sets:

$$M_{3}(\tau) = \left\{ x \in \Omega(\tau) : \operatorname{dist}(x, \Gamma^{\bullet}(t)) < \operatorname{dist}(x, \partial\Omega(\tau)) \text{ for some } t \in (0, \tau) \right\}$$
$$M_{2}(\tau) = \left\{ x \in \Omega(\tau) \setminus M_{3}(\tau) : \operatorname{dist}(x, \partial\Omega \cap \partial\Omega(\tau)) < \operatorname{dist}(x, \Gamma(\tau)) \right\}$$
$$M_{1}(\tau) = \left\{ x \in \Omega(\tau) : x \notin M_{3}(\tau) \cup M_{2}(\tau) \right\}.$$

First we study the measure $|M_1(\tau)|$.

Proposition 3.1. Let $t_0 \ge \delta_0$, $x_0 \in \Gamma(t_0)$, $x_s \in \Gamma(t_0 + s)$ and $dist(x_0, x_s) = dist(x_0, \Gamma(t_0 + s))$, further let $d_2(x_0) = dist(x_0, \partial \Omega \cup (\bigcup_{t_0 \le t \le T} \Gamma^*(t)))$. There exist two constants $c_0 > 0$ and $d_1 > 0$ such that if $dist(x_0, x_s) \le \min\{d_1, d_2(x_0)\}$, then

$$v(x_0, t_0 + s) \ge c_0 \left(\text{dist} \left(x_s, x_0 \right) \right)^2 \tag{3.1}$$

where c_0 and d_1 are independent of x_0 , t_0 and s.

Proof. Let $R := \operatorname{dist}(x_0, x_s)$, $B(x_s, R) \subset \Omega \setminus \Omega(t_0)$ and $\partial B(x_s, R) \cap \overline{\Omega(t_0)} = x_0$ (otherwise consider a suitable set $B'(x_s, R) \subset B(x_s, R)$ with $B'(x_s, R) \cap \overline{\Omega(t_0)} = x_0$). Let $\eta(x_0, t_0)$ denote the inner normal to $\partial B(x_s, R)$ in x_0 and $|\eta| = 1$. We define the function

$$g(x,t) = (m_0 - 1) \left\{ \lambda a^2(t - t_0) + a(r - R) \right\}^+ \qquad (r = |x|)$$
(3.2)

where $\lambda > 1$, a > 0, $m_0 = \frac{2-k_0}{1-k_0}$, $x \in B := B(x_s, R) \cap \Omega$ and $t \in [t_0, t_0 + \frac{R}{\lambda a}]$.

Let $t_1 \in (t_0, t_0 + \frac{R}{\lambda a})$ and $|t_1 - t_0|$ sufficiently small, further let $a < c_1$ where c_1 is given in (2.1). This yields

i)
$$g_t \ge g\Delta g + (m_0 - 1)^{-1} |\nabla g|^2$$
 in $B \times (t_0, t_1]$

ii) $g(x,t_0) \equiv v(x,t_0) \equiv 0$ for all $x \in B$.

Let us now suppose that

iii) $g(x,t) \ge v(x,t)$ for all $x \in \partial B \times [t_0,t_1]$.

From (2.5) and assumption (A4) it follows that v is a weak solution of the inequality

$$v_t \leq v\Delta v + (m_0 - 1)^{-1} |\nabla v|^2.$$

Thus the comparison theorem entails $g(x,t) \ge v(x,t)$ for all $(x,t) \in B \times [t_0,t_1]$. Hence the velocity $\kappa_u(\eta, x_0, t_0)$ of $\Gamma(t_0)$ satisfies

$$\kappa_u(\eta, x_0, t_0) \leq \kappa_g(\eta, x_0, t_0) = \lambda a < c_1$$

if $|\lambda - 1|$ is sufficiently small. This contradicts (2.1). The continuity of v yields

$$v(x_0, t_0 + s) > \sigma s \qquad \text{for all} \quad s \in [0, \delta^*]$$
(3.3)

for some small δ^* and $\sigma = (m_0 - 1)\frac{c_1^2}{2}$.

