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Abstract. Linear integro- differential equations with linear integral impulsive conditions are 
considered. Existence results and representations of solutions are obtained. Stability of these 
equations is investigated. 
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1. Introduction 
The application of solution representations is one of the basic methods in the theory of 
stability of functional- differential equations. For linear equations such representations 
have been constructed for a lot of equation classes including integro-differential equa-
tions (see [3 - 5]). Sometimes such representations are also called variation constant 
formulas. The present paper is aimed to obtain such formula for an integro-differential 
equation with integral impulsive conditions and to apply it in stability research. These 
impulsive conditions are natural for the equation considered since at any point the 
solution value is also determined by its prehistory. 

Delay differential equations with the same integral impulsive conditions were studied 
in [1]. However, the approach used here is closer to the one in paper [2] on a delay 
equation with usual impulsive conditions x(Ti) = B,x(r, —0), where the solution value in 
the impulse point is defined only by its limit from the left and independent of prehistory. 
Not many publications are concerned with impulsive integro-differential equations (we 
name here [8 - 11]). 

The paper is organized as follows. Sections 2 and 3 contain the statement of the 
problem and some auxiliary results. In particular, in Section 3 an existence theorem is 
presented and a fundamental function is explicitly estimated. Sections 4 and 5 contain 
the main results. In Section 4 a solution representation formula is obtained. In Section 
5 a connection of various stability types such as asymptotic and exponential stability 
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with properties of the fundamental matrix is established. In conclusion, an explicit 
stability result is presented. 

2. Preliminaries. 

Let R' be the space of n-dimensional column vectors x = (x i ,x 2 ,... ,x) with norm 
l x ii = max i 1x1i, the corresponding matrix norm and E the identity (n x n)-matrix. 
Further, let L[a,b] be the Lebesgue space with usual norm iI X iiLIabJ = .J', ii x (s)Ii d.s, 
L. [a, b] the space of measurable essentially bounded functions x [a, b] —+ IR with norm 
ii n iiL[obj = vraisupa<s<ôii x (s )iJ (b < ), AC[a,b[ the space of absolutely continuous 
functions x [a, b] —+ R'1 with norm 11 Z 11AC[a6] = 1! x (a)ii + ii±iiL[a,b] and xr : [a, b] _+ IR 
the characteristic function of the segment [r, b], i.e. X, (t) = 0 if t < T and X, (t) = 1 if 
t>r. 

Let r1 (i ^! 0) with a = r0 < Tj < ... be fixed points. Denote by PAC[a, b] the 
space of piecewise absolutely continuous functions x : [a, b] —.* 1R'with jumps at the 
points r1 E (a, b], i.e. 

PAC[a,b] =	[a, b] .. R x(t) = y(t) +	iXrj(t) for tE [a, b] 
IS	 a<Zr1<b 

with norm
IiXiIPAC[a,b] = 11 x ( a)ii + iliiIL(ab] +	j2	ilIIi 

a<r<b 

where y E AC(a, b] and e IR". It is to be noted that . a function x E PAC [a, b] is right 
continuous. In the sequel we consider a 0 and b < . By PAC [to, ) we mean the 
space of functions piecewise absolutely continuous in any finite interval [ri, 7-1+iJ with 
Ti > t0. 

If we consider functions x E PAC[a,b], we *add to the set {T} the point i = a. 
Denote for x E PAC[a, b] . 

Lx(r1 ) = x(r1 ) — x(r1 — 0)	and	x(a) = x(a) 

Lemma 1 (see [4]). For any function x E PAC[a, b] the representation 

X ( t )	J±(s)ds +	 X(rj)ri(t)	(t E [a, b])	 (1) 
a	 a<r1<b 

holds. 

In view of the above lemma i X iI pAC[a,b] ? li( s )Il for any s E [a, b]. Relation (1) 
implies that PAC[a, b] with b < oc is a Banach space.
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3. Statement of the problem 
Let to > 0. Consider the linear delay impulsive integro-differential equation 

±(t) + A(t)x(t) +
/ 

K(t, s)x(s) ds = r(t)	( t .> to, x(i) e R)	(2) 

x() = (e,)	(e< t0) 

AX(Ti) = ]±ds +	Ax(rj) + a	(Ti > to)	(3) 

to	 to_<Tj <T 

under the following assumptions: 

(a) i 0 = ro <TI < ... are fixed points with limT1 = oo as i - 00. 

