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Lifting Theorem as a Special Case of 
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Abstract. Using properties of the de Branges-R.ovnyak spaces we include the classical lifting 
problem into the general scheme of the abstract interpolation problem. 
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0. Introduction 

This note describes the inclusion of the lifting problem [5] into the general scheme of the 
abstract interpolation problem [2, 31. We will simultaneously refer to the Sz.Nagy-Foia4 
and de Branges-Rovnyak functional models. The use of these two models of the same 
object is explained by the fact that we join together "a priori" independent results and 
we prefer to keep to the way they were originally stated. We would like to note that 
one can find a unified approach to functional models in [4, 71. 

Let us briefly recall the Sz.Nagy-Foia4 construction. Let E1 and E2 be Hilbert 
spaces, 9 be an [E1 , E2 ]-valued analytic contractive function on the unit disk D. Let 
us define an [Ei , Ei ] - valued function A = (1 - 99)4 on the unit circle T, and let us 
compose the operator-valued function 

c	

[I E __ 1E21 =	 :	1	 [Ei] 

H2(E2) We define the space . = [ L2(E)J 
and its subspace 

I H	1 
K9 = e [ 0

] H2(E1) = {LL2(Ei 
2(E2) ] 

e [] 
H 2 (E 1 ).	(0.1) 

We will denote by P9 the operator of orthogonal projection from .f to K9 . The mapping 
T, defined on K9 by the formula 

Tz = P9 iz	(z E K9 )	 (0.2) 
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is a completely non-unitary contraction [6: Chapter 6, Section 31. Conversely, for given 
a completely non-unitary contraction one can choose Hubert spaces E1 and E2 and 
an [E1 , E2 1-valued analytic contractive function 9 such that the operator T, defined by 
formula (0.2), is unitarily equivalent to the original contraction [6: Chapter 6, Section 
2].

Let us pass now to the description of the de Branges-Rovnyak model [1]. We define 
the matrix-valued function

9 12 1E2 1 	[E2]
0. 

9=[is. 1E1 
	[EI	 j 

Let us consider the subspace 

L=EeL 2 =clos{Eof: IEL2} 

of the Hilbert space L2 = rL2(E2)1 
L2(E1) i The subspaces 

IH2(E - (E2) 	{E9{H2E)1} 

are isometrical embeddings of the spaces H.(E2 ) and H 2 (E1 ) into L. We define the 
de Branges-Rovnyak space as the orthogonal complement 

H9—Le{E 1H(E
2 )1	1 0 -	 0 

of the direct sum of these spaces. In this functional model a completely non-unitary 
contraction T is represented as

Tz = P8 tz	(z E H9) 

where P9 denotes the operator of orthogonal projection from L 2 to H9. 

Remark 0.1 A vector f = [ f'] E L2,, lies in the space He if and only if the 
vector [+] := E 9f belongs to [ ? EE2 }. We will be keeping this system of notations 
throughout the paper. 

The spaces K9 and H9 , defined above, are isometrically isomorphic. An isomor-
phism, for example, may be given by the mapping 

[1E. 01 1-1)  
Ef eK9	(f€H9).
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1. Formulation of the lifting problem and the 
abstract interpolation problem 

Let U, U. and V, U. be separable Hubert spaces, and let 1,1 and 1', 1 be the identity 
operators, defined on these spaces, respectively. Let 0 and 9' be [iL,it]- and 
valued pure analytic contractive functions, defined on the unit disk D. Assigning E 1 = 
U, E2 = LL in formula (0. 1), and then E1 = V, E2 = it and and 9 = 0', we construct 
the spaces

 
IH2(IL) K9— [H2(itfl 

j- L2(U) e	 H2(it) c = L2(u)] 

and
H2(it)	9	2 K9 

= L'L2(it') e
	, H (it 

where t = (1 - 0'0)4 and L' = (1' - 91*91)4 

operators on the spaces . and .', respectively. 

