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On the Convergence of the Goerisch Method
for Self-Adjoint Eigenvalue Problems
with Arbitrary Spectrum
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Abstract. It was shown recently in [13] that the Goerisch method provides upper and lower ~
bounds to eigenvalues of variationally posed self-adjoint eigenvalue.problems with arbitrary
spectrum. In the present paper the approximation of eigenelements is established. In addition,
the convergence of the eigenvalue and eigenelement approximations is shown in a pure func-
tional analytic procedure. A numerical example is given where the curve veering phenomenon
occurs.
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0. Introduction

For self-adjoint eigenvalue problems the famous Rayleigh-Ritz method allows for a
straightforward and efficient computation of upper bounds to eigenvalues below the
essential spectrum as well as approximations to the corresponding eigenelements. As
is well known, the method converges (see, e.g., [8, 9]). Lehmann [6], Maehly (7] and
Goerisch [3] developed complementary methods that provide a possibility to calculate
corresponding lower bounds to the eigenvalues. From a combination of these methods
very satisfying inclusion intervals of the eigenvalues are obtained (for further references
see [13]). Zimmermann [12] has shown that the error in a Lehmann-Maehly-Goerisch

bound is less than a constant multiple of the error in the corresponding Rayleigh-Ritz
bound. :

The methods mentioned are no longer available for isolated interior eigenvalues, i.e.
eigenvalues lying in a gap of the essential spectrum. As shown in [13] there are two
versions of Goerisch’s method giving upper and lower bounds to all isolated eigenvalues
of finite multiplicity. We shall derive an extension of Goerisch’s method that yields ap-
proximations also to eigenelements. In addition to this, general convergence results are
given for eigenvalue and eigenelement approximations attained by this method (Theo-
rems 1.2, 1.3, 6.2 and 6.3).
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By establishing further insight into the methods, the proofs are in themselves of
some theoretical interest. In particular, the Lehmann-Maehly method results in a special
application of the Rayleigh-Ritz procedure for the calculation of eigenvalue bounds of
a transformed problem (Theorems 2.6 and 7.1). In Section 5 and Section 8 a numerical
example, already treated in [13], for a system of partial dlﬁ'erentxal equations shows the
efficiency of the evolved theory.

1. Convergence results for the left-definite eigenvalue
problem

Let H, be a separable, complex Hilbert space with inner product a(-,-) and norm || - |-
Suppose b(-, ) is a continuous, Hermitian, sesquilinear form on H, x H, such that, for
u € Hy, b(u,v) = 0 for all v € H, implies u = 0. We then consider the following
left-definite, variationally posed eigenvalue problem:

, , 1.1
such that a(u,v) = Ab(u,v) holds for all v € H,. ( )

Find eigenpairs (A,u) € R x H, with u # 0 }
Denote by B G £(Ha-) the bounded st;,lf-adjoint.operator that satisfies
a(Bu,v) = b(u,v) for all u,v € H,.
Then B possesses a self-adjoint inverse

A=B"':H, >D(A) — H,

and problem (1.1) is equivalent to the elgenva.lue problem for the operator A Hence
o(A) and o(A) represent the spectrum and the essential spectrum of (1.1) with 0 ¢

o(A).

According to [13: Section 1], we mtroduce for a spectral parametcr p € R a local
notation for the eigenvalues of finite. mult1p11c1ty o

p- </\‘:k’__ e SAL, SN <p<Af <M, < 5,\:,::,<p+ ©(1.2)

with k7', k} € No,p~ € RU{—co} and p* € RU {+00}. Let the eigenelements u%; € H,

of eigenpairs (A4;,u4;) € R x H, satisfy.
a(uf,uf) =6 (k1€ {=k;,...,~1,+1,...,+k}}).

We set » . S v
| D, = {u € Ha ! a(u,0) = pbu,v) forallve Ha}.

In addition to these assumptions suppose that X is a complex Hilbert space with inner
product s(-,-) and norm || - ||,. By the isometry T : H, — X,

s(Tu, Tv) = a(u,v) for all w,v € H,,
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let H, be embedded into X. Denote by
X° = {w €X: s(w,Tu)=0 forallue€ Ha}
the s(-,-)-orthogonal complement of TH, in X and by
o Q°: X—X°
the s(-,-)-orthogonal projection of X onto X°. For v € H.“’

min {s(w,w) : w € TBv + X°} = s((Ix — Q°)TBv,(Ix — Q°)TBv)
= s(TBv, TBv) (1.3)
= a(Bv, Bv)

gives the square of the distance between TBv € X and the closed subspace X°. We
define T} : H, — R by

, '_ a(v,v) — pb(v,v) |
TE) = )~ 20k ) + pPmin (s(w,0) - wE TBo X))

for all v € H,. If the eigenvalues A%, are positive and represented in the form

: P
P . +i .
/\i'=p+_r£_1 with Tii:,\‘:’t.ip (z:l’,”’k:f,

then the quantities 7§, € R are characterized (see [13: Theorem 1.4 and Corollary 2.1])
by variational principles:

We have for i € {1,...,k;}

0>7°, = inf  max Tf(v)
VCH, 0#vEV
dimV=1
vnD,={0}
. . a(v,v) ~ pb(v,v) (1-5)
= inf max min 5
- VCH, O#veV weX a(v,v) — 2pb(v,v) + p2s(w,w)
dimV=i s(w,Tu)=b(v,u) :
vAD,={0} Vu€H,
and forz € {1,...,k}}
l<rf;= sup min TF(v)
VCH. v
dimV=i
vnD,={0}
. a(v>v) —p b(va l))
= sup min max > .
VCH, 0£veEV weX - a(v)v) - 2)0 b(vrv) + P s(w,w)
dimV=i s(w,Tu)=b(v,u)

vnD,={0} Yu€H,
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For a discretization of the eigenvalue problem (1.1), let n € N and m € N, and suppose
the following:

