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Fibonacci Polynomials
their Properties and Applications
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Abstract. The paper deals with polynomials characterized by coefficients determined by suc-
cessive elements of the Fibonacci sequence. Basic properties and applications of the Fibonacci
polynomials are demonstrated. The index of concentration of Fibonacci polynomials at k-th
degree, locations of their zeros and optimization procedures for such polynomlaJs are discussed.
Illustrative examples are presented
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1. Introduction

In this paper we deal with polynomials

pal(3) = for® + fiz! + S22 4ot foz" = Sfat . (20 ()
) k=0 . .
and 0 1 2
AN SN P AR o B
(@)= F 4ttt gsz‘ (n20), @)

ie. polynomials in z ‘€ C and z € C with coefficients deterrﬁined by elements of the
Fibonacci sequence

fk+2=fk+.1+fk‘ - - o (3)

in which the first two values fo and f, are known. It is usualy assumed (see [2, 15, 16,
20]) that the absolute values of the subscripts in (3) are |k| =.0,1,2,... and the initial
values are fo =1 and f; = 1. Table 1 gives the first few Fibonacci numbers generated
by (3). In other publications (see (5, 6, 8, 11, 13, 19, 22]) it is assumed that the first
terms of the Fibonacci sequence take the values fo 0 and fi = 1. In the sequel we
shall limit our attention to non-negative subscripts k > 0 only The ca.se of negative
subscripts £'< 0 can be treated analogously.
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Although the Fibonacci sequence has been studied extensively for some hundred
years it still remains a fascinating area for exploration and there always seems to be
some new aspects that can be revealed. Here, we explore somie of the basic features of
the Fibonacci sequence.

k .. -6 -5 -4 -3 -2 1 0 5 6
1 8 13

— 1 2 3 4
fe .. =5 =3 -2 -1 -1 0: 1 2 3 5

Table 1. Successive elements of the Fibonacci sequence

It should be emphasized that polynomials play a central role not only in mathe-
matics but also in many other domains of human activity to reveal phenomena in our
environment and to design systems with desired properties (see [13 - 15]). The instanta-
neous state of many physical plants usually depends on several variables and is described
by one or several state functions of one or several variables. These state varla.bles if
sufficiently smooth, can be represented by polynomials, in some range and within some
accuracy. Thus, the study of any plant, no matter how compllcated it is, 1nvolves the
study of polynomials.

In this paper we deal with fundamental concepts in the domain.of newly created
Fibonacci polynomials with the emphasis put on their properties and their possible
application in various branches of mathematics and neighbouring d]sClplmes New con-
cepts in the domain of the Fibonacci polynomials are presented. : In partlcular we
discuss the index of concentration of the Fibonacci polynomials at degree k, and the
location of zeros of the newly created polynomials are systematically studied. In.this
context we shall present new approaches allowing us to obtain a quantitative measure
for the Fibonacci polynomials which result from the knowledge of qualitative ones.
The fundamental notion and definition of concentration at low degree for polynomials
are involved in the sequel. Illustrative examples are given along the presentation and
sometimes examples will serve instead of formal proofs.

The paper is organized in the following way. We begin, in Section 2, by presenting
some of the most important properties of Fibonacci polynomials with regard to their
possible application. Section 3 is devoted to basic Fibonacci binomial identities estab-
lished on the base of Fibonacci polynomials. Problems involving the need of a.pplications
of optimization approaches are mcluded in Section 4. Conclusions and final remarks are
presented in Section 5. '

2. Basic properties of Eibonacci polynomials‘

In this section we shall demonstrate a set of the most useful propertles of the Fibonacci
polynomials which may not be commonly known.