(a) 2 Columns of A: [0,00) R'°" and r [0,00) - R'° are integrable over any finite 
interval. 

(a) 3 Columns of K(t, .$) are integrable over any finite square [a, b] x [a, b]. 
(a) 4 b 1 : [0, r,j -	the columns of b 1 are measurable functions, essentially bounded


in any finite interval. 
(a) 5 ),, E flflXfl 

(a) 6 : [0, to) —+ R n is a Borel measurable bounded function. 

Let us introduce linear functionals 1 : PAC[t0 , oo) — R n by 
ri l(x) = J b(s)(s) ds +	AijA. 	(Ti > to).	 (4) 

to<r2<r 

By the same symbol we will denote a matrix-valued functional acting in the space of 
matrix-valued functions with columns in PAC[to,00) and defined by the same formula. 

Definition. A function x E PAC[t0 , oo) is said to be a solution of the impulsive 
differential equation (2)-(3) if equality (2) holds for almost all t E [to, 00) and the 
impulsive conditions (3) hold. 

Remarks. 1. Usually (see [2: p. 927]), the conditions that define the magnitudes 
Lx(T1 ) of the solution jumps for a linear impulsive differential equation are of the type 

Lx(T2 ) = B i x(TI — 0) + a,. 
If b 1 (s)	B, and A ij = B 1 (j = 0,1,... ,i —1), then from (1) and (3) for any x E

PAC(t 0 , 00) we obtain 

ri 

f bi(s).i(s)ds+ E	 ijx(Tj) 
to	 to<rj<ri 

= B (X( - 0) — 1: x(rj) + B	x(r) 
to<r,<r,	J	to<r2<rI 

BX(T —0).
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Therefore, the conditions (3) are of a more general type than the usual ones. For integro-
differential systems it is natural to assume that the magnitude Lx(r1) of the jump of 
the solution depends, generally speaking, not only on the value x(7 - 0) but on the 
behavior of x on the interval [t 0 , 71). 

2. For an integro-differential equation an impulsive condition including both the 
function value and its integral also seems natural: 

Ax(T) =B 1 x(7- - 0) + J c(s)x(s) ds + a	(T > o)
	

(5) 
to 

Since by (1) 

Bx(r1 - 0) + f c(s)x(s) ds 
to 

BX(T _0)+Jci(s) (Je)d+ 
to	to 

= BX(T —0)+J(s)dsfc()de+ 
to 

=] ds+ 
to	 to<r1<r 

with

x(7-x71(s) ds 
to<rj<rj	 I 

to <r, <T 
] c ( s )Xri (s ) ds x(Ti) 

b(s) = B + 7 c) d	and	Ajj = B + J c(s) (s) ds, 
to 

then (5) coincides with (3). Thus, (5) is a particular case of (3).


Definition. An impulsive integro-differential equation 

(t) + A(i)x(t) + f K(t,e)x(e)de = 0	(t >— s,x(t) E R) 

x(r) = I b ((e) d +	Ax(rj)	(r > s) 
3	 3<r<r, 

is said to be a homogeneous s-curtailed equation. The solution X( . , s) of this equation 
satisfying X(s, s) = E is said to be a fundamental function of equation (2)-(3). 

We assume X(t, s) = 0 if t <s.

(6)

(7)
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Lemma 2. Let assumptions (a) i - (a)6 hold. Then for any to ^! 0 the initial value 
problem (2) - (3), x(to) = a has one and only one solution. 

Proof. Assume without loss of generality that 0 to <r 1 . In the interval [to, 7-1) 
the initial value problem for the integro- differential equation without impulses has one 
and only one solution x(t) (see [4: p. 139] and [5: Theorem 10.3.9]) since it can be 
rewritten as

±(t) + A(t)x(t) + J K(t, s)x(s) ds r(t) -f K(t, s)(s) ds. 
to	 0 

The value 1(Ti) is also defined uniquely by 

x(ri )=x(ri —0)+J b i (s)(s)ds+A i ox(to)+a i =a 
to 

Then, in the interval [r1 , 72 ) the function x(t) is a solution of the initial value problem 


±(t) + A(t)x(t) +J K(t, s)x(s) ds = r i (t)	(x(T1) = a), 

wherein

rl (t) = r(t) - J K(t, s)x(s) ds 

is also defined uniquely and satisfies assumption (a) 2 . Thus, the initial value problem 
has one and only one solution on [ t 0 , 7-2). Similarly, one obtains by induction that the 
problem has one and only one solution on the half-line (t0,). 

