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Asymptotics of the Solution
of an Integral Equation to Transmission Problems
with Singular Perturbed Boundary

R. Mahnke

Abstract. The integral equation to a transmission problem of the Laplacian is considered on
a smooth boundary of a plane domain. The contour depends on a positive parameter ¢ and
the domain has a corner in the limit case ¢ = 0. The main terms of an asymptotic expansion
showing the influence of the parameter are given. The remaining part is estimated in a weak
norm.
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1. Introduction

A large number of investigations have been devoted to elliptic boundary value problems
in domains with conical points. The asymptotic behaviour of solutions in a neigh-
bourhood of the singular points is well-known (see Kondratyev [1}, and Maz’ya and
Plamenevsky [6, 7]). In [5] Maz’ya, Nazarov and Plamenevsky developed a method
which demonstrates the influence of a small perturbation of the boundary near a sin-
gular point.

Let § be a plane domain which coincides with an angle in a neighbourhood of the
origin and let 2, be a domain which is obtained by smoothing the corner of 2. Then
the solution of an elliptic boundary value problem

Lu,.=f in .
Bu,=g on OS2,

has the representation

+o00

u.(z) = Z (eA"“vk(:z:) + e"wk(f)).

k=0

The parameter € is a size of the perturbation of the corner. The sequences {ok}reno
and {7k }xeN, of real numbers are monotonously increasing. The functions vk (k € No)
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are solutions of boundary value problems with respect to 2, whereas the functions
wk (k € Np) solve boundary value problems in an unbounded domain w which does not
depend on ¢ too and is obtained by a transformation of coordinates { = £.

It is possible to apply-this method even to solutions of boundary integral equations as
was shown in (4], where the main terms of the series were given for the integral equation
to the Dirichlet problem of the Laplacian. The occuring functions were restrictions of
solutions of boundary value problems to the boundary, but not solutions of an integral
equation itself.

In the present paper we investigate the solution Ke of the boundary integral equation
1 .
(51—,\1( ),1, =f

on the boundary 9Q, of the domain §,, where I denotes the identical operator, A € (0,1)
is a real number and K is the direct value of the double layer potential

1 e
Kuelz) = 5= [ wely) g-(nle — yl)ds,
y
N,

with normal v directed outward. The adjoint operator K* is the direct value of the
normal derivative of the simple layer potential

1
. S.“e(z) = g / l‘e‘(y) In |:l: - yldSy
. a9,

on 092,. o
' We will derive the following representation for . on 8,
pe(z) = u(z) +e™ ' p(%) + R(z)

where p and p can be considered as solutions of boundary integral equations which
are independend on ¢. The real number 7o is the smallest positive eigenvalue of a
transmission problem with respect to the corresponding angle. An estimate of the
remainder function R = R(z) is given in the L;-norm.

2. A transmission problem

Let B,(0) denote the unit circle with center in the origin O and let 2 C R? be a bounded
domain which coincides with the angle )

G = {zv= (r,@)

r>0 and tpE(O,a)} (0 <a<2r)

inside B1(0), where r and ¢ denote polar coordinates. We assume that 90 \ {O} is
smooth. Let a second domain w C R? have smooth boundary and let it coincides with
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G outside B,(0). For sake of simplicity, we assume @ C G and w C G. We obtain
corresponding domains w,, Q. and Q. introducing a parameter ¢ (1 >¢ > 0):

w,:{zlfew}, Q. =2Nw,, §e={{|§e€Q,}.

We consider the following transmission problem with respect to §2,, which is known as
electrostatic problem (see [2]): "

Au, =0 in R%\ 09,
u:" —u;, =0 on 912,
- 1)
Au.* Ou, avy (
(1_/\)611 —(1+/\) o —-—67 onGQ,
ue(z) =0(1) for|z| = oo

where V; is a given potential harmonic in the whole plane, the superscripts + and
— indicate the limits at the boundary 9%, from outside and inside, respectively, and

A €(0,1).