2.1. Properties of polynomials (1). First, let us represent a general térm of the
Fibonacci sequence (3) by the Binet formula (see [18: Chapter IV/p 52])

a" — bkt1

e (1) N
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where

s ()

Substituting (4) into (1) and rearranging terms yields

pa(@) = —22Y (@) — ==Y () (2 20) ©)
k=0 k=0

Taking into consideration the particular values of ¢ and b, and assuming az#1 and

bz#1, we can use well known propertles of the geometric progression and rewrite (6) in
equivalent form as

a (az)*t! - )+ — '
T L) (1)

‘a:z:A—l a-b bz-1

Since a + b= 1,a — b = /5 and ab = —1 one gets

B\ (an4l _ pnt1\on42 _ (o042 _ pn42y n+l ’
1 (a-b)—(a bnt)z (a b"t2)z (n>0). (8)

Pa(z) = -b —z2 -z 41 .
Finally, taking into account (4) we obtain ‘
n+2 n+l _. X
Pn(l') _ fnz + fo417 fo- : (n > 0) (9)

x2+x_—l

The above result indicates that any n-degree polynomial with coefficients determined
by successive Fibonacci numbers can be represented as a ratio of two trinomials in z
with appropriate degrees and coefficients from the set of Fibonacci numbers. It is worth
mentioning that expression (9) can also be considered in inverse sense. This means
that the polynomials rn42(z) = faz"*? + fas1z"*t! =1 (n > 0) are divided without
remainder by the polynomial s3(z) = z? + z — 1.

The importance of (9) lies mainly in the fact that it can easily be used to prove 'maﬁy
useful identities concerning the analysis of the set of Fibonacci numbers, in particular,
when the variable z in p, = pn(z) may take different numerical values and/or when n
tends to infinity. To demonstrate these facts we shall consider some identities in the
field of Fibonacci numbers.

At first, we take z = 1 and use (9) to express the sum of n successive Fibonacci
numbers as

ka = pn(z)|,_1 =fat1+fa=fo=forz—fo (n20). (10)
k=0 . :

Moreover, if we want to determine a partial sum of succesive Fibonacci numbers, then
from (10) we obtain

Z fo=fm + fm+1 + o + fa = fase — fmir- : (11)

p=m
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Next, taking the first derivative thh respect to z of both sides of (9) and using (1) we
obtam

Su(kfx) = Y _kfx
k=0

pu(e)|_
[d fn -’B"+ +f +1$"+1—fo]

(n20) (12)

z—1 Jz=1

- (n + 2)fﬂ + (n + l)fn-H - 3(fn + fn+1 ‘fo)
=nfot2 = fats + f3.

Therefore, to find 3 _;_, k fx we need to know the three Fibonacci numbers f3, fny2 and
—fnt+3. In a similar way we can prove that

Sa(k* fi) = Zk fe= o)+ SalkY) ~ .

=(n+1)far2 — (20 = 1) fnts +2fnss — 13fo.-

dzpn(z)

Other sums may be determined in similar manner.

Further, let us assume that |z] < 1 and n — co. Then from (9) we can determine
the infinite Fibonacci polynomial. This is done by taking lim,_o p,.(z) in (1) and (9).
This yields

4

f +fn+1I fo

k .
poo(x) = 11@ Z(z fi) = lim - a1 (14)
Observe that for |z| < 1 we have lim, .o faz™ = 0. By using this we obtain
. . —f . o l .
Poo(2) = (15)

:1:2+:v—1 1—z-—2z2

Note that (15) generates successive terms of (1) Moreover, the above result can be
used to evaluate poo(z) for various |z| < L. For instance, if z; = -and'z, = =3, then
it can be easily checked that E

gf_kz w(l>=4. and Z( 2)k = Peo (_71) .=-.‘51'

Several other interesting cases of pn(z) for particular values of z and n can n be investi-
gated in similar manner.

2.2. Particular properties of polynomials (1). Let us now turn to the fundamental
notion of the index of concentration at low degree 0 < k < n for a polynomial in z of
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n-th degree. In the genera.l case it is defined (see [1] or {17: Chapter II/p 44]) by the
expression

wo-Fe

where d, (0 < r < n) denotes the éuccessive coefﬁcients of the given polynomial
p,.(:l:) do + diz + ... +diz* + ... +dpz" (16)s

Applying the above result. ‘to determme the index of. concentratlon of the polynomlal Dn
at degree k we obtain
k
Ep:O fP

Relation (16), is a measure for the relative importance of the terms of low degree inside
the whole polynomial (1). This gives a possibility to determine the location of the zeros
and the size of the polynomial in a given interval. On the other hand, polynomials (1)
with different . n do not have identical indices of concentration at the same degree k,
but as we will see (due to the concentration property) the number of their zeros in any
given disk remains uniformly bounded, independently of n.