Remark. The homogeneous s-curtailed equation (6)-(7) is a particular case of (2) 
- (3), where to = s and	0. 

Denote

	

fli = max	 ... 

The following auxiliary result gives an estimate of the fundamental matrix. 

Lemma 3. Suppose assumptions (a) i - (a)s are satisfied. Then, for the fundamen-
tal matrix X(t,$) the estimate 

IIX ( t , s )II <exp

{ 

fl(i +'3i) I	+ I 
II K(, II de) d( }

	

(8) 

holds.
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Proof. Denote H(t,() = f 1 K((, ^) 11 dC and by x(i) a solution of the s-curtailed 
homogeneous problem (6) - (7). Let us estimate 

y(t, s) = tI x IIPnc[3,t] = Ix(s)II 
+ J	±(j d( ±	IIx(r)II. 

	

5	 s<r,<i 

We recall 11x(s)II = 1. 

First, consider y _i <s < t < r. Then, 

=	 _IIR'(c,(e), 
and therefore 

y(t, s) = !I x Il pAc(st]	Ix(s)I! 
+ J (II A(()II + H(i,	)• sup II x ()II d( 

eE[s,(] 
5	 (9) 

<1 ±f (II A )II + H(t, )))y((, s) d(. 

By the Gronwall-Bellman inequality 

y(t,$) <exp {I (II A()II + H(t,) d(}. 

Next, let r1 _ 1 < S <T, <t < r 1 . Then, similarly, 

J (II A )II + H(t, ). sup Ux()II d( + 1 +1 II b1)II II±()II 
E[s,] 

5	 5 

f(II A()II + H(t))y((,$)d( + 1 +$i (y(ri - 0, s) —1). 

Substituting into the last term y(i-1 0, s) - 1 from (9), one obtains 

y(t, s) 
< I (II A()Il + H(t, )y((, s) d( ±1±	J.(IIA()II + H(t, )y((, s) d( 

1± (1+ ) J (II A()II + H(t, )y((, s) d(.
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Thus by the Gronwall-Beilman inequality 

y(t, s)	exp {(i + ) I (II A )II + H(t, ) d( 

Let 7_ 1 <s <r < TI <i <rj 2 . Then, 

] (II A()ll + H(t, ) sup x() d( +1+1 E(s() 
3	 3 

r + I 

+ f II b +i (CII II)II d( + IA+i dl llx(Ti)ll. 

Similar to the previous argument one obtains that the first three terms do not exceed 

1+ (1+ fli) J (II A()ll + H(t, )y((, s) d(	 (10) 

and the last two terms do not exceed 

+'
 (

1-i + I j ll ±(ll d + lIx(T)Il) 

:5	+i (y(r% -- i - 0,$) - i)	 (11) 

0+( 1 +	J (II A )ll + H(i, )y((, s) d(. 

From (10) and (11) one obtains by summation 

y(t,$) <1 + (1 + p)(1 + fl+i)J A(() 11 + H(t))y((,$)d. 

By the Gronwall-Bellman inequality 

y(t, s)	exp	1(i + j) J (II A()Il + H(i, ) d( 

The induction step from 

Ti_I^S<T;<...<Tj_i<tTj 

to
T1_iS<T1< ... <Tj<i<Tj+1 

is similar. Hence, 

ll X ( t , s )Il	y(t, s) :^, exp I II (1+	J (II A()ll + H(i, ) d( } 
3 

which concludes the proof I
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It is to be emphasized that the proof gives the estimate (8) not only for IIX (t , s)II, but also for

y(t, s) = IX(t,$)II 
+ f II X (e, )II d +	X(', )II. 

	

3	 s<r,<t 

Thus, the following statement is valid. 
Corollary. Suppose the assumtzons of Lemma 2 hold. Then, 

fs)f d	exp	H (1+ ) I (IIAII 

+ I 
II K(e, II de) d( I	:^ 3 

4. Solution representation 

The main result of this section (Theorems 1 and 2) deals with the solution representation 
and extends results obtained in 14 , 51 for non-impulsive equations. 