(L)) v1,...,v, € Hq are linearly independent, V,, = span{vi,...,v.}, SV, NnD, = {0}.
(L)2 wy,...,w; € X satisfy s(w}, Tu) = b(v;, u) forallu € Hy (1 <1< n).
(L)s wg, ..., wy, € X° where wy =0 and wg,...,w?, are linéarly independent.
Then, we construct matrices 4; = (a (])) Ay = (a ) Az = (a(s)) by
(1) = a(vk,v;)
‘k —b(vk, v;) (1<4,k<n)
agk) = a(Bux, Bv;)

and matrices C11 = (cly ), Ciz = (c47), Czz = (c22) by

o = s(w}, w}) (1<ik<n)
(12) s(wg,w}) form >0 : . -
Cix :{O(kw) for m = 0 (15;§n,15k5§u{1,7})
2 _ [ s(wg,w)) form >0 <ik<
Cik {1 form =0 (1—1ak—ma'x{1)m})
and consider the matrix eigenvalue problem
(A1 — pA2)z = 7(A1 — 2pAs + p*(C1y + C12C; CH )z (1.6)

where 7 € R and z € C*. Denote all eigenvalues 7 of problem (1.6) in R\ [0,1] by

i[" m and arrange them in the following order:

rAml < gt cocr <ty o < gl (1.7)
with n7,n* € Ny and n™ + nt < n. Then we obtain (see [13: Theorem 2.4]) the
eigenvalue bounds

A’i[:"m) =p+ p(rp(" ] 1)_l <A, (¢=1,...,min{n",k, })
and . '

Ai[?’m] =p+ p( pln,m] -1 > A (t=1,... ,min{n+,k:}).
We may assume that the elgenvectors of the matrix eigenvalue problem (1.6) constitute
an orthonormal system with respect to the inner product

C*"xC" > (:l:,y) — :EH(AI — 2pA; +p2(C11 — CnC{;Cﬁ))y e C.
Now, if (7§ p[" m] ,z) € R x C* with z = (z4,...,z,)" € C" is an eigenpair of problem
(1. 6) we set

n

w™ =Nz e Ve (i=1,...,0%) (1.8)
j=1
This orthonormalization is equivalent to

a((I - pB)ui[n,m],uf[n,m]) = 6;;[7':["""]‘ (19)
for k,le {~1,...,—n",4+n*, ... +1}).



On the Convergence of the Goerisch Method 665

Remark 1.1. The choice m = 0 yields the procedure of Lehmann-Maehly (cf. {13:
Remark 22]) given by X =H,, S(', ) = a('a ')a T=1Iand X° = {0}

In our investigation of the convergence we assume for the sake of simplicity that
p € 0(A) and, consequently, D, = {0} (cf. Remark 3.5 for a more general choice of p).

We set X7 = span{w},...,w{,}. Suppose the additional assumptions
|J Vo is densein (Hq, |- la) (1.10)
neEN ’
and ' . ’
U X s densein (X°, - [l,) ©(111)
meN

to be fulfilled.
On the set N x N let an order < be given by

(7,m) < (n,m) if 7a<n and m<m.

We denote the limits of nets N x N — R and N x N — H, defined by this order by
the symbol limp m—c. Monotonicity is always related to this order. If (n') and (m')
are subsequences of natural numbers, we denote the limits of the corresponding subnets
by limg/ m' —co-

Theorem 1.2. Let 0 < p ¢ o(A) and X _ > 0. Then:
Forie {1,...,k;} we have ‘

lim AP = e (1.12),
n—oo
and
lim APP™ = e (1.12)s
n,m—00 .

monotone increasing on N and N x'N, respectively.
Forie {1,...,k}} we have

lim AU (1.13),
and
lim AT = | (113,

monotone decreasing on N and N x N, respectively. -

The discretization (1.6) allows for the approximation of eigenelements corresponding
to the eigenvalue A4,. For that purpose we have to ta.ke into account the mult!phcxty
of the eigenvalue \,. We set

J, ={j€eN: /\ij=/\§:l}.
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(If the eigenvalue A2, and A%, does not exist, the set of indices J?, and J%, is empty,
respectively.) Then : .

N§, = Span{uij i jE .fil} CH,

is the corresponding eigenspace of the eigenvalue Af,. Its multiplicity is |J4,| =
dim N%,. Denote by
P:ﬁl : Hy — N%,

the a(-, -)-orthogonal projection of H, onto N¥,.

The following constants result from the position of p ¢ o(A) relative to the spectrum
o(A) of (1.1). Assume that o(A) \ {5} # 0 and set

6”=min{lp—/\l: /\EU(A)} (1.14)
A AP
P s _ -1 . ; p
'y_—mm{/\_p Y /\EO(A)} if J2,#0 (1.15)
. PV A
7i:mln{/\il+l _/\_—p: AEO’(A)} if J-f—l 760

Theorem 1.3. Let 0 < p ¢ 6(A) and \?, > 0. Then:

Fori,j € J§, we have the limits

lim ||(I Po)uEMY| =
(1.16),
lim_a((rf") A5, &7 ugly °‘) =6,
and
lim[|(7 = Pg) ™|, =
' (1.16),
Jlima((rfrmy Tt udem, gl ygl ’) = ;.
- For m € Ny and sufficiently large n € N we have the quantitative estimates
n,m||2 >2 1 R .
= Pegut5mis (4 ) S [ -n] Gevzy

and
nm 2 1 n,m .
17 = L)% < (1 - Ge g,
T+

Remark 1.4. We can not expect the convergence of the sequence (u:h ]) a.nd of

the net (up[" m]) The approximations u’;[" ™| are not determined uniquely, since they

depend (1.8) on eigenvectors of a matrix eigenvalue problem.