- bx(n) =

Now, we want to determine the degree k of polynomla.l (1) for which 8x(n) < %
This spec:ﬁc value can be used to determine the radius of an open disk centered at 0

and containing at most k zeros of p,. Substituting the above value into (16) we get

1 1 .
<= =
fera S Shreat o (17)

This implies that for sufficiently large n the relation
k<n-2 ‘ (18)

holds. For instance, if n = 3, then for k = 1 we have from,(16) that

fi—1 2 _1
6,(3) = -
. B =517 7%%
But for k = 2 we obtain 1 ‘ 4 l
62(3) 1 = 7 > 5
To prove (18) we use (4) and take n Z 3 to get
a"“ . —2 3 el \/5 .
Bn—2(n) = W‘k-n_z =a™? = Z5¥2 0381966 . (19)

Under the above conditions any polynomial (1) at degree k satysfying (18) has at most
k roots in the open disk centered at 0 and radius p(4, k) determined by the expression

o(6,k) = (riz)d_ Y (20)
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It has to be noted that for § > 1 the estimation of the radius needs more complex
analysis in a Hilbert space (see [20, 22]) and is beyond the scope of the present paper.

2.3. Singular cases of (9). Now we can consider two specific (singular) cases which
)

appear when z = % = —bor z = ; = —a are substituted into (9). Note that the
identities ' S

ad=a+1 and ¥ =b+1
hold. To consider the singular cases of (9) we can evaluate the ratio of the derivatives

of the numerator and denominator of the right-hand side of (9). As a result, we find

that
(l) = %[f""'nﬂ + fapr12™t! — fo]
Pri\a) ~ £la2 +z-1] .,
=a (21)
_ (n+2)faz™ + (n 4+ 1) fag1z”
- 2z4+1 21
Again, making use of the Binet formula for f, and fn41, substituting z = 1 and

rearranging terms we get

R (G N B

Next, consider p,(z) for z = % = —a. Again, we use the ratio of derivatives with repect
to z to get '
(l) _ (n+ 2z +(n + 1) faya2”
Pn b - 2$ + 1 - . z=1
g ' (23)

- ((Zilb)b ta - b')2 ((%)}n+1 - 1)) :

It is now evident that several other useful expressions based on (9) can be derived. We
shall present some of them in the next subsection.

2.4. Properties of polynomials (2). Let us now turn to the study of basic properties
of polynomials (2), i.e. polynomials with coefficients determined by the inverses of
successive Fibonacci numbers. :

Assuming a finite number of terms in (2) we can represent its right-hand side in a
more compact form, namely

n_k n Proy,p
w=3 -t (1)
where- . : : . :
ol = fofifa o facifa : : (25)
and £l
Pt =22 (26)

fr
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denote the Fibonacci factorials which are determined by the product of successive Fi-
bonacci numbers and the partial Fibonacci factorials resulting from f,,! by neglecting

the f,-th term. For example, for n = 2, 3,4 we have

f2!'=fofif2 =2, f'= fofifafs =6, fal= fofifafsafa =30

and
2
2:”}‘2!2p =220 422! + 22
p=0
3
Z”fg!z" =62° + 62! +32% +22°
p=0
4
D P falz? =302° + 302" + 1522 + 102° + 62°.
p=0 '
Finally, we obtain the corresponding polynomials (2) as
220 4 221 + 22 22
= — =1 —_
g2(2) 2 Tzt
62% + 62! 4 322 + 228 22 28
a(2) = 5 =l+z+ 54—
30z + 30z 4 1522 + 102° + 62* 22 2 A
= =1 SRR
%(2) 30 tergtyts
It is also easily seen that the Fibonacci factorials fulfil the relations
n n—1

fn!=fn—l!fn . and prn!=fnzpfn—l!+fn—l! (7120)

p=0 p=0

(27)

So, if we focus on a recursive process we can evaluate the Fibonacci factorials very

effectively.