Seeking the solution u. of problem (1) in form of a single layer potential u, = Sg,,
the well-known jump conditions (see, e.g., [3]) yield the integral equation

1 . 1oV
5#: —AK"p, = D) o fe. (2
Additionally, the jump conditions lead to
(z) = Quet _Ouem 1 f, +2) Oue ~ (3)
HelT) = 5y v 1-x\'° v '

Therefore, the desired representation of u. in form of a series can be found by applying
the method of Maz'ya, Nazarov and Plamenevsky to the function u.. Doing so we get
formal asymptotics

u,(z)‘ =vo(z) + 5'°wo(f) + Ry(z). (4)

The remainder function R, = R;(z) will be considered in section 4. The function v
solves the following problem with respect to Q, which corresponds to problem (1):

Nvyg =0 in R?\ 9Q
vg —vg =0 on 9N
_ (5)
6v0+ 6v0 _ aVo

vo(z) = o(1) for |z| — oo.
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The domains in (1) and (5) differ only in a neighbourhood of the origin, where an
essential difference between the solutions u, and vy can be expected. The asymptotic
behaviour of vy near O is well-known (see [8]):

vo(z) = vo(0) + ra(p) + O(r)

where 7o € (3,1] is the smallest positive eigenvalue of the corresponding model problem
for the angle G and solves the equation

sin®(r7) = A?sin® (7 — a)r).

We find the function wg in the following manner:

The difference «, — vy solves a certain transmission problem with respect to .. In
order to get an approximation for this difference, we substitute wg by the main term
of its asymptotics, expand the domain to w, and carry out the transformation E==%
Factoring out the power €™, we obtain a problem with respect to w. The solution wq
of this problem does not depend one.

The question of unique solvability of the transmission problems mentioned above
was handled in detail in [2]. The following proposition is valid for all these problems
with small modifications.

Proposition 1. The integral equation (2) is uniquely solvable in Ly(0S.). The
simple layer potential Su. is the unique solution of problem (1) in the space L} 1(R?)
of functions with quadratically integrable generalized first derivatives and shows the be-
haviour O(|z|™}!) at infinity.

Proof. The right-hand side of equation (2) is sufficently smooth, since Vj is har-
monical. The operator 1[ AK* is invertible in L, even for Lipschitz boundary [9)].
We mtegrate equation (2) over 02, and obtain fan He ds = 0 taking into account that
K1 = 1 on 8Q,.. It follows immediately that Sy, shows the behaviour O(z|™!) at
infinity. On the other hand we handle (1) as a variational problem. Considering the
factor space L1(R?) of L}(R?) with respect to constants, the lemma of Lax-Milgram can
be applied which secures the unique solvability of problem (1) neglecting the condition
at infinity. It is possible to choose the constant in a way that this condition is fulfilled,
since Sp, satisfies all demands of problem (1) and belongs to L}(R?) B

3. Formal asymptotics of the solution of the integral equation

Following the method described in the previous section, we derive asymptotics of p,.
This is a formal result, since the behaviour of the remainder function still has to be
investigated.

Theorem 1. The solution of the mtegral equation (2) has the following formal
asymptotics on 9N, :

pe(z) = p(z) + €™ p(2) + R(z).
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On 0Q. N O the function u coincides with the solution i of the integral equation

Vo

~—2AK‘[I= a—
v

which has to be solved on 0.
On 9Q. \ 9Q we have

1 (%, A0
“‘1—A(au+2 o

where the simple layer potential operator S integrates over Q2.

On 8Q, N Bw the function p coincides with the solution j of the integral equation

PO P GO 1 ({20,
B ey 5(3—,,

which has to be solved on Ow and S integrates over the boundary of Q\@w. On a0, \ Ow
we have p = aa—': where w 13 the solution of the Neumann problem

Ow
oy

Proof. We set Ry = u, — v and consider (1) and (5) as variational problems (see
Proposition 1) with test functions ¢ € L}(R?). Then Rp satisfies the equation

Aw=0 n w
=p on Ow.