Instead, we find
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Corollary 1.5. There ezists a subsequence (n') in N, a subnet (n';m') in N x N
and an a(-,-)-orthonormal basis

{@%;€ N2, - j et}
of N&, such that we have for j € JL
11m (Tp[n 0])— P[“ 0} _ q’i) (118)a

and L
im (el — gy (1.18)s

n’,m'—oo J

In the following sections we shall prove Theorems 1.2 and 1.3 and Corollary 1.5.
We restrict our considerations to the eigenvalues A?; (1 < ¢ < k7 with k, > 1) which
we assume to exist. .

2. Preliminary results

Due to our assumptions, we have 0, p € o(A). In particular,
T = A(A - pI)™* € L(H,)

is a bounded and self-adjoint operator. Furthermore T is bijective with 77! = I —
pB € L{(H,). Evidently, (A\?,,u”,) € R x H, is an eigenpair of (1.1) if and only if

(r2,,u”;) € R x H, is an eigenpair of T € L(H,) with 72, = X;\—forz €{1,...,k; }.
The spectrum of T is bounded from below and begins with isolated eigenvalues
mino(T) =77, <7%, < .- Sr_k_ <0 (2.1)
of finite multiplicity. These eigenvalues are characterized by the Poincaré principle
a(Tw, w)

- e =1, kT .
T d{aﬁ;’. 0Fuew a(w,w) S °) (22)

where the minimum is attained for W = span{u”,,...,u”;}. We set
W, =(I-pB)(V,) CH, (n € N).
According to (1.10),
U W, is densein (Hg,| - |la), (2.3)
neN . )
too. We denote by
in : Hyg — W,
the projection which maps H, orthogonal with respect to the inner product a(-,-) onto
W.,, and by
Qn: X — X,
the projection, which maps X orthogonal with respect to the inner product s(:,-) onto
xo
The assumptions (2.3) and (1.11) provide (cf. [8: Satz 1.1]) 1mmed1ately
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Lemma 2.1. For all relatively compact subsets M C H, we have

sup [|[(I = Qn)vlla =0 . as n— oo. (2.4)
veEM

By u, € H, (n € Ny) with ||un — uolla = 0 as n = oo, it follows that

1Qntun — uglla = 0 as n — 0o. (2.5)
For w € X we have
NQnw — Q°wll, = ,iél)f;o flw' ~ Qow”s' -0 a8 m — oo. T (2.6)

Lemma 2.2. For: € N let U C H, be a subspace with dimU® = i. Then for
all sufficiently large n € N we have also dim Q,(U®) = 1.

Proof. For u € H, the identity

(= Qn)ullz = llullZ - IIQ¢UII3 '

holds. Based on the compactness of the set M = {u €UV lull =1} in (Ha, | - |la),
it follows from (2.4) that - ‘ '

. _ 2 _
Jim s (1 IIQnulla) 0.
Hence, for sufficiently large n € N the projection @, : U®) — H, is injective. Thus,

the assertion holds i

Based on the assumptions (L); - (L)3 of the~'discreti2atioh, we define for (n,m) €
N x Ny the Goerisch mapping G, : V;, = X as follows: .

If v = Z;-;la:jvj € Vn with z = (z1,...,2,)' € C" is given, let be w* =

E;=1 z,-w; € X and '

TBv form=20
G"‘(v)={w"~—Q5’nw" form>1"

Then, we have (cf. [13: Lemma 2.3)) for such v € V,,
IH(CH - C12C5,'CH) z = min {s(w* + w,w* +w): we X}
= 5(Gmv,Gpv) - ~(2:7)
>zt Agz = a(Bv, Bv) = s(TBv, TBv). -

Consequently, for n € N and v € V,, the sequence (||Gmv||s)men is monotone decreasing.

For the (n xn)-matrix A3 m» = Cy; —C12C5;' CH the following limit (cf. [4: Theorem
4] and [12: Section 7]) can be established. :
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Lemma 2.3. Suppose n € N,z = (z1,...,24) € C" and v = 37_, z,v; € Vy.
Then we have

IH(A;;',," — A3)z =||Gmv—TBv|? |0 as m — oo. (2.8)
The convergence liMm—co Gmv = TBv is uniformly on all bounded subsets of V,.
Proof. Because of Gnv — TBv,w* — TBv € X°, the limit (2.6) yields

0 £ s(Gmv,Gmv) — s(TBv, TBv)
= $(Gmv — TBv,Gnv — TBv)
= $(Gmv,Gmv — TBv)
Ls((Ix - Q°)w*, Q°(w* — TBv - w*))
=0
asm — ool

Forn € Nand i€ {1,...,n7} the elements in (1.8) are normalized by

(I = pBYu|2 =1 (2.9)a

and

I = pBY T ™2 + 0*|(Gm — TBRAP™|2 =1 (meN). (2.9
By the boundedness of the sequence (ui[?’m])meu in V, Lemma 2.3 yields immediately
Lemma 2.4. Fori€ {1,...,n"} we have
: _ LPlml
"ll_r‘no° (I = pB)u?; ”a 1. (2.10)

Forn e N,z = (z),...,z,) € C* and v = Z;=1 zjv; € Vy the Rayleigh quotient
of the matrix eigenvalue problem (1.6) is given by '

b (v) = a((1 - pB)v,v)
T m(v) = (I = pB)v||2 + p?|(Gm — TB)v||?

(m € Np). (2.11)

Hence, for v € V,; with a((I — pB)v,v) < 0 the monotonicity in (2.8) provides
0>T7 o(v) 2TF sy (v) 2T p(v)  (mEN). (2.12)

Since for v € V,, the sign of T7 , (v) does not depend on m € Ny, we have

Lemma 2.5. The number of negative eigenvalues of the matriz eigenvalue problem
(1.6) is for m = 0 equal to that for m > 1.