Next we consider the function

$$p(x,s) = \begin{cases} \sigma s & \text{for } s \leq d_2(x) \\ \sigma d_2(x) - (s - d_2(x)) & \text{for } s > d_2(x). \end{cases}$$

For fixed $x \in \overline{\Omega \setminus \Omega(\delta_0)}$ there is a point t_x such that $x \in \partial \Omega(t_x)$ and $x \notin \overline{\Omega(t)}$ for all $t < t_x$. Let $s \ge 0$ and

$$F(s) := \min_{x \in \overline{\Omega \setminus \Omega(\delta_0)}} (v(x, t_x + s) - p(x, s)).$$

It holds F(0) = 0, F(s) > 0 for sufficiently small s and F is continuous. Therefore there exists a $d_1 > 0$ such that $F(s) \ge 0$ for all $s \in [0, d_1]$. We conclude in view of (3.3) and (2.2) that dist $(x_0, x_s) \le \min\{d_1, d_2(x_0)\}$ implies

$$v(x_0, t_0 + s) \ge \sigma \left| (t_0 + s) - t_0 \right| \ge c \left(\text{dist} \left(x_0, x_s \right) \right)^2 \tag{3.4}$$

where c is independent of x_0 , t_0 and $s \blacksquare$

Now we construct some suitable comparison functions in order to estimate the measures $|M_2(\tau)|$ and $|M_3(\tau)|$.

Let z, $z'' \in \Omega$, $\eta = \frac{z''-z}{|z''-z|}$ parallel to the x_n -axis, $z''_n > z_n$, $z' = z + \lambda'\eta$ with $0 < \lambda' < \operatorname{dist}(z, z'')$ and $t_0 > \delta_0$. We define for $x \in \mathbb{R}^n \cap \{x_n \leq z''_n\}$ and $t \geq t_0$

$$f(x,t) = (m_1 - 1) \left\{ \alpha_1(t - t_0) + \alpha_2 l(x_n) - \alpha_3 (d(x_1, \dots, x_{n-1}))^2 \right\}^+$$
(3.5)

where $\alpha_1, \alpha_2, \alpha_3 > 0$, *l* is a linear function with $l(z'_n) = 0$ and $l(z''_n) = |z'_n - z''_n|$, and

$$d(x_1,\ldots,x_{n-1})=\min_{\lambda}\sum_{i=1}^{n-1}|x_i-(z+\lambda\eta)_i|.$$

Let us consider the shape of f: It holds $f(z + \lambda \eta, t_0) = 0$ if $0 \le \lambda \le \lambda'$ and

$$\frac{d}{d\lambda}f(z+\lambda\eta,t_0)=(m_1-1)\alpha_2=:\widetilde{\alpha}_2$$

if $\lambda' \leq \lambda \leq \text{dist}(z, z'')$. Further, in any direction normal to η , the function f is decreasing and $\text{supp} f(x, t') \subset \text{supp} f(x, t'')$ for t' < t''.

Now put the point t_1 such that it holds $z \in \partial K$ where $K = \operatorname{supp} f(x, t_1)$ and suppose $K \subset \Omega$. Further, we define $S = \partial K \cap \{x_n = z_n^{\prime\prime}\}$.

Lemma 3.2. Let $\delta_0 \leq t_0 \leq t_1$. For any z, z', z'', t_0 and c^* there exist $\alpha_1, \alpha_2, \alpha_3$ and t_1 such that

$$f(z'', t_1) = c^* (3.6)$$

$$f(x,t) \le c^* - \alpha_3 \big(d(x_1, \dots, x_{n-1}) \big)^2 \quad ((x,t) \in S \times [t_0, t_1]) \tag{3.7}$$

$$f_t \le f \Delta f + (m_1 - 1)^{-1} |\nabla f|^2.$$
(3.8)

In particular it holds

$$f(z + \lambda \eta, t_1) = \widetilde{\alpha}_2 \lambda \equiv (m_1 - 1) \alpha_2 \lambda$$

for $0 \leq \lambda \leq dist(z, z'')$.

Proof. Set $h_0 = \frac{\dim S}{2}$, $h_1 = \operatorname{dist}(z, z'')$, $\operatorname{dist}(z, z') = \gamma h_1$ and $\operatorname{dist}(z', z'') = (1 - \gamma)h_1$ with $0 < \gamma < 1$, and $\alpha_1 = a\alpha_2^2$ with 0 < a < 1. The definition of S yields $\alpha_3 := \frac{c^2}{(m_1 - 1)h_2^2}$. We require the following:

- (i) $\alpha_1 |t_1 t_0| = \alpha_2 \gamma h_1$
- (ii) $\alpha_2(1-\gamma)h_1 + \alpha_1|t_1 t_0| = \frac{c^*}{m_1-1}$
- (iii) $2\alpha_3 c^* = (1-a)\alpha_2^2$.