Next, substituting 2 = 1 into (24) we obtain the expression for the sum of inverses

of n successive Fibonacci numbers
n n p
3 1 Yp=o fo!
Qn(l) = - == 0 0' i .
k=0 fk fn'

We list the first few @Qn(1) in the following table.
n fn fn' Z:=0pfn! E;::o;_h =Qn(1)

0 1 1 1 1.0

1 1 1 2 . 20

2 2 2 5 5/2=25

3 3 6 17 17/6 ~ 2.8333...

4 5 30 91, 91/30 ~ 3.03333...
5 8 240 . 758 379/120 ~ 3.1583...
6 13 3120 10094 5047/1560 ~ 3.2353...
7

21 65520 215094  107547/32760 ~ 3.2829... -

00 00 0 00 ~ 3.3598856662....

(28)
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Table 2. Sum of inverses of the FiBonacci numbers

The above result can be useful in many of possible applications of Fibonacci polynomials
and Fibonacci numbers. For instance, using (27) for k € (m,n) we obtain

mn(l)— Zf = p—O ? fal _z:p—o P fm-1!

fa! m—1!
n f 1 (29)
_ E;=0an H fsz fm l
= 7
This result applied for three successive values k = n — 2,n — 1,n gives the relation
1 fn—l + fn
= 30
fn—2 fn—-lfn'*'(_l)n : ( )
from which we get
1 1 fn+l
fn—l fn fn—2fn+l - (_l)n ( )
Further, let us evaluate Qn(1) for n — co. From (28) we get
n P !
w(1) = lim Z:’?+f" ~ 3.3598856662. .. . (32)

A proof of this result is not simple and can be performed by using the approach presented
in [7). For the sake of compactness of presentation it is omitted here.

2.5. Particular properties of polynomials (2). Let us now consider the index of

concentration at low degrees of the polynomials (2) as n — co. Using (32) it is easy to
check that for £k =0,1,2 we have

f 1
bp(0) = lim ~ (0.2976291753...
0 n—oo Ep—o fn!
fa!
§1(c0) =2 lim - ~ 0.5952583506...
1 n—00 Zp_ !
f !
83(0) =4 lim ~ 1.1905167012... .
n—oo Zp_o f"

Thus the polynomials (2) are characterized by higher values of the indices of concen-
tration at low degrees in comparison with that of polynomials (1). This is one of the
important differences between the polynomials (1) and (2).

Applying (32) in circuit theory we get a simple expression for a parrallel connec-
tion of infinite number of resistors with resistances determined by successive Fibonacci
numbers. Such type of electric circuits can be considered as an alternative structure for
ladder networks composed of identical resistors (see [9, 16]).
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Let us now examine other properties of the polynomials (2). Using (24) we can
determine the index of concentration §;(n) of the polynomial g, at degree k as

Z: Oflp _ fn!z:zopfk!
Ep_o !l, fk!z;::o pfn!.

bi(n) = (33)

To transform (33) into a simpler form we can apply (25) and after performmg a series
of suitable manipulations on respective terms we get

n
Zq:k-}-] qfﬂ!

filn) =15 Sr

(34)

For instance, taking n = 5 and k = 2 we have

5 |
. 1
Z:"——3f5—1——‘r’§z0.7915567... )

8(5) =1~ ST

Observe that on the right-hand side of (34), both numerator and denominator depend
on n and k, so for a given n there is a value of k at which §}(n) is maximal. It is
easily seen from (34) that this maximum equals 1 and that it is reached at k¥ = n. The
obtained result needs special attention for |z| < 1 and n — co. Using (24) we obtain

E: 0/1_, _ Z::Opfk! _ Z::O”fk!
E,—o A limn—ooo Z:=o ;T Qoo(1)fx!