We have to introduce an additional notation of the eigenvalues of the matrix eigen-
value problem (1.6). Let

Fmml < glmml <L < golmml (0 m) € N x Np) (2.13)
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be all eigenvalues of (1.6) arranged in monotone increasing order. According to (1.8),
we define the elements @/™™ € V, (i = 1,...,n). If #™™ < 0 holds, then with
respect to (1.7) and (1.8) we have (%l.p["’m],ﬁf["’m]) = (Tf[‘-"’m],u':[?’m]) €R x V,.

Poincaré’s principle applied to the eigenvalues in (2.13) now gives the following
characterization:

~p[n,m] __ . o e _ pln,m) .
7 = aﬁél%.- omax, Ty . (v) = Tf (% ) (i=1,...,n). (2.14)

In the special case m =0 (Lehma.nn-Maehly method) we substitute v = Tw and obtain
from (2.14)

N . Tw, .
T.-p{"’ol — min  max a(Tw, w) G=1,..,n) (2.15)
S WCWn 0weW a(w,w) -

Consequently, we have (cf. [10]) proved
Theorem 2.6. Fori€ {1,...,k;} and n € N with n > k; we have

w8, < 7ol (2.16)

Moreover, the quantities f,-p["’ol € R are upper Rayleigh-Ritz bounds to the eigenvalues

7P, of the operator T € L(H,) with respect to the trial functions (I — pB)vy,...,(I —

-t

pB)v, € H,.

3. The convergence of the eigenvalue approximations

In order to prove Theorem 1.2, we first give some results on the eigenvalues of the matrix
eigenvaluc problem (1.6).

Lemma 3.1. Form € No andi € {1,...,n} we have .
gelnttml < pelmml ) e W), (3.1)
Proof. Again, the Poincaré principle (2.14) provides

- 1, .
Tip["+ ™ = min max T7 ,.(v).

VCV‘:.H 0#veEV T
dimV =«

For the particular subspace
U(l) = spa.n{ﬂf["’m], e ’ﬁ:)[n,m]} C Vn C Vn+1

we have

= p[n+1,m] . P _ =pln,m] .
7! < max T v) =Ty :
! T o#veU® Lm(®) =%

and the assertion is proved i



On the Convergence of the Goerisch Method 671

Lemma 3.2 Fori€ {1,...,k; } we have monotone decreasing -
lim #"% = 72 <. (3.2)
Proof (cf. [8: Satz 2.2]). We set UY = span{u”,,...,u”;} C H,. For all

sufficiently large n € N Lemma 2.2 gives dim Q,(U(")) = 1. For those n € N we obtain
by (2.15) and (2.16)

- p[n,0] a(TQnu,Qnu) a(TQ,,u,,,Qnu,,)
2, <7 < ur:lua(x) a(Qnu Qn) o(Qntin. Onn) |

At this, we assume the maximum to be attained by the point u, € {u € UM : |Jua =

1}. According to (3.1) the sequence (7 "’0]) eN is'monotone decreasing. Now, we shall
prove the existence of a subsequence converging to 7°.. By the equivalence of all norms
on U) and by the boundedness of the sequence (u,.), there exists a subsequence (u,)
with .

n}imoo lun —uolla =0 for any up € U™ with |juoljs = 1.

Due to (2.5), we have limp/ o0 ||@n'un— ug||la = 0. Consequently, (2.2) gives

2. < lim #M0 < o(Tuo, uo) _

' T onl—oo - a(uo,uo)
and the assertion is proved il

Because of the monotone convergence (3.2), we always have 7":[_“'0] < 0 for all

sufficiently large n € N. Due to Lemma 2.5, for those n € N and z € {1,...,k; } the
notation (2.13) of the eigenvalues of (1.6) is now superfluous. Then, n~ > R: holds in
the arrangement (1.7).

‘Lemma 3.3 For all sufficiently large n € N and 1 € {1,...,k; } we have

8, < et cpplrml 0o (me ) (3.3)
and . ) ‘
lim T”l" m _ p[," .0} (3.4)

Proof. Lemma 2.5, Poincaré’s prmcxple (2.14) and the monotonicity in (2.12) gwe

the estimates
0> = min max TL ()

YC¥n 0#vEV
dimV
+1)
> min max T v —r"[""‘
= vcva 0£vEV Lm+l()

dimV =i

> min max_ Tf o(v) = r’[" o> re
'z .

Since eigenvalues depend continuously on the elements of its matnx (3.4) follows by
(2.8) 18
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Now, (3.2) and (3.4) give
Theorem 3.4. Fori € {1,..., k;} we have

lim 'rp[" o _ =7’ (3.5),
and
lim TP[n ™ - =7’ “(3.5)s
n,m-—00

monotone decreasing on N and N x N, respectively.

Proof of Theorem 1.2. By the transformation 7 — p + 725 Theorem 3.4 pro-
vides the assertions il

Remark 3.5. The assertions of Theorem 1.2 are also valid if p € ¢(A) is an isolated
eigenvalue of (1.1) of arbitrary multiplicity.

In  this case,

D, {vE’D(A) (A— va—O};é{O}

is a non-trivial closed subspace. We denote by Hf = H,©D, the a(, -)-orthogonal com-
plement of D, in H, and by P?: H, — H? the corresponding orthogonal projection.
Instead of (1. 10), suppose now

U P?(V,) isdensein (HZ,| - |la)-
neEN

Since H? forms a reducing subspace of A, the operator
-1
T = A((A~-pDlaz) ™ € L(HY)

is bounded and self—ad_]omt (A%;,u”;) € R x H, is an eigenpair of (1.1) if and only if
(r2;,4”;) € R x H? is an eigenpair of T € L(H?) for i € {1 .., k; }. Obviously, we
have for v € D(A) the equation

(I -pB)v=A"Y(A-pI)v=(I - pB)P*v.
‘Since D(A) is dense in H,, we have for all v € H,
a((I - pB)v,v) = a((I — pB)P*Pv, P*v)

and

I = pB)vlla = I — pB)P*v|a

and thus
T7 o(v) = TF o(P?v).