Then (i) yields $z \in \partial \operatorname{supp} f(x, t_1)$, (ii) and (iii) entail (3.6) and (3.8) (note that in $\operatorname{supp} f(x, t)$ it holds $f_t = (m_1 - 1)\alpha_1$, $f\Delta f = -2\alpha_3(m_1 - 1)f$, $|\nabla f|^2 \ge (m_1 - 1)^2\alpha_2^2$ and $0 \le f \le c^*$). Now (i) requires

$$a = \frac{\gamma h_1}{\alpha_2 |t_1 - t_0|}.$$
 (3.9)

Inserting (i) into (ii), we obtain $\alpha_2 h_1 = \frac{c^*}{m_1 - 1}$. Noting the above definition of α_3 , (iii) yields

$$h_0^2 = \frac{2(m_1 - 1)}{1 - a} h_1^2. \tag{3.10}$$

Hence the constant a is determined by (3.9) and h_0 is determined by (3.10). Finally note that $\frac{h_0}{h_1}$ must fulfil a special relation

Now let us study the measure $|M_3(\tau)|$.

Proposition 3.3. Let $\delta_0 \leq t_0 < \tau$, $x \in M_3(\tau)$ and $\operatorname{dist}(x, \Gamma^*(t_0)) \leq \operatorname{dist}(x, \Gamma^*(t))$ for all $t \in (0, \tau)$. Then for any sufficiently small ϵ there exist two constants c_1 and c_2 such that

$$v(x,t) \ge \epsilon$$
 for all $t \in [t_0,T]$ (3.11)

if $dist(x, \Gamma^*(t_0)) \ge c_1 \epsilon^{\frac{1}{2}}$ and if $dist(x, \partial \Omega) \ge c_2 \epsilon^{\frac{1}{2}}$. Further, c_1 and c_2 are independent of ϵ and t_0 .

Proof. We fix a point $x^* \in M_3(t_0)$. Let $d := \operatorname{dist}(x^*, \Gamma^*(t_0)) = \operatorname{dist}(x^*, x_0)$ where $x_0 \in \Gamma^*(t_0)$. Then (3.1) provides two constants c_0 and d_1 such that

$$v(x^*, t_0) \ge c_0 d^2 \tag{3.12}$$

if $d \leq d_1$. Now let us use f from (3.5) as a comparison function (all denotations are as above): We suppose $d \leq c\epsilon^{\frac{1}{2}}$ where ϵ is sufficiently small such that $3\epsilon^{\frac{1}{2}} \leq \bar{c}_0 h_1$ where $\bar{c}_0 = \min\{1, c_0\}$. Further, put $h_1 = c_3 d$ ($c_3 < 1$ will be determined later), $\eta = \frac{x^* - x_0}{|x^* - x_0|}$ and

 $z = x_0 - \bar{c}_0^{-1} \epsilon^{\frac{1}{2}} \eta, \quad z' = x_0 + \bar{c}_0^{-1} \epsilon^{\frac{1}{2}} \eta, \quad z'' = x_0 + (c_3 d - \bar{c}_0^{-1} \epsilon^{\frac{1}{2}}) \eta.$

Now we apply Lemma 3.2. Let $c^* = \epsilon^{\frac{1}{2}} h_1$ where c^* is given in (3.6). This yields $\tilde{\alpha}_2 = \epsilon^{\frac{1}{2}}$. Then the function f satisfies $f(z', t_0) = 0$ and $f(z'', t_0) \ge \epsilon$, and there exists a point t_1 such that

$$f(z,t_1)=0,$$
 $f(x_0,t_1)\geq\epsilon,$ $f(z',t_1)\geq 2\epsilon,$ $f(z'',t_1)\geq 3\epsilon.$

We assume $t_1 = T$ (this is true if dist(z', z'') is suitable or if severel functions f_i are considered one after another). Using $d \leq c \epsilon^{\frac{1}{2}}$, we get $supp f(x, T) \subset \Omega$ if c_2 is suitable.

Now we are able to apply the comparison theorem. Below we will prove that

$$v(x,t) \ge f(x,t) \qquad \text{for all} \ (x,t) \in S \times [t_0,T]. \tag{3.13}$$

It follows

(i) $v(x,t) \ge f(x,t)$ for all $x \in \partial \operatorname{supp} f(x,T) \times [t_0,T]$.