Lemma 4. Suppose assumptions (a) i - (a) 6 hold. Then, the solution of the ini-
tial value problem for the homogeneous equation (2) (r(t) 0, = 0), with non-
homogeneous impulsive conditions (3), x(to) co can be represented as 

x(t) =	X(t,rk)cxk +X(t, to) ao.	 (12) 
Tk > O 

Proof. We perform the proof for to = 0 (for to > 0 the proof is similar). The 
function x(t) defined by (12) satisfies the initial condition since X(0,0) = En and 
X(0,Tk) = 0 (k > 1). Then, x(t) also satisfies the homogeneous equation as a linear 
combination of functions X(t, r) (r1 <t) satisfying the homogeneous equation. 

Let us prove that x(t) satisfies the impulsive conditions (3). For a fixed i the sum 
x(T1 ) in (12) contains only i + 1 non-zero terms 

.X(T,0)cxo,..K(T1,T i )a l , ... ,.X(r,r1)a. 
By the definition of the fundamental function X(t, 0), X(t, 7-1 ),. . . , X(t, r, 1 ) satisfy the 
homogeneous i-th impulsive conditions 

X(T1 ,0) - X(T - 0,0) = l(X(.,0)) 

X(7,71 ) - X(r1 —0,ri ) = 

X(r,r_1) - X(r1 - 0, 7-i- 1 ) = l(X(.,r2_i)) 

(we recall that the functionajs l i are defined by (4)), whereas the function X(t, r) 
satisfies the non-homogeneous condition	 - 

X(r, r,) - X(r1 - 0, r) = E - 0 = 1 1 (X( . , Ti)) + E
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since X(t, r1 ) = 0 (t < r1 ). Thus, 

x(r)—x(r1-0) 

=(X,r) - X(r - 0, rk))k + (X(T,TI) - X(r - 0,r))a 

=l(X(•, Tk)) Q k + I (X( . , r))o + a 

= i ( Ex(.rk)ok) +a 

= l(x) + a 

which completes the proof I 

Remark. One can easily see that Lemma 4 is also valid for the homogeneous equa-
tion with impulsive conditions (5) since the above proof is based only on the linearity 
of impulsive conditions and on the properties of a fundamental function. 

Consider the non-homogeneous equation (2) with homogeneous impulsive conditions 
(3) (i.e. ai = 0). The following statement gives the solution representation for this 
impulsive equation. 

Lemma 5. Suppose the assumptions (a) i —(a) 5 hold and X(t, s) is the fundamental 
function of equation (2) - (3). Then the solution y of the initial value problem (2) - (3), 
y(to) = 0,a 1 = O,p(t) 0 can be represented as 

Y(t) = j X(t, s)r(s) ds +	X(t, r) f b(s)r(s) ds.	 (13) 
to	 to<ri<t to 

Proof. We again perform the proof for to = 0 without loss of generality. Denote 

= I b i (s)r(s) ds. 

If y is defined by (13), then the three terms in the left-hand side of (2), where x is 
changed by y, are 

(t) = r(t) +X(t, s)r(s) ds +	X(t, T)fi	 (14) 

t	

00 A(t)y(t) = / A(t)X(t, s)r(s) ds +	A(t)X(t,r)
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t	 t	 3 

/ K(t, s)y(s) ds = f K(t, s) (/ X(s, r(() d( +	X(s, r:)fli) ds 

 K(t 
I 
s)X(s, () ds ) r)d( + E K(i,()X((,r1)d( . 

Hence,

(t) + A(t)y(t) + / K(t, s)y(s) ds 

= r(t) + f (X;(t, s) + A()X(i, s) + I K(t, X((, s) do r(s) ds 

+	r) + A(t)X(t, TO + J K(t, X((, r) do) 

r(t) 

(the expressions in the brackets are equal to zero since X( . , s) for each s is a solution 
of the homogeneous equation (6)). 

It remains to demonstrate that y satisfies the homogeneous impulsive conditions 
(3), namely

ri	 I-I 

y(rj ) - y(Tj - 0) = ly 
= 

J b(s)(s) ds +	jy(Tj).	 (15) 