Due to assumption (L), the prOJectlon P?: V, — HY is injective. Setting
W, = (I pB)P?(V, ) c H? (neN)

Lemma 3.2 holds in this 81tuatlon too.
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4. Convergence of the eigenelement approximations

The eigenspace N’ corresponds to the eigenvalue 77, of the operator T € L(H,). Since
N?, is a reducing subspace of A, the operator T' and the projection P?, commute. The
distance of the eigenvalue 77, to the next spectral point of T is given by (1.15).

We denote by {Ex € L(H,) : A € R} the continuous (to the left) spectral family
of T. Then the following estimation of the distance of an element v € H, to its best
approximation in N’ holds (cf. the more general result [9: Satz 2.3]).

Lemma 4.1. For v € H, we have
1
I = P2, yo)|? < 7—p[a(Tv,v) — 2 ,a(v,v)|. (4.1)

Proof. Due to the spectral theorem, we have for v € H,

Irn+o

a(Tv,v) = 7°,a(P?,v,v) + / Ada(Ezv,v)
Lot 2'd
IT|+0
> 12 a(P?,v,v) + (7%, +°) / da(Exv, v)
LIAT

= Tfl a(Pflv’v) + (Tfl + 72)[0(‘”7”) - a(Pflv’U)]

= 1°,a(v,v) +v* a((I = P?,)v,v)
and the assertion is proved il

Setting u,v € H, with v = (I — pB)u # 0, the equation "—a((%%l = T} ,(u) holds and
(4.1) provides A
a(v v)

”(I P2 ) " [Tlf,o(“) - Tfl]' (4.2)

Proof of Theorem 1.3. In pa.rtlcula.r, we now set for m € Ny and sufficiently
largen € N
= (T-pB)ufP™ (e T?)) (4.3)

Then, according to (2.9), and (2.9)s we find

a@P™ ) <1 (e d?y)

and )
0> rfpm = 1p i) 2 Ty (ul ).

Consequently, (4.2) yields

lz - P2 )v"‘"'"‘ll [ -] Ger
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Now, Theorem 3.4 gives .

Jim (17 - P")v‘"°’|| =0 (GeJt) .. a4k
and : W | - |
m (7= P2y =0 ez, O (44)

By (4.3), we have (A — pI)™! "[" ™= Bup["’ ™ The operators (A-pI)! and B and
the projection I — P?, commute Hence, (4. 4)1, prov1des for j € J? -

B(I - P2 )u!P™ = (4 - pn)T} (1 - P* D v [" ™0 (4.5)
as n,m — 0o and finally
(1= P2yuftmm = (1~ Pf,)vi[;'m] +pB(I = PP W™ o T (4.6)

as n,m — oo. The limits (2.10) and (4.4)s give

(1= 55) NP2y 2 = 1 - oB) P2y
= P2,y
= I = i = P2y
—1

as n,m — oco. Consequently, we have

P — (o) —eny e

as n,m — oo and, by (4.6), _
' NP2 — (222 (4.8)

as n,m —. oco. With the aid of (1.9), (2.10), (3.5), and (4.8) we arrive for 7,5 € J?,
with z # j at

1 plnm]  oln,im]
(ot

. (% wAlnsml _ ol pln, m]) (

l"—]
T

< ™,

. f
a -

| | 1/2
_ ”uP[n m]" (( ) ” p[n m]” p[n m], ;_;[:; ,m) +||vp[n m]” )

—0
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as n,m — 0. Due to Theorem 3.4, the assertion (1.16), is proved.. The proof of
assertion (1.16), follows the previous pattern.

The equations (4.5) and (4.6) provide the quantitative estimation (1.17), since the
norm of the self-adjoint operator S = (A — pI)~! € L(H,) is given by

| 1
- +. _ 1
IS1 = max {|o| € RY : 0 € 0(S)} = TR

Thus the assertion is proved il

Proof of Corollary 1.5. According to (2.9), and (2.9)s, we have for (n,m) €
N x Ny and j € J?, always ||vp[" "']|| < 1. Due to (4.7), the sequence (P”lupl" 0])

and the net (P?,u p[" m]) are bounded in the finite-dimensional subspace N” Hence
we have a subsequence (n') in N and a subnet (n',m') in N x N, such tha.t by (4.6)
the limits (1.18), and (1.18), exist, lying in N?, Now by Theorem 1.3, the system
{22, € N?,: jeJ?,} constitutes an orthonorma.l bams of Np |

5. Numerical example I

We shall consider the exgenva.lue problem for partla.l differential equatxons glven in {13:
Section 3]. Let

Q=(—1,1)x(—1,1).cR2 ~and  He = H) x (L2(Q) x Ly(Q))..
We define V
a(u,v):/ﬂ(agradu{gradﬁ]+gradu1'\7”+u”-grad61
+u;y +2u11'\711)d9 |

b(u,v) = / (u1.61 +.u11 . \7”) dasy
Q

for u = (ur,usr) and v = (vy,vyr) € H, with o € C°°(Q) a(z,y) > 0 and (2a —
1)(z,y) > 0 for (z,y) € Q.

The inner product a(:,-) gives a norm in H, which is equivalent to the natural norm
of this product space. By partial integration one shows that (1.1) is a weak form of the
boundary value problem

_div(a gradu; + u”) = (,\'._“1)',” in Q
gl‘adur-{- ull.:ll(t’\:—l)ull. in Q ’ e
ur= 0 on J9.

We set X = Lz(Q) X (Lz(Q))2 x (L2(Q))2

s(u,v) = "/ (01 Ui Vortugr oV tarr Vi urop + 2y \"u)dQ
= T
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foru = (u1,u11,u111),v = (UlyVll,VHl) € X and
T: H, 3 (fr,f11) — (fr,f11,grad f;) € X.