Inequalities (3.12) and (3.8) entail

- (ii) $v(x,t_0) \ge f(x,t_0)$ for all $x \in \operatorname{supp} f(x,T)$
- (iii) $f_t \leq f\Delta f + (m_1 1)^{-1} |\nabla f|^2$.

Put $m_1 = \frac{2-k_1}{1-k_1}$ where k_1 is given in assumption (A4). Then (2.5) yields

(iv)
$$v_t \ge v \Delta v + (m_1 - 1)^{-1} |\nabla v|^2$$
.

Thus by the comparison theorem we obtain $v(x,t) \ge f(x,t)$ for all $(x,t) \in \text{supp} f(x,T) \times [t_0,T]$. In particular it holds $v(z'',t) \ge \epsilon$ for all $t \in [t_0,T]$. This yields the assumption.

Finally we prove inequality (3.13). Note that c^* is defined by $c^* = \epsilon^{\frac{1}{2}} h_1$. Consider the Barenblatt solution

$$g(x,t) = m_1(t+\tau)^{-k(m_1-1)} \left\{ b^2 - \frac{k(m_1-1)}{2nm_1} \frac{|x-x^*|^2}{(t+\tau)^{2k/n}} \right\}^+$$

where $k = (m_1 - 1 + \frac{2}{n})$. This function is a weak solution of the porous medium equation $g_t = g\Delta g + (m_1 - 1)^{-1} |\nabla g|$ (see, for example, [14]). Let $\operatorname{supp} g(x, t_0) = B(x^*, r)$ where r < d and c_3 (see above) are choosen such that $S \subset B(x^*, r)$. Now let $g(x^*, t_0) = c_4 d^2$ sufficiently small. Then we obtain in view of (3.12) $g(x, t_0) \leq v(x, t_0)$ for all $x \in B(x^*, r)$. Next there exists a constant $c_5 > 1$ such that $\operatorname{supp} g(x, t) \subset B(x^*, c_5 r)$ for all $t \in [t_0, T]$ and $B(x^*, c_5 r) \subset \Omega$ if c_2 is suitable and if $d \leq c \epsilon^{\frac{1}{2}}$. Thus the comparison theorem and (iv) entail $g(x, t) \leq v(x, t)$ for all $x \in B(x^*, c_5 r) \times [t_0, T]$. Further, it holds $g(z'', t) \geq c_6 d^2$ for all $t \in [t_0, T]$. Noting that $c^* = \epsilon^{\frac{1}{2}} h_1 = \epsilon^{\frac{1}{2}} c_3 d$, (3.7) yields $f(x, t) \leq g(x, t) \leq v(x, t)$ for all $x \in S \times [t_0, t_1]$ if $\epsilon^{\frac{1}{2}} \leq \min \{c_3^{-1} c_6 d, \bar{c}_0 c_3 \frac{d}{3}\}$

Proposition 3.4. Let $t_0 \ge \delta_0$ and $x \in M_2(t_0)$. For any sufficiently small ϵ there exists a constant c_1 such that

$$v(x,t) \ge \epsilon$$
 for all $t \in [t_0,T]$ (3.14)

if dist $(x, \partial \Omega) \ge c_1 \epsilon^{\frac{1}{2}}$. Further, c_1 is independent of ϵ and t_0 .

Proof. It follows like above by comparing f and v (here we use the fact that Ω has a Lipschitz boundary in order to choose a suitable constant c_1). Then supp $f(x,T) \subset \Omega$ and $f(x,t) \leq v(x,t)$ for all $(x,t) \in \text{supp } f(x,t) \times [t_0,T]$

Now the proof of the main theorem follows immediately.

Proof of Theorem 1.1. Hypotheses (H4) and (H5) entail $|\Omega_0(\tau)| \leq c\epsilon^{\frac{1}{2}}$ for $0 \leq \tau < \delta_0$ (near $\Gamma^*(\tau)$ proceed as above and use hypothesis (H5) instead of (3.12)). Next we consider $\tau \geq \delta_0$. Let $x \in \Omega(\tau)$. If ϵ is sufficiently small, then by (3.1), (3.11) and (3.14) we obtain a constant c such that $v(x,t) \geq \epsilon$ if dist $(x,\partial\Omega(\tau) \cup (\cup_{\delta_0 \leq t \leq \tau} \Gamma^*(t))) \geq c\epsilon^{\frac{1}{2}}$. Noting that $|\cup_{\delta_0 \leq t \leq \tau} \Gamma^*(t)| = 0$ we obtain the assumption