Let us define the contractions in K9 and K9

 [ H2(it') ] 
C	= z1L2(i11) 

We denote by I and I' the identity 

in analogy to (0.2) by the formulas 

Tz = P9tz (z E KO )	and	T'z' = Pg ' tz' (z' E K9 ).	(1.1) 

We consider an operator X with II X V	1, acting from K9 into K9 and intertwining
the contractions T' and T

XT'=TX.	 (1.2) 

The lifting problem (further we will use the abbreviation "(L)- problem") consists in 
describing all operators Y : .' -* ., possessing the following properties: 

X = P19 Y I Kp	 (1.3) 

Y'H2 (it') C PH 2 (it)	 (1.4) 

II Y II < 1	 (1.5) 
Y(tz') = i(Yz') for all z' E W.	 (1.6) 

We will call an arbitrary operator Y, satisfying the conditions (1.3) - (1.6), a lifting of 
the operator X. 

Now we are turning to the formulation of the abstract interpolation problem [2, 31 
(further we will use the abbreviation "(AI)-problem"). Let 

K be a linear space 
E1 , E2 be separable Hubert spaces 

,T2 be linear operators defined on K 
M1 , M2 be linear maps M1 : K - E 1 and M2 : K - E2 
D be a non-negative quadratic form defined on K. 

The collection {T1 , T2 ; M1 , M2 ; D} is called the interpolation data. The interpolation 
data must satisfy the identity 

D(T2 x, T2 y) - D(Ti x, Ti y) = (Mi x, Ml y) E, - (M2 x, M2y)E2	(1.7)
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for all x, y E K. The solutions of the (AI)-problem are defined as a set of pairs (w, F), 
where w is an [E 1 , E2 ]-valued contractive function, analytic in the unit disk D, and F 
is a map from K into H, having the properties

 t [ FT1x - FT2x - 1 E2	—M2x	 (18) F_T1 x - F.T2 x	w 'E,	Mix 

and
IIFxII2	D(x,x)	 (1.9) 

for all x E K where [] = E,Fx. The map F, defined above, is called the Fourier 
representation of the space K. 

2. Inclusion of the (L)-problem into the scheme of the 
(AI)-problem 

In this section we will need an explicit formula for the orthoprojector P9 .! -i K9, 
defined by

P9.z' = z' -	P4'z1	(z' E .')	 (2.1) 

(see [8]). We have denoted by P4. the operator of orthogonal projection from L2 (U') to 
H 2 (tt'). In particular, formula (2.1) shows that a vector z' E .' belongs to the space 
K9, if and only if	E H.(tt'). 

Let us conpute the operator T' defined by (1.1) with the help of (2.1) in the form 

T'z' = tz' -	 (z' E K9.).	 (2.2) 

The commutative relation (1.2), summed up with the formulas for the operators T' and 
T, allow us to establish an identity, similar to (1.7). By means of (2.2) let us calculate 
the vectors T'x' and T'y' for x' , y ' E K9' and their scalar product as 

(T'x',T1y') = ('x', y') - (4'P4.i4'x',ty') 

_(ixI,P+t*yl)--(P4.t*xl,p+ti*yl). 

We transform the second term at the right side of that equality as 

( c1'P4.i4'x', ty') = ( p4. 
j()*	ty') = (P4.t4.*xI, P4.t'y'). 

Doing the same to the third summand and observing that 4'I' = 1', we get 

(T'x', T'y') = (x', y') - (P4.tcI*xl, P4..t'y').	 (2.3) 

Using identity (1.2) and formula (1.1) for the operator T, we obtain 

XT'z' = TXz' = tXz' - P+t *Xzl	(z' E K9.).	 (2.4)
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Let us compute the vectors XT'x' and XT'y' for x', y' E K9, and their scalar product 
with the help of (2.4) as 

(XT'x', XT'y') = (Xx', Xy') - (P+t'Xx' , P+t'I'Xy').	(2.5) 

Subtracting equality (2.5) from equality (2.3) we get 

((I - X*X)xI , y ') - ((I - XX)T'x', T'y') 

=	 - (P+tXx',P+iVXy').	
(2.6) 

The non-negativity of the form ((I - X*X)xl,y) (x', y' E Ko.) follows from the in-
equality I1 X II	1. 

We assign

K = K9. 

Ei = it', E2 = it 

M, z' = Pt'z' : K9. - it', M2 z' = P+i*Xz : K9. - it	(2.7) 

T1 = T', T2 = id on K9. 

D = I - XIX. 