In our calculations of bounds we restrict the problem to the symmetry class (invariant
subspace) ‘
H, = Hy ()9 x (Ly(2)1® x Ly(2)(*1)

and
X = Ly(R2) O x (Lo(Q)M®) x Ly(2)(®1) x (Lo(2)1®) x Ly(@)OD),

respectively. We use the same trial functions vy,...,v, € H, and wi,...,w?, € X° as
in {13: Section 3]. ‘

Here, we shall consider a(z,y) = 1 for (z,y) € Q. The corresponding eigenvalue
problem can be solved explicitly: A = 1 and A = 2 are eigenvalues of infinite multiplicity,
forming the essential spectrum. Let (px ., uk,t) € R x H}(S2) be the eigenpairs of the
Laplacian operator —Au = pu with

2oy (T
H = (k4 )(2)
. 'k i
ug(z,y) = sin <77r(z + 1)) sin (%r(y + 1)) ((z,y) € Q; k,1 €N).
Then the further eigenpairs of (1.1) are given by

(2 + p g, (i vk, gradukll)) cRxH, (k,1 € N).

Thus, we find :
2< A =241,
<X =243
=X =2+4p3,1<28<30<33<37<40
<A =2+ 33 ’
< As

and, with our local notation for p € (A3, Ag),

" NP, = Spa-n{(li’l,s u1,3, gradu; 3), (ua3,1 us,1, gradus,x)} C H,
N—T-l = spa.n{(,u;,s us 3, gradua,s)} C Ha.'

See {13: Section 3/Table 1] for upper and lower bounds to the eigenvalues. Now, the
results
a((ri(:[ms’ssl)'l u4_0i[108,56]’ (Tit;[loa,ss])_l u«iO][lOS,SG])
1.000000181 fori=j =1
= { 1.000000182 forz=j =2
1.94.107'% fori=1,j=2
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and
a((Ti(;[IOB,SS])—l “101[108'56]’ (Ti(;[loa,se])_l uiol[ma,ss]) — 1.00049

put to the test the second limit of (1.16),. The Tables 1 and 2 show the quality of the
error estimates of (1.17).

. , 56 b 40{108,56
s e = PREE (14 gy [0 )

| 5.438- 10-8 2023 . 2.625-107 = 7.672-10"°

2 1.037- 1077 29.23 . 2.639-10°7 = 7.713-10"¢
Table 1: Approximation of the eigenspace N*§
56 156
p € (o h) G = PROWR™NZ N (1t )2 - [72, - 3000

T+

28 3.068 103 621.8 - 1.365-1073 = 8.488.107!

30 3.915-107% 1006 - 2.075-107% = 2.088.10"!

33 5.979-103 2638 - 4.196-107% = 1.107-107"

37 1.244 1072 9034 - 1.358-10"¢ .= 1.239-10"!

Table 2: Approximations of the eigenspaé:e N{, depending on p € (A3, 4)

Mathematica [11] was employed for the symbolic evaluation of all inner products and
for the calculation of all matrices. The eigenpairs of (1.6) were calculated by means of
a suitable library routine.

6. Convergence results for the right-definite eigenvalue
problem '

Let Hp be a separable, complex Hilbert space with inner product 5(-,-) and norm || - ||5.
Suppose that a(:,:) is a Hermitian sesquilinear form in H, with dense domain H,.
Furthermore, a(:,-) is assumed to be bounded from below and closed. Without loss of
generality, let a(-,-) be an inner product such that for x > 0

. nzb(v,v) < a(;‘)av) | _ (v € Hq) .

holds. By the closedness of a(-, ), the inner product space (Ha,a(:,-)) with norm || - |4
is a Hilbert space (see, e.g., [5: Chapter VI/Subsection 1.3]). We then consider (cf. [13:
Section 4]) the following right-definite eigenvalue problem:

(6.1)

Find eigenpairs (A, u) € R x Hy with u # 0
such that a(u,v) = Ab(u,v) for all v € H,.
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This eigenvalue problem is equivalent to the eigenvalue problem for a self-adjoint and
positive definite operator A in H; defined by

D(A) = {u € H, : a(u,v) = b(i,v) (v € H,) for some i € H,,}
b(Au v) = a(u v) for allu € D(A) and v € H,

where D(A) is dense in the Hilbert space H, (see, e.g., [5 Chapter VI/Subsection 2.1]).
Thus, || - ||« gives the energy norm on H, performing

llvllz = b(Av,v) (veD(4)) and  plls <& lvlla (v e Hy)
Now, let the eigenelements uf; € H, of eigenpairs (\%;,u%;) € R x H, satisfy
buf,uf) =8 (k€ {=ky,oo, =141, kF)).

Again, we assume that X is a complex Hilbert space with inner product s(-,+), norm
|l - ||ls and isometry T : Hy — X, -

- 5(Tu, Tv) = b(u,bzv))- (u,v € Hb_).

We denote by : ' ’
X = {weX: s(w,Tu) =0forallue Hy} |

the s(-,-)-orthogonal complement of THb in X. If the elgenvalues /\i, are represented
m the form
1 : o 1 4 5:&
/\:h—p-i-'— Wlth Tii:,\_p.———— (‘l=1,...,kp),
T4i i~ P
then the quantities T8, € R are cha.racterlzed agam (see [13 Theorem 1. 3 a.nd Corolla.ry
4.1]) by variational principles.

For a discretization of the elgenva.lue problem (6. l), et n € N and m € Ny, and
suppose the followmg

(Rhvy,...,ua € ’D(A) are lmearly mdependent Vo= span{vl, ~ sy Un b V,,ﬂD,,V = {0}

(R)z w},...,wxreX satlsfy s(w; Tu) = a(v,,u) forallue H, (1 =1,...,n).
(R); wg,...,wS, € X° where wo = 0 and wy},. ,w;’n are linearly independent.