Remark. Let $t_0 \ge \delta_0, x_0 \in \Gamma(t_0)$ and $x_s \in \Gamma(t_0 + s)$ such that dist $(x_0, x_s) = \text{dist}(x_0, \Gamma(t_0 + s))$. In order to prove (3.1), we have used (2.2):

$$dist(x_s, x_0) \le c |(t_0 + s) - t_0|^{\frac{1}{\alpha}}$$
(3.15)

where $\alpha = 2$. But if this estimate holds for some $\alpha \in [1, 2]$, then the proof of Theorem 1.1 yields the better result $|\Omega_0| \leq c \epsilon^{\frac{1}{\alpha}}$. For example let us assume $\Omega \subset \mathbb{R}^1$. Then we can prove (3.15) for $\alpha = 1$ as in [13].

In general this is not to be expected: if (3.15) is satisfied for $\alpha = 1$, then the velocity of the free boundary has not only a lower bound (see (2.1)) but also an upper bound. For example this is impossible if there are holes in the support of u, even if Γ is smooth.

Acknowledgement. The author would like to express his appreciation to J. Frehse and H.-P. Helfrich for suggesting this research topic and for their valuable advices.

References

- Aronson, D. G. and Ph. Bénilan: Régularité des solutions de l'équation des milieux poreux dans ℝⁿ. C.R. Acad. Sci. Paris Sér. A-B 288 (1979), A103 – A105.
- [2] Aronson, D. G., Caffarelli, L. A. and S. Kamin: How an initially stationary interface begins to move in porous medium flow. SIAM J. Math. Anal. 14 (1983), 639 658.
- [3] Aronson, D. G., Caffarelli, L. A. and J. L. Vázquez: Interfaces with a corner point in one-dimensional porous medium flow. Comm. Pure Appl. Math. 38 (1985), 375 404.
- [4] Alt, H. W. and S. Luckhaus: Quasilinear elliptic-parabolic differential equations. Math.Z. 183 (1983), 311 341.
- [5] Caffarelli, L. A. and A. Friedman: Continuity of the density of a gas flow in a porous medium. Trans. Amer. Math. Soc. 252 (1979), 99 - 113.
- [6] Caffarelli, L. A. and A. Friedman: Regularity of the free boundary for the one-dimensional flow of a gas in a porous medium. Amer. J. Math. 101 (1979), 1193 - 1218.
- [7] Caffarelli, L. A. and A. Friedman: Regularity of the free boundary of a gas flow in an n-dimensional porous medium. Indiana Univ. Math. J. 29 (1980), 361 - 391.
- [8] Crandall, M. and M. Pierre: Regularization effects for $u_t + A\varphi(u) = 0$ in L^1 . J. Funct. Anal. 45 (1982), 194 - 212.
- [9] Caffarelli, L. A., Vázquez, J. L. and N. I. Wolanski: Lipschitz continuity of solutions and interfaces of the n-dimensional porous medium equation. Indiana Univ. Math. J. 36 (1987), 373 - 401.
- [10] Caffarelli, L. A. and N. I. Wolanski: C^{1,α} Regularity of the free boundary for the ndimensional porous media equation. Comm. Pure Appl. Math. 43 (1990), 885 - 902.
- [11] Ebmeyer, C.: Konvergenzraten finiter Elemente für die Poröse-Medien-Gleichung im \mathbb{R}^n . Bonner Math. Schriften 287 (1996), 1 – 69.
- [12] Hongjun, Y.: Hölder continuity of interfaces for the porous medium equation with absorption. Comm. Part. Diff. Equ. 18 (1993), 965 - 976.
- [13] Knerr, B. F.: The porous medium equation in one dimension. Trans. Amer. Math. Soc. 234 (1977), 381 - 415.
- [14] Peletier, L. A.: The porous media equation. In: Applications of Nonlinear Analysis in the Physical Scienes (eds: H. Amann et al.). London: Pitman 1981, 229 - 241.
- [15] Sacks, P. E.: The initial boundary value problem for a class of degenerate parabolic equations. Comm. Part. Diff. Equ. 8 (1983), 693 - 733.
- [16] Vazquez, J. L.: An introduction to the mathematical theory of the porous medium equation. In: Shape Optimization and Free Boundaries (eds: M. C. Delfour and G. Sabidussi). Amsterdam: Kluwer Acad. Publ. (1992), pp. 347 - 389.

Received 08.02.1996