8i(o0) = ll (35)

The above expression is useful for determining the influence of the coefficients of poly-
nomials (2) on the index of concentration. For a given Fibonacci polynomial g, the
index of concentration 7} .. (n) for difference of m terms is defined as the ratio of the
concentration indices at degree k + m and k, respectively. Thus we can write

oy = B TSI e S k!
k,m  8i(n) Hf:;"ﬂ }::=0 P! | Zk+mpf !

(36)

The concept of the index of concentration at fixed degree k of polynomials (1) and
(2) is very important for the location of their zeros in the complex plane [21). Details
concerning this problem will be studied in the next section.
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3. Zeros of the Fibonacci polynomials

One of the most important characteristics of the Fibonacci polynomials is the location
of their zeros in the complex plane. Finding the location of the zeros is one of the major
problems, and it is well known that if the polynomial’s degree is at least 5, no exact
algebraic solution can be given so, in general, the procedure has to be numerical. Here
we shall present advantages offered in this domain.

Theorem 1. All zeros of the polynomials (1) with n € N lie in the annulus % <
r <1 where r denotes the radius of a disk centered at 0 sn the complez plane.

Proof. To prove the theorem we consider the real positive coefficients of the poly-
nomials which are determined by the successive Fibonacci numbers. Using the result of
Kakeya (see 10, 17]) we obtain the estimate for the absolute values of all zeros of the
polynomials (1) as

min(fk>§|z|§max(fk) (0<k<n-1). (37)
S —\f .

k+1

Now we take into account (3) and find that
inin ( fk ) = fk | = l
Sr+1 ferrle=1 2

max(fk)=fk‘ =&=1
fr+1 fesr1le=0  fi )

The first zeros z, & of the polynomials (1) are given in the following table.

n ‘ Zn,k

1 .—1.0 .

2 —0.25 +:0.6614 —0.25 — :0.6614

3 —0.7839 0.0586 + :0.6495  0.0586 — :0.6495

4 —0.5337 4+ :0.45831 -0.5337 —:0.45831 0.2337 +:0.5912 0.2337 —:0.5912

Table 3. Zeros of polynomials (1)

The prof is completed by substituting the above estimates into (37)

Looking at the above annulus in mofe detail we can find that the ratio of its max-
imal and minimal radii equals 2 and the area of the annulus is equal to 4, = %n ~
2.35619449. .. .

Applying a similar procedure with respect to polynomial (2) we can formulate the
following theorem.
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Theorem 2. All zeros of the polynomials (2) with n € N lie in the annulus 1 <
T < 2 where r is the radius of the disk centered at 0 in the complez plane.

The proof can be performed in a manner similar to that in the previous case but
for the sake of compactness it is omitted here. Note only that the ratio of the disk radii
equals 2, but the area of the disk equals

Az = 37 ~ 9.424777961... .

Another interesting result can be derived from the above theorems. It can be easily
verified that the difference of the areas of the two introduced disks equals

3 9
Ay — Ay =3W—Z”=.Zﬁ=3Al.

Thus the study of the locations of zeros of polynomials (1) and (2) in the complex plane
leads to a new approach for determining the irrational number 7. On the other hand,
the sum of these disk areas is equal to

. 1
A1+A2=§7r+37r= Ts’ﬂ.

Moreover, if the polynomials (1) and (2) represent discrete dynamical systems, then the
location of their zeros provides useful information on the stability of such systems.

Tables 3 and 4 give thé‘ values of zeros of the polynomials (1) and (2) obtained by
MATLAB procedures {12]. They agree well with the theorems above.

n ) - qn,k

1 —-1.0

2 ~1+4: —1—1

3 —0.1732+:1.6033 —0.1732 —:1.6033 —1.1537

4 0.4091 +1:1.5141  0.4091 —:1.5141  —1.2424 +:0.5940 —1.2424 — 10.5940
5 0.7439 +:1.4355  0.7439 — 11.4355 —0.9411 +:1.2486 —0.9411 — :1.2486

Table 4. Zeros of polynomials (2)
Consider now the zeros of the polynomials (1) and (2) with positive real parts. To
do this we first consider the family of polynomials (1) for different n > 0.