Then, we construct matrices Ag = (aik ), A =-(‘a,~;l¢))).A2 = (af:)) by

—‘b(Av;,., fiv;)
53=awhm) - (siksn),

a®) = b(vk, vi)
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and matrices Byy = (83"), Bi2 = (8;”), B2 = (6”) by

by = s(wi,w) (1<i,k<n)

p1? _ [ s(wg,wi) form >.0 1<i<ml<k<

ik {,0 for m = 0 (1<i<n;1 <k <max{l,m})
bEZ'l) = {i(wz,w,) gz:zzg (1S1,k5ma.x{l,m}),

and consider the matrix eigenvalue problem

(A] —pAz).’E =T(B” —31236135—2/)141 +p2A'2)Z (62)
where 7 € Rand z € C*. Denote all non-zero eigenvalues of (6.2) by T:i[i"’m] and arrange
them in the order

ASRIP SR S L Y P O SIS At (6.3)

where n=,nt € Ny with n~ + n* < n. Then we get (see [13: Theorem 4.2]) the
eigenvalue bounds

AR g (PRt a0 (=1, min{nT, k) )) (6.4)
and
AP — (YT > N (=1, min{nt kF)). . (6.9)

Assume the eigenvectors of (6.2) to form an orthonormal system with respect to the
inner product

C* xC" 3 (z,y) — xH(B“ - BnB{lele — 2pA; + pzAz) yeC.
Now, if (Ti[i"'m],a:) € R x C* with z = (z,...,z,)" € C" is an eigenpair of (6.2), we
set

ui{?’m] = ijvj eV (i=1,...,n%). ' (6.6)
i=1

This orthonormalization is equivalent to 4 . . ‘
b((A — pDul™™ wfmly = st (k1e (<1, —nT 40t 1)) (67)
Remark 6.1. Observe that the quantities (6.3) - (66) are denoted exactly in the

same manner as the corresponding ones in Section 1.
Now, assume (1.11) to be fulfilled, and
|J(A=pI)(Va) is dense in (Ho, || -Ils)- ‘ . (6.8)
neEN
Theorem 6.2. Let 0 < p & 0(A). Then the assertions of Theorem 1.2 hold.
Denote by
: P{,: Hy — N&,

the b(-,-)-orthogonal projection of Hy onto the eigenspace N£,. Furthermore, we adapt
from (1.14) and (1.15) the definition of 67, v2 and v%.
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Theorem 6.3. Let 0 < p ¢ o(A). Then:

For 1,5 € J§, we have the limits

Jim [|(7 - PP, =
. (6.9)
nangob(( o[n, 0])— [" 0] ( i[" 0])—1 ui[;'ol) = 6, ¢
and
im0 = PL)wg,
(6.9)s
pln,mly—1 _ p[n,m] [r,m]y— [" ml\ _ ¢ .
i (B, (7 ) < 6
For m € Ny and suffictently large n € N we have the quantitative estimates
n,m 1 n,m .
(I = P2y ™2 < (1 + 5%) 5o [Tff,. 1 _ Tf,] GeJr) (6.10)
and )
1= PE)uE™ i< (14 ) g [ 2] Ge st

Corollary 6.4. There ezists a subsequence (n') in N, a subnet (n',m') in Nx N
and a b(-,-)- orthonormal basis

{(ppij € N:f:l 1J€ J:‘;:l}

of N%, such that for j € J§, the limits (1.18), and (1.18), hold (with respect to the
energy norm on H,).

In the following section we sketch the proofs of the Theorems 6.2 and 6.3 giving
mainly the differences to the left-definite case.
7. Proofs for the right-definite case
Due to our assumptions, we have p ¢ o(A4). In particular,
= (A= pI)™ € L(Hy)

is a bounded and self-adjoint operator. Obviously, (A2 ;,u” ) € R x H, is an eigenpair
of (6.1) if and only if (7#;,u”;) € R x H, is an eigenpair of T € L(H}) with 7?2, = Tpl—

—i—P
forze {1,...,k;}. We set
Wo=(A-pI)(Va)CHy (neN).

Due to (6.8), '
U Wy is dense in (Hy, || - ||5).
neN
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Based on the assumptions (R); - (R)s, we define for (n,m) € N x Ny the Goerisch
mapping Gm : V;, — X by

TAv form=20
Gom(v) = { - Qw* form>1
with n o
v=Zz,~vj€Vn and w'=Zz,~w;€x
R =
where z = (z),...,2,)" € C". Then we have

zH(B;) — B12B3,' Bft)z = min {s(w* + w,w* + w): w € X, }
= $(Gmv,Gmv)
> zf Agz = b(Av, Av) = s(TAv, TAv).
For the (n x n)-matrix Ag,m = By — B2 B;,' Bf, the limit
2" (Ao,m — Ao)z = ||Gmv — TAv||> | 0
as m — oo holds. Furthermore for (n,m) € Nx Ny and ¢ € {1,...,n"} we have
n,m ' n,mj(2
¢4 = oDy w2y + (G — TA 2™
hm || A-— pI)up[" m]“b =1
Forne N, z=(z1,...,z0)' € C* and v = Z;»':] zjv; € V,, the Rayleigh quotient
of (6.2) is given by

b((A - pI)v,v)

T? (v) =
") = oIl (G — TAWT

If we introduce the notation (2.13) for the ei enva]ues of (6.2), Poincaré’s principle
g
yields
i'-f["»’"] = %1‘2 Ogl'fxexv TR m®) (i=1,...,n). (7.1)

In the special case m = 0 (Lehmann-Maehly method) we substitute v = Tw and obtain
from (7.1)
oln.0) _ b(Tw,w)

BB X Yy (T e
Theorem 7.1. Fori€ {1,...,k;} andn€N with n > k,, we have
< P[" 0]

Morcoucr, the quantities ?{’["’o] € R are upper Rayleigh-Ritz bounds to the eigenvalues
7P, of the operator T € L(H,) with respect to the trial functions (A — pI)v,...,(A —
PI)vn € Hb