Thus, we find ourselves in the conditions of the (AI)-problem. The new notations 
convert identity (2.6) into (1.7). 

The set of the solutions of the (AI)-problem is formed by pairs (w, F), where w is 
a [it',it]-valued analytic contractive function and F is a Fourier representation of the 
space K9, with values in the de Branges-Rovnyak space H. Each pair (w, F) must 
satisfy the conditions 

IFT'x'1 - [Fx' - 1 1	.j1 1_P+t4*Xxl1	
(2.8) [F_T'x' j - [F_x' j	[* it j [ P4.t'x' j 

and
IIFx' 11 2 < ( (I _ XX)x', x')	 (2.9) 

for all x' E K9.. 

An (AI)-problem with interpolation data (2.7) will be called (L')- problem.
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3. One-to-one correspondence between solutions of the 
(L)- and (L')- problems 

Further we write E instead of E. We will apply the following lemma during the proof 
of Proposition 3.1. 

Lemma 3.1. Let feH. Then 

111+ + wh1112(u)	1111 2 + II h II2()	 (3.1) 

for all h e H2(i.1'). 
Proof. By virtue of the inequality 

1w> 1	w	1w 10	iw
 I [ w 1 - w wtw = w	, 0 0 w	, 

for an arbitrary vector g =	E L2 we have 

u g h 2 =

Q J. j) 
[1	wi	Ii 011 1

	U-' ([	]	i']'[o 0] L  11 i ol 

= Lo oJ F-g' F-g) 

In particular, if we set g = I + E [] with f E H ., and h  H2 (a,), we obtain 

Co101
 o j(E1+[J	][])(Ef+[ 	

][])) 
([f+

+whl [f
++whi\

0	•J ' 	0	]) = 111+ +whII2(). 

On the other hand, by definition of the de Branges-Rovnyak space, 

11 9 11 2 = (f+E [] 
'f +r- [01)hh 

Q 1	111 0 	101)1' 	 h' h 

= 11111 2 + IIhII2() 

and the assertion is proved I 

The following proposition associates a solution of the (L)-problem with such one of 
the (L')-problem.
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Proposition 3.1. Let (w,F) be a solution of the (L')-problem. Then the map 
Y :	-i A given by the equalities 

Y IKe , = X +	and	YI.ff2(u.)	WIH2(U.)	 (3.2) 

is a lifting of the operator X. 

Proof. Let us show that the operator Y, defined above, is a contraction. According 
to the definition of the space K9., we decompose an arbitrary vector z' from B' as 

= V+ 'h', where k' E K9, and h' E H2 (iL'). By definition (3.2) we have 

IIYz' II2	II Y ( k ' + '' h ')II 2	- 

= II Xk ' + (F+k' + wh')1I2 

= IlXk'1I2 + II F+ k ' +wh'II2(u). 

Using Lemma 3.1, we continue the above equalities by the inequality 

II Xk '11 2 + II F+ k ' + wh'lI 2 (u) ^ IIX k '11 2 + II Fk ' 
ii

2 + I'' 11
2 
L2(U'). 

It follows immediately from (2.9) that 

lIXk' 11 2 + II Fk '11 2	Ilk' 112 

for any k' E K9.. Hence, we continue as 

II.)Ck' 112	ll Fk '1l 2 + II h 'II2 ( . ) < k' 2 + II h ' IlL 2 (U) = Il k ' + ''h'I l 2 = lIz' 112. 

Further, we verify that, indeed, the operator Y is defined as multiplication by a certain 
matrix-valued function. In order to prove this, it is sufficient to demonstrate that 

Y{tz'} = t{Yz'} 

for all z' E !R'. Firstly, comparing formula (2.2) with definition of M1 at (2.7) we see 
that

tk' = T'k' + 'M1 k' 

for all k' E K9.. With the help of this observation we start from the left side of the 
preceding equality 

Y{tz'}	Y{t(k' + 'IY h')} = Y{T'k' + c '(M1 k' + th')}.

Formula (3.2) allows us to pass from the operator Y to the maps X and F+ 

Y{T'k' + '1'(M1 k' + th')} = (X + F)T'k' + c w(Mi k' + th'). 