Theorem 3. For everyn > 2, iﬁe:pblyné}nial Pn in (1) has at least one zero with
non-negative real part.

Proof. To prove the above theorem we consider two polynomials (1) with degree
n and n + 1. Observe that using (1) and (3) we have

Pat1(2) = pa(z) + farrz™t (n20).
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Thus, the ratio of polynomials py4+1 and p, can be represented in the form of the
continued fraction

: — Pnt1(z)
n( ) Pn(I)
_ fn+lxn+l
BN

1
fn + Pn—l(z)

fan1z fagrznt!

1
=1+ - 1
fnill' + fn+l5‘:2 1 (38)
faa Pn—2(z)
fn+11‘"“
) 1
=1+ A 1
fri1z + fn+l$2 1
fn—l - 3—1 1
fat1fn-2z  fapria?

fn—l

It can be easily verified that for n > 2 some of the partial coefficients in (38) take
negative values. Moreover, the stated theorem follows immediately from the deter-
minental Routh-Hurwitz stability criterion (see [10, 17]), since for n > 2 we have
Dy = fno1,D2 = (-1)® and D3 = (—1)"fn41 showing that not all D; can be posi-
tive, where D; (i = 1,2,3) denote the respective determinants. Thus, using results of
[3, 10,17} we can state that not all zeros of (1) lie in the left half-plane and this completes
the proof il

For instance, if n = 3, we have

where the short notation has been used for the continued fraction.

Next, for, the family of polynomials (2) with different degree n > 0 we have the
following statement.

Theorem 4. Some of the zeros of the polynomials (2) with n > 3 have non-negative
real parts. :

The proof is similar to that above. For instance, if n = 4, then using the short
notation for continued fraction 7 = % we obtain

(2) = 1. 8822 16 922 2 922 16 3.7
W= \Y5 89z 89z B8 92 8 )
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This indicates that some zeros of the polynomial g4 are located in the right half-plane.

Let us now focus on further details concerning the index of concentration of the
polynomial (1) at low degree. Using the results presented above we are able to estimate
the index of concentration 8k(n) corresponding to the radius i < r <1 of the disk
centered at 0. Taking into account (12) we can formulate the following question: is
it possible that polynomials (1) may have k zeros located in the open unit disk with
index of concentration §x(n) < 1? That question is important for computations with
Fibonacci polynomials on parallel processors. To answer it we consider the limit value -

6x(n) = 3, and using (20) we obtain

p(%,k):(li )d_'—1=1 0<k<n). (39)

1
2

Solving this equality gives £ = 0. Thus, using (16) we can state that there exists any
polynomial (1) with index of concentration § <  which has some zeros located in the:
open unit disk centered at 0. It means that the location of the zeros of the polynomial
(1) in the open unit disk corresponds to values of the index of concentration greater
than 1.

From (20) and (37) we obtain

.

Lo (L VT Z1<1 (0<k<mn>0 40
;_(T"(n)) -1< 0<k<nn20) (40)

Solving (40) and using (24) and (16) yield the estimate

1 <fk+2—1< -1

l_a"“_fn+2—1_ oM S (41)

Further, a relatively simple transformation of (41) leads ‘to the solution
" 0<k<n (42)

which indicates that for each n and fixed value §x(n) € (0,1) all zeros of the polynomial
(1) are located in the ring with radius 3 <r < 1.

4. Optimizations with Fibonacci polynomials

The Fibonacci polynomials can be used to represent a given physical quantity, for ex-
ample, voltage in a voltage divider (see [11, 13, 16]), or a fixed number as a sum of
suitable components (see [4, 20]). Our particular interest here is the decomposition of
a given value g into elements of a Fibonacci polynomial of n-th degree, i.e.