Now, the lemmata and the theorem of Sectlon 3 hold analogously.
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Proof of Theorem 6.2. By the transformation 7 —— p+ , Theorem 3.4 provides
the assertion B

For v € Hy,u € D(A) and v = (A — pI)u # 0 we have

2 _ b(v,v
”(I_ Pfl)v”b < (79 ) [le,o(u) - Tfl]~ (7.2)

Proof of Theorem 6.3. For m € Ny and sufficiently large n € N we set
2P = (A et (e e

giving
b2y <1 ety

and
0> 720 = Tp (il > 7 (),

For j € J?, estimation (7.2) yields

‘n,m 2 1 n,m
"(I_P_pl)vi[J ]”b < 7—£‘[rp[. ] —-7f ]

- -1

and consequently

nle “(I Ppl)vp[" 0]” =0 (7‘3)0
Jlm (I = P, <o, a3

For j € J?, the limit (7.3), provides

(I - PP)umm 2 (4= 1y (I - P”l) u”[" "m0 (14
as n,m — oo, furthermore
A= PPyue™ = (1 P2y g o1 = PP Yum™ o0 (75)
as n,m — oo and finally ‘ . ’ |
I - P2y ™), — 0

'

as n,m — 0o. Based on
(A2, - P)zllp" el m]”b = ”(A PI)Pplup[n m]”
| = [lp ot

= ”"”"’llb 7 - P"x)v”‘""’lll

-1
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as n,m — 090, the limits (6.9), and (6.9), can be proved in the same manner as in
Section 4.

The quantitative estimate (6.10) follows from the equations (7.4) and (7.5) by
17 = P2,y ufty |2
(AU—P”>““”AI—P:nﬂ?”)

n,m n,m \ -1 o\ - n,m
< (It = P, + 21 = P2 ) o = Pyt
(e )pla-rgt

(8) st oo

I

IN

and the a.ssertlons are proved il

Remark 7.2. Theorem 7.1 gives reasons for the rigorous demand (6.8) on the trial
functlons In return; Theorem'6.3 yields convergence with respect to the energy norm.

8. Numerical example I1

Here, we shall consider the eigenvalue problem of Section 5 for a(z,y) = 1+z2y? ((z,y)
€ ), now given on the domain @ = (—a,a) x (=b,b) C R? with ab = 1. In this
case, there exists the essential spectrum o, C (0, 2] and the point spectrum in (2, +00)
whereas A = 2 = maxo,. is an isolated eigenvalue of infinite multiplicity. We shall

regard the side length ratio s = % as a system parameter.

We use: polynomla.l ‘trial functions vy,...,v, € 'D(A) C H,, orthogonalized with
respect to the inner product b(-,-) and generated via a suitable enumeration by the
functions

(@y) — (2 - )R - )y, (0,0))
(z,y) — (0, (z* 1y, 0)) (i, k € No).-
(2,9)— (0, (0, zPy?+)) o
Since the operator A in Hy is well known, the right-deﬁnite’-Lehmanﬁ-Maehly method
can be applied with these trial functions (cf. [13: Section 4]). Thus, by (6.4) and (6.5)

we get upper and lower bounds to the eigenvalues depending on the parameter s. The
Tables 3 - 5 give bounds for s = 1.1,s = 1.53 and s.= 1.9, respectively.
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Upper and lower bounds to the eigenvalues for s = 1.1

14 A A2 A3 A As As Ar Ag
2 Ail = Aiz = Ais = Ap+4 = Ais = Afus = Ap+7 = Ais =
7.230459699 | 26.036676 | 29.974332 | 50.8020 | 63.2713 | 74.7699 | 89.745 | 99.326
110 APy = A%, = A = Ng= | A, = A=A, =A", =
7.230459663 | 26.036662 | 29.974316 | 50.7991 | 63.2668 | 74.7641 { 88.973 | 96.656

Table 3: A%, = AZG%% and A2, = AVPIB40) 725600 _ 419 33

Upper and lower bounds to the cigenvalues for s = 1.53

n ’\I /\2 /\3 ) /\,| /\5 /\(.; /\7 z\g
9 Ai, = Aiz = Ais = Aia = Ais = Ais = Ai? = | Alg=
7.68%6468682 | 21.400952 | 39.065869 | 48.0362 | 55.3017 | 83.0767 | 89.119 | 101.0%
110 /\‘i8 = A%, = A= A = /\':4: /\f:, = A':z = A—i'l =
7.686468637 | 21.400942 | 39.065838 | 48.0328 | 55.2988 | 82.6021 | 87.778 | 101.04

Table 4: A%, = AZ8%% and A2, = 1040l A2560) _ 19 g

Upper and lower bounds to the eigenvalues for s = 1.9

r A ok A3 Aq As A6 A7
2 Ain = Aie = A5 = 'qa = Ais = Aie = AZ =
R.319955344 1 19.514135 | 41.063992 | 47.1348 | 61.1291 | 73.4526 | 84.453
1o ,\’:7 = . /\’16 = A‘:,} = /\1:4 = /\}:3 = A‘:Q = A‘:l =
R.319955285 | 19.514126 | 41.061346 | 47.1346 | 61.1254 | 73.0028 | R3.834

Table 5: A%, = Ai_[fs‘ol and A?, = A!1084.0), Aﬂg“"’] =123.1

When plotting the approximations of eigenvalues A3, Ay and A5 versus the side length
ratio s € [1,2], the famous curve veering phenomenon can be observed (see Figure
1). According to Theorem 6.3, the graphs of the first component of the eigenelement
approximations uft[? ™ e H, are plotted in Figure 1 for the indicated values of s and
the spectral parameters p chosen appropriately with respect to the Tables 3 - 5.

So far, this phenomenon has been described only for eigenvalues below the essential
spectrum (see, e.g., [1, 2] and the references given there).
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