0 

First, let us prove that for any sequence {tk } tending to 7-i from the left the eua1ities 

li	
0 IM 
JX(tksr(s)ds ]X(Ti - 0,$)r(s)ds 

tk	T, 
0	 0 

tk_OJJ	
= / ds]b(t)X;(,$)dt 

hold. By Lemma 3, 

II X ( t k, $ )r ( s )II	exp {(i + Bi ) f (I A 0I + I I K(e()II d ) d(} . IIr(s)lI.
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Therefore, the functions under the integral on the left-hand side of the first limit equality 
are uniformly bounded for s < r. Thus, the Lebesgue convergence theorem yields 
the first equality. -By assumption (a) 4 and the Corollary of Lemma 3, the functions 
f b(t)X(t,$)dt are bounded for s <ik <i 1 , since 

f b(t)X(t, s) dt < sup IIb(t)II J 11 X ( t , s)II 
0< t <r 

0	 --	0 

Again, the Lebesgue convergence theorem leads to the second limit equality. 
For each s the function X( . , s) satisfies the impulsive conditions 

(Ti, S) = X(r - 0,$) + J b1 (t)X(t,$)dt + E A ii 	- X(rj - 0,$)). 
0	 3<r, <t 

Denote in (13) (to 0) 

z i (t) = I X(t, s)r(s) ds	and	Z2(t)	X(t, r) / b(s)r(s) ds 

Then, y(t) = Z1  +z2(t) and

= r(t) + I X,(t, s)r(s) ds 

The latter equality and the above limit equalities yield 

z 1 (r) - z i (r —0) = /
	 ri 

 X(r1 ,$)r(s)ds - f X(7-i - 0,$)r(s)ds 

= J (i b(t)X(t, s) di) r(s) ds 

ri 

+ f	5(X(rj,$) - X(rj - 0,$))r(s)ds 

0ri 

= / b(t)z(t)di - J b(t)r(t)di +	Az1(7-) 

0	 0


= l(z1) - 

/ b
1 (t)r(t) di
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since

.	)13(X(r,$) - X(r, - 0,$)) =	Aj(X(r,,$) - X(r, - 0,$)) 
O<r,<r, 

as X(t,$) = 0(0 1< s). By Lemma 4, 

z2(r) - z2(7 —0) = 11(z2) + J b(t)r(t) di. 
0 

Consequently,

- y(r, —0) z1 (Ti ) -	- 0) + Z2 ( Ti ) - Z2 (Ti- 0) 
ri 

= l(z1) - J b(i)r(t)dt + l(z2 ) + I bi (t)r(t) dt 

= l(z i ) + l(z2 ) = 1 1 ( zi + z2 ) = 

i.e. y satisfies (15). The proof is complete I 

Remark. After denoting 

G(t, s) = X(t, s) +	e(s,r,)X(t, r)b1 (s)	 (16)

ri >3 

where CO is the characteristic function of the set Q, (13) can be rewritten as 

Y(t) = I G(t, s)r(s) ds	 (17) 
to 

which gives a solution of the semi-homogeneous impulsive equation (2) - (3). 

Lemma 6. Suppose the assumptions (a) i - (a)3 hold and the columns of the ma-
trices c 1	[0,r1 j - R'" are integrable over [0,r 1 j. Then, the solution y of problem 
(2),(5), y(to) = 0, o(t)	0, ci = 0 can be represented as 

Y(t) = J X(t, s)r(s) ds 
to 

where X(t, s) is a fundamental function of (2), (5). 

Proof. As demonstrated above the impulsive condition (5) can be rewritten as (3). 
Hence, by Lemma 2 the problem mentioned in the statement of the lemma has one and 
only one solution. Lemma 3 implies the estimate for the fundamental matrix X(t, s) of 
the equation (2),(5). Similar to the proof of Lemma 5 y is shown to be a solution of
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(2). Thus, it remains to prove that it also satisfies the impulsive conditions (5). By the 
definition X(t, .$) satisfies (5) as a function of the first argument 

ri 

X(r1 ,$) = (E + B 1 )X(r1 —0) + f C i (T)X(T, s) dT. 

The application of Lemma 3 as in the proof of the previous lemma yields 

y(Ti) 
= 
]n i , ds	 S	 S

ri 
(E + B1) J X(r1 - 0, s)r(s) ds + J (]ci(r)X(T s) dr) r(s) ds

rj 
(E + B1 )y(r1 - 0) + f c(r) (1 X(r, s)r(s) ds) dr 

= (E + B1 )y(r1 -0)+  f c(r) (/ X(r, s)r(s)ds) dr 

ri 

= (E + B 1 )y(7-1 - 0) + / Cj(T)y(T) dr. 