- g =Pn(1') (43)

where n and z are to be determined accordingly. To achieve this goal we take into
account (9) and obtain ' '

o= fn1"+2 +fn+lx"+l — fo

44
22+z-1 (44)
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Since n has to be taken from the set of integer numbers, there exists a remainder in
(43). Let us-denote this remainder as

faz™? 4 fopizt! — fo— (2 + 2~ 1)g
2 4+z-1 '

W(z,n) = (45)
Note that (45) depends on two variables: z and n. It means that in an ideal case we
must have ¢(z,n) = 0 but in reality we are looking for the remainder 1(z,n) to be
minimal for some values n* ~ n and z* ~ z. That is an optimization problem. Thus
we can write

Y(z*,n") = ming, P(z,n). (46)
Following the standard minimization procedure we obtain two simultaneous equations
OY(z,n) OY(z,n)
—_— d —_— =
on | 0 an Oz

whose solutions yield the desired values of n and z. Performing necessary calculations
we obtain

0 (47)

zn+2jﬁ + faz"t? lnz+zn+]‘#;;‘—+l + fay12"* ! Inz =0 (48)a
n n '

and
(7 2 faz™ + (0 + Dfasaz™ — 922 + 1) )
48
_[fnz"+2+fn+1:£"+l —-(12+z—1)g](2z+1):0. ’

To determine the solution of (48) we need to use a special procedure due to the difficulties
in the direct calculation of the derivative of the Fibonacci number f, with respect to n.
This special procedure is ased on a well known approximation of (4) by the expression

ant!

a-5

fax——=+0(n) (n22) (49)
(see (8, 18, 19]) where O(n) denotes a small term. Neglecting O(n) in (49), we can
represent succesive derivatives of f,, as

dfn an+l dfn-H an+2

dn_a—blna | and o =a_b}na. » (50)

Now, substituting (50) into equation (48), gives

1
a-b

(.’E"+2d"+l Ina +z"%%" ' Inz + z"*'a" 2 lna+ 2" a"*2In :1:) =0. (51)
It is clear that the condition z > 0 has to be satisfied, so we find that
(z + a)ln(az) = 0 (52)

from which we obtain one cdmponent of the optimal solution

¥t =~ (53)



Fibonacci Polynomials 743

Note that (53) determines the singular value for (9) and for this reason we need to take
(22) to represent the given value g. Thus we can write

{nt1a 1 AN )
M- (a — b)? a ’
Solving this with respect to n gives the second component n* of the desired optimal

solution. For example, for g = 3, values of n* and z* for the optimal representation in
terms of pp(z) are

n =43 and z* =

>~ 0.6180339... .

Q|-

Finally, we can write

1 2 3
el 2B 1 10203 500017~y
a a%? ad a a? ad »

what is a good representation of the fixed value g = 3.

It has to be emphasized that the above problem can be also considered in terms of
polynomial equations in two variables. Fixing one of them, preferably n, we can always
find the unique positive value of z.

Our second problem concerning optimization with Fibonacci polynomials deals with
a partition of a given value h into n parts in such a way that the first element is big as
possible, while the other elements are smaller in ratios determined by the corresponding -
Fibonacci numbers. Denoting by h' the biggest part in such decompositions we have
the relation

Q=

3‘];—

n zk
= i , (54)
k=0

It is easily seen that the variable z appears as a control parameter. Such problems
appear very often in practice, for example, in power systems where a number of loads
are connected to a system but one of them is the most important and needs a fixed
amount of electric energy supplied from a real source.

" Thus we have two optimization problems. The first one appears when h and k' are
fixed and we need to find the optimal solution of (54) with respect to n and z. The
second problem appears when h and n are given and the optimal solution concerns h’
and z. Observe that in the-first case we can take z ='1 and then the problem is to
determine n. Thus, using (28) we can write

zn=0pfp! '
0= pr' (55)
Note first. that from (2), (3) and (32) we obtain 1 < © < Qu(1) so as n — oo we have
hl, = h = minh
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Thus for fixed n < oo we have .
h' > hl,.

The corresponding value of n is a solution of the equation

%H(ak+l _ bk+l) — Zfl (ak+l _ bk+l) (56)

p=0 p=0k=0

where superscript / says that the term with index p has to be omitted.