(1+A)/VR0V¢dz + (l—A)/ VRV dz

RI\D.
a‘Uo 61)0 (6)
PY / $ds — 2) / S0 gds + / VVeVé dz.
an\an, a0, \an 2\,

The problem is uniquely solvable (see [2]), since v € L}(R?) and V, was assumed to
be harmonic. The essential part of the right-hand side of (6) is given by the main term
ra(p) of the asymptotics of vo. As already mentioned in the previous section, it is
compensated by the function €™ wo(f), where wy solves the variational problem

(1+,\)/vw0v¢d5 + (1—,\)/ VwoVde
R2\@
_ a(l¢™a(y)) a([¢™a(p))
_2,\/ DELEEY bdse - 2,\/ DB pdse.

8G\ 8w w\dG

(7)
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We denote the dirac-delta distribution by & and define the following functions using
polar coordinates:

1 if (r,a) € 8G \ 6w
mm={

0 otherwise

1 if
h(r‘)={ if (r,0) € 8G \ dw

0 otherwise.
We set h(£) = hy (|§I)5(so = a) = hz([£])é(¢ - 0) and

and

. 0 on dw N 8G.
It follows .
: 0 inw
Awy = 2. .
" {—;;;mw*de@)InW\w

wi —w; =0 on Ow . (8)
Bwo awo
(1—/\) —(1+/\) =2\g on Ow

'w@=w) for [€] — oo

Let E(¢,n) := ;—” In|é — n|. Using the Green formulae and the jump conditions of the
simple- and double-layer potentials, we obtain the following equations for the limits of
the normal derivatives of wy approaching the boundary dw from inside and outside;
respectively:

10 0

552 (m) =~ £W03¢M+a /wmg—“s ©
: J |

%‘;i /% © 5 dsf — 80 /wo(ﬁ)—dse (10)

Jw
+5;/Aw©E&.
RI\T

" We combine (10) with (8) and add equation (9). Taking into account the continuity of
the normal derivative of the double-layer potential, we obtain

Jwg ~ _awo OFE
Y —JA/ﬂ95;®v=ww)
Sw
8 [ 8(l¢Ia())

8G\dw
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The outward normal at 8w \ G becomes the inward normal with respect to the domain
G \ w. Making use of the jump condition of the normal derivative of the simple-layer
potential at Gw, we can simplify the right-hand side:

awo .awo _ 6 - a('&lfoa(w))
5, ~ DK =-2 o /—_au Ed
8(G\w)

We pass to the solution of the boundary integral equation by combining (4) and (3):

_ 1 6% 600 ro—l 2/\ a‘wo 2/\ 6R1
o) = 725 (Fe + D 5m 0) + T 55 () + 1oy e (@)
With
__1 (9% ,,0n" £y o 22 Owo” _ 2 ORyT
"(I)_l—,\(a t25 ) ) =13 dve @ =135

the theorem is proved i

4. Estimation of the remainder function

In order to justify the formal asymtotics of the solution p, of problem (1) given in
Theorem 1, we will estimate the remainder function in the L,-norm. Let E(z,y) =
3= In|z — y|. The following lemma shows that the remainder function R, solves a
certain integral equation.

Lemma 1. The interior limit of the normal derivative of the remainder function
R, defined by equation (4) satisfies the following equation on OS2, :

AR, ~ JOR T
% TP . -
o~ [ of L0~ [ 8 ., 11
_—E / EEds—2/\£°$ /éu—:wo(;)Eds K
(G\w.) 3(G\n)

where f is a function which shows the behaviour O(rmin{r.2}) near the origin and 1 > 1
1s the second positiv eigenvalue of the transmission problem with respect to angle G.