The latter equality is equivalent to (5), which completes the proof I 
Lemma 2 and Lemmas 4 - 6 immediately imply the following results. 
Theorem 1. Let the assumptions (a) i - (a)6 hold. Then, for any ao E IR Th there 

exists one and only one solution of the initial value problem (2) - ( 3), x(to) = Ceo that 
can be represented as 

X(t) = J G(t, s)r(s) ds + J G(t, s) (I K(s,	)) de) ds 
to	 o	 (18) 

+	X(t,r)c +X(t,to)co 
Ti >tO 

where G(t,$) is defined by (16). 

Theorem 2. Let the assumptions (a) i —(a)3 hold and the columns of c 1 be integrable 
on t0, rd. Then, for any ao E R n there exists one and only one solution of problem 
(2), (5), x(to) = ao which has, the representation 

X(t) = J X(t, s)r(s) ds + J X(t, s) (1 K(s, )) d) ds 
to	 to	0 

+ E X(t,r,)c +X(t,to)ao 
T >to
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where X(t, s) is a fundamental function of (2), (5). 

5. Stability 

In this section Theorem 5 generalizes the stability test for ordinary differential equations 
with coefficients being integrable on the half-line. 

Definition. Let x be any solution of the impulsive differential equation (2)-(3) with 
r(t) 0 and a, = 0. Equation (2)-(3) is said to be 

(i) stable if for any e > 0 and to' 2 0 there exists a S > 0 not depending on t0 such 
that 11 x ( to)II < S and vraisup t<toIIco ( t )II < S imply 11x(t)J < e (t > to); 

(ii) asymptotically stable if, for each initial function V, each t 0 and each initial value 
x(to),	11x(t)II = 0; 

(iii) exponentially stable if for any to 2 0 there exist constants N > 0 and .X > 0 
not depending on to such that lx(t)II	Ne_ A ( t_t0 )(IIx(to)II + vraisup<0II(t)I). 

Lemma 7. Let the assumptions (a) i - (a)6 hold.' 

(i) If
vrai sup flX(t,$)Il <oc 

i,s>o 
t	to 

vrai sup vrai supJ II G ( t , s )II J 	r) 11 drds < 
to>o	t>to

to	0 

then equation (2) - (3) is stable.  

(ii) If for every to 2 0

lim X(t,t0 ) = 0 t 00 

t	to 

• mJ II G( t, ) II f II K(s , r)Ildrds =0, 
to	 0 

then equation (2) - (3) is asymptotically stable. 

(iii) If there exist positive constants Ni , N2 and v1 , i'2 such that 

II X' ( t , to)II < Nie_1(t_t0) 
to 

it 0, 
II G(t , s)II f II K(s, ) Il drds	N2e_v2(t_t0), 

0 

then equation (2) - (3) is exponentially stable.
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Proof. If I 0,	0 and a 1 = 0, then by Theorem 1 the solution of equation (2) 

- (3) has the form

X(t) = X(t, to) x(to) + J G(t, s) 6 JK(s,	() d. 

	

to	 0 

Therefore,	 . 

	

x(t)Il	max { II X ( t , to)II,	II G( t , s)II 
J II K(s , e)II dd } 

	

9 0	 0 

x (II x ( to)II + vrai sup II()II)• 
<io 

Now, the stability definition immediately implies the statement of the lemma I 

Additional constraints on the kernel K lead to more convenient stability tests. 

Theorem 3. Suppose the assumptions (a) 1 - (a)6 hold and, in addition, there exist 
constants M > 0 and i > 0 such that II K ( t , $ )II Mexp{—p(t - s)}. 

(i) if	.	.	 .	,. 
vraisupjX(t,$) < 

i,s>O 

vrai sup II G(t , . ) II < no, 
t,s>O 

then equation (2) - (3) is stable. 

(ii) If for every to > 0

lim II x ( t , to)lI = 0 
t 00

0, 

to 

then equation (2) - (3) is asymptotically stable.	. 

(iii) If there exist constants N1 , N2 > 0and V1, V2, >- 0 such that 

	

IIx(s)II	Ni e_1( t_3) .	. 

-	 .	.. II G(t , s)II. < N2e_t2(t_s), 

then equation (2) - ( 3) is exponentially stable. 

Proof. The proof is based on Lemma 7 and straightforward calculations I
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Theorem 4. Let the assumptions (a) j - (a)6 hold and let there exist a constant 
S > 0 and a function k(t) integrable over any finite interval [a, b) such that K(t, .$) = 0 
if t - s > S and II K( t , $ ) II	k(t). 