Observe that this represents a complex nonlinear equation in n, and its solution
can be found in a numerical process. In many practical calculations we can apply the
result presented in Table 2 to solve (56) (equivalently (55)). For instance, let A = 10
and h' = 4. Then we have @ = 2.5 and from Table 2 we find directly that n = 2. Note
that an alternative approach which takes the similar form as that with the polynomials
(1) can be also applied.

The second problem of optimization with the polynomials (2) is much more com-
plicated than the previous one. This problem is still under research.

5. Final discussion and concluding remarks

In this paper we have discussed new types of polynomials, p, = pn(z) (see (1)) and
gn = gn(z) (see (2)), characterized by coefficients equal to the successive Fibonacci
numbers or their inverses, respectively. A common feature of these polynomials is that
all manipulations on their components are simple and can be easily implemented on a
computer. It was proved that both polynomials lead to effective methods for establishing
many of the Fibonacci identities. .

The results obtained in this paper seem to be very useful in applications, e.g., in
optimizations of electric networks, capacitors voltage dividers and other plants where
more classical numerical treatments are difficult or at least expensive. Moreover, such
characteristic properties of these new polynomials as the location of zeros on particular
rings in the complex plane, their indices of concentration at low degree have been
examined. :

As an additional theoretical benefit, these new polynomials allowed an easy descrip-
tion of extremal terms in the product result, as well as the influence of a control variable
- when the partition of a given value into many smaller parts must be controlled appro-
priately. Our results also show that if we have some additional information about a
given quantity or simple number we can, in special cases, get sharper bounds on its de-
compositions or partitions. This result can be considered as an alternative to solutions
of such type problems in terms of polynomial equations in two variables.

Another area where interesting results may be obtained is that of index of con-
centration at low degree of products of polynomials p, and g, (both polynomials in
z € R and, in general case, of different degrees). Note that the polynomials p, have
large coefficients and the polynomials g, are characterized by high concentrations at,
low degrees. But their product has a large coefficient. It is quite likely (but not proved
yet) that the correct order of magnitude is of exponential type. The determination of
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the precise values of the estimates does not only involve computational accuracy but a
better understanding of the problem itself.

It is worth mentioning that polynomials p, and ¢, have no common root (except
for p1 and ¢1). Thus, following the Bezout identity (see [10: Chapter X/p. 200]), we
obtain that there exist two other polynomials v,, and w, such that p,vm, + gmwn = 1.
The problem of determining v,, and w, is still open.

An interesting point related to the presented studies is that the polynomials p,, are
solutions to the non-homogeneous recurrence

Ynt41l — TYn — 1‘2yn—1 =1 (n > 0) ’ (57)

with y-; = 0 and yo = 1. To describe the solutions to this recurrence, we may use a
general approach for solutions of second order difference equations with constant right-
hand side term [8]. Thus under the condition

11—z -2z #0
we can solve (68) by superposition of the general and particular solutions. We obtain
_ . 1
Yn = Al + Aoty + T3 (58)

where 71,7, and A,, A, denote the roots of the corresponding characteristic equation
and two arbitrary constants, respectively. Applying the whole procedure for determi-
nation of the solution corresponding to the given initial values we obtain

_ faz™? + faprz™ — fo
- 24+z-1 ’

Yn (59)

Thus, comparing the right-hand sides of (9) and (58) we can state that

Yn = pn(z). : | (60)

It is now obvious that the polynomials p,, (n > 0) are determined by the recurrence
Prs1(z) = 2pa(z) = 2%puoi(z) =1 (n20)

with p_; = 0 and pp = 1. In this way we have obtained an additional relation which can
be considered as generating the Fibonacci numbers (successive coefficients of polynomial
(60)).

The similar problem with polynomial (2) is still under investigation. It can be shown

that the recurrence
. n+1

z
(n>20

fn+1 ) .

holds true with ¢_; = 0 and go = 1. To get a more explicit version which could be free

of the Fibonacci numbers some additional studies are needed.

gn+1(2) = gn(2) +
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