Proof. In the proof of Theorem 1 we considered the variational problem (6) which
is solved by Ry = u, — vg. Combining this with (7), we obtain a variational problem
for R, defined by Ri(z) = Ro(z) — e™w(Z). For sake of simplicity we introduce the
notation A )

£(2) = Vo(z) = Va(0) + 2 (v0(2) = v0(0) — r™a(y)).

The linear terms in the asymptotics of 2Avp and —Vp coincide. Consequently, the main
term in the asymptotics of f shows the behaviour r®i®{m:2} near the origin, where 7,
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is the second positive elgenva.lue of the transmission problem with respect to angle G
It _holds

1+ A)/VR,V¢d3:+(1 - / VR, Védz

R2\{7,

= /af_c;&ds— / dds +2\e™ /@—O¢d —/?ﬂtﬁds

an\an, an,\a9 : IG\on an\aG

with test functions ¢ € L} 2(R?%). The desired integral equation is obtained by repeating
the steps in the proof of Theorem 1, since the equations (9) and (10) are valid for the
normal derivative of R; with respect to 9§, I

Theorem 2. The remainder function R of Theorem 1 satisfies the estimate
IRl L, (00,) < Ce"

with & ='min{‘rl - %, ‘%, 2'r0}. The constant C depends on A and the domains Q and
w, but does not depend on €.

Proof. The operator I — 2AK* is continously invertible in L; ¢(0%,), the space of
quadratically integrable functions with mean value 0. This is valid even for Llpsclntz
boundaries (see [9] or [2]). :

_ Combining equation R(z) = 2 aa—’?} and Lemma 1, the function R satisfies an
integral equation of the form (I 2/\K *)R = F and the estimate _
1Rl a(000) S NI = 20K") 7 I FllLy00,) < ellFllion,) (12)

holds, where
' ' c= sup |[(I-2XK")7!|.
€€(0,1)
The supremum exists, since the operator is bounded even in the limit case ¢ = 0.

Let 7 = min{7y,2} and C be a constant which does not depend on ¢. This constant
may differ in different estimates and is equipped with subscripts in a sequence of esti-
mates. It is sufficient to give an estlmate for the nght hand side of (11) in the Lz-norm
because of (12).

By changing the sequence of mtegra.tlon and norma.l derivative in the first term, an
additional expression ; —L occurs on 9%, \ G, which is caused by the jump condltlon
This term can be neglected since it does not change the estimate. Let

y—z)v
Aw= [ Lai=Dg,
a(a\n,)
The beha.vxour —i(z) O(r™™!) near O yields after the transformation { = £ and
n=

- — IV e
W< [ erliDaly, oo [ g ll(r £2|2n| dse
a(n\ﬂ‘ ) ) a(G\w)
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Considering the Lz-norm of F}, we devide the boundary 8w into 3 parts which belong
to B.(0), B1(0)\ B.(0) and R? \ B,(0), respectwely Taking into account that the

expressmn
/ Islr 1|(7I E) 'Il
e
3(G\w)

shows the behaviour O(|n|~?) at infinity, we obtain

. . 2 .
IR, 0,y < C 272 / (/Iél,n(n £v q|ds)€d3n

In — &1
dwnB,(0) ) 3(G\w)
o . , :
2 2 . , (13)
2r=2 € y €
* e (/r—zdr* J W‘*y> -
€ 0.\ B,(0)

S C62‘r—l .

For the estimate of the seéqnd term of the right-hand side of (11) we can neglect again
the additional term on 9§ \ G caused by the jump condition.

Let S :
Fy(y) =€ / 6wo( y g,

ly — z|?
A(G\N)

The function %—';’:1({) shows the behaviour O(|€|~™~!) at infinity. Hence

2
, ow y—z)y,
12217, 00,y = €* 0( ) % dsz) dsy

a0, <a(c:\n)

z - (19)
S Cl 641‘0 |z|—ro ll(y z)VyI dsz> dsy

( ly — =2
a9, “a(G\Q)

S C 641'0

since the integral is bounded independly on e. The estimates (12) - (14) complete the
proof of Theorem 211
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