(i) If
vrai sup llX(t,$)II <00 

t,s>O 

vrai sup G(t,$) <, 

then equation (2) - (3) is stable. 

(ii) If for each t 0 >0

urn II X( t , to)II = 0 t -. CO 

io+6 

lim f II G(t , s )II k(s ) ds = 0, 
to 

then equation (2) - (3) is asymptotically stable. 

(iii) If there exist certain constants N 1 , N2 > 0 and v1 , i.'2 > 0 such that 

II X(t , s )II < 

II G(t , ) II	N2e_12(t_3), 

and sup t >o f, 
t+6 k(s)ds < oo, then equation (2) - (3) is exponentially stable. 

Proof. The assumptions of the theorem yield 

t	 t0	 to+5	 to J [G(t, s)II / II K(s , ) II dds =

	
IG(t, s)IIf IIK(s, 

to 

The assumption IIK(t, s) 11 :5 k(t), Lemma 7 and the above equality immediately imply 
the statement of the theorem, which completes the proof U 

Remarks. 1. For equation (2),(5) in the assumptions of Lemma 7 and Theorems 
3 and 4 the function G(t,$) is to be replaced by the fundamental function X(t,$). 2. 
Such constraint on the kernel K(t, s) as in Theorem 3 (exponential decay) occurs, for 
example, in elasticity problems [6J. The condition K(t, s) = 0 (t - s > 8) in Theorem 4 
is an analogue of a bounded delay for delay equations. 

The following theorem contains explicit stability results for equation (2),(5).
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Theorem 5. Suppose that for equation (2), (5) the assumptions (a) i - (a)3 hold 
and the columns of c 1 are integrable on [0, T i). In addition, let 

J 	<00 

00 3 

JfIIK(s e)II dds <00 

sup /{	II c ( s )II ds + II E + BII } <1.


Then, equation (2), (5) is stable. 

Proof. We apply Lemma 7, wherein for equation (2),(5) G(t, s) = X(t, s). So for 
the completeness of the proof it is enough to show the boundedness of the fundamental 
function on the half-line. In fact, if 

vrasupllX(t,$)II :^ M	(M < oo), 

then the assumptions of the theorem yield that, for every to > 0, 

f IIx(t,)II f II K ( s ,)II dds MJ / 
9 0	0	 to 0 

co 3 

M /J II K(s , )II dds <00. 

Consequently, by Lemma 7 equation (2),(5) is stable. 

Now; let us prove that X(t, s) is bounded. To this end consider the auxiliary 
equation

±(t) = z(t)	 (19) 

with impulsive conditions (5). By Theorem 2, the solution x(t) of problem (19), (5), 
x(0) = 0, a 1 0 is of the form

X(t) 
= / X0 (t, s)z(s) ds 

where Xo(t, s) is a fundamental function of this equation. Thus, problem (2),(5), x(0) = 
0, a 1 = 0 is equivalent to the equation 

	

X(t) 
I=

X(t, s)r(s) ds - Xo(t, s) (A(s)x(s) + / K(s, )x() de) ds.	(20)
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The results of [1) imply vraisup> 0 II X0( t , $ )II	1. Suppose r E L[0,00): Then, by 
(20) the solution of problem (2),(5), x(0) = 0,	0 can be estimated as 

IIx(tNI	f 11 r ( s )II ds +(A(s) +
	

I K (e, s )Jl de) IIx(s)IIds. 

The Gronwall-Bellman inequality implies 

X(011	
/ II

r ( s )II ds exp jj 
 

I I A(s )II ds 
+ // II K(s, ) II dds } 

/ II
r ( s )II dsexp 

100"

IIA(s) ds + 7/ II K(s ,e)II dd3}. 

Therefore, if r E L[0,00), then the solution of the problem (2),(5), x(0) = 0,a = 0 is 
in L,[0, oo). On the other hand, by Theorem 2, the solution of this problem can be 
represented as

x(l) 
= 	

X(t, s)r(s) ds. 

The above argument yields that the integral operator with the kernel X(t, s) acts from 
the space L[0, oo) into the space L00[0, ). Consequently (see [7: p. 191]), vraisup3>0 
II X (t , s )II < 00. The latter inequality, as mentioned above, implies the stability of 
(2),(5). The proof of the theorem is complete I 
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