The commutative relations (2.8) and (2.4) give us 

(X + F+)T'k' +	(M1 k' + th') 

= (tXk'.— 4M2 k') +4(tF+k' +M2 k' — wMi k') +4w(Mik'+th') 

= t(Xk' + F-4-)k' + twh'. 

Returning to the operator Y, we obtain 

t(Xk' + 4F+)k' + t,h' = tY{k' + 'h'} = t{Yz'}. 

To complete the proof we should observe that relations (1.3) and (1.4) are fulfilled in a 
trivial way I
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Remark 3.1 (see [5: Section 7)). The matrix of the operator Y, defined in the 
preceding proposition, admits the block decomposition 

, - A(t)	0	H2(it)	H2(it) 
B(t) C(t)	'L2(W)	L2(1L) 

where the blocks A(t), B(t) and C(i) have the following properties: 
(i) A(t) is a [it,it.4 ]-valued bounded analytic function. 

(ii) B(t) and C(t) are respectively [it,1t)- and [iL',i.l}-valued measurable bounded 
functions, satisfying a.e. on T the conditions 

B(t)U'.C L(t)it	and	C(t)&(t)lt' CA(t)a. 

(iii) Y(t) 4V(t) = (t)Ao(t) a.e. on T, where Ao(t) is a [11',U]-valued bounded 
analytic function. 

The following Proposition 3.2 is, in some sense, converse to Proposition 3.1. 

Proposition 3.2. Let the operator Y be a lifting of X. Then the pair (w, F) defined 
as

W =	 (3.3) 
and

F+ V	 0	I V [—Xk'l 

	

F_ k' = 0 cI' s	Y	P	k'	 (3.4) 

for k' € K9 sets a solution of the (L')-problem. 

Proof. Let us verify that

IF+ k 'l	I H2 (it) 1
{Fk'j € 

Indeed,

	

Xk' P9 Yk' = Yk' - 4P+*Ykl	(k' € Keg) 

and, according to formula (3.4), we have 

F+ V -P+4*Yk 
F_k' - Il*kI - wXk' 

Hence, the first component F+k' lies in H2 (tt), and the second one belongs to H.(tt'). 
Let us prove that the map (3.4) satisfies the inequality 

	

II Fk '11 2 < (Dk',k')	 (3.5) 

for all k' € K8.. Let g E L2 (it) and g' E L2 (iL'). Let us consider the scalar product 

I yl I —Xk' l I	1\ 
c\	"i L k' j '	

' g 
[4'g' I	(3.6)
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We are going to estimate the square of the modulus of this scalar product by means of 
the Cauchy- Schwarz- Bunyakovskii inequality: 

I yl [—xk'l I ig 1 
\[y	i'j	k' j (3.7) < 

K[	 j 

yl f —xk' l I —Xk' \ /1 1 y l I	1 1 z 
-	"] [ k' j ' [ k'	) \ [y	

i t 
j L'g'j ['g'j[ 

Let us compute the scalar products, composing the preceding inequality: 

/1 I Y1 1—Xk'l I iI'g 1\	/IF+k'l Igl\ \ I	"I I k' j ''g ' j ) =	F k'j '[g'j)	
(3.8) 

and
/1 I Y 1 I —Xk'

j
 I—Xk'1 

['	i'] [ k'	
[ k' j,) =(Dk',k') 

I Y /1	1 I 4)g , 	1 i	1 
[ y* 1'] ['g'	gj'['g'j)=([ 1

	wl [g] Igl\=/E,,
i'j g' '[g'j)	\ Lgj 

Inequality (3.7) turns into 

IIFk'1 Il\I'<(Dkl,k1)(19l	Fl	go-
	 [g'j'	[g'j)• 

Hence, expression (3.8) sets a bounded linear functional 

IfFk'1 Igl\ = (
	[g'j)' 

on L, and the square of its norm does not exceed (Dk', k'), therefore inequality (3.5) 
is fulfilled. The fulfillment of the commutative identity (2.8) for the map (3.4) follows 
immediately from relations (2.2) and (2.4) I 

The following Proposition 3.3 points out a close link between the mappings, con-
structed in the two preceding propositions. 

Proposition 3.3. The maps (, F) -* Y and Y - (ce, F), introduced by formulas 
(3.2) - (3.4), are inverse. 

Proof. Let Y be a lifting of the operator X. Then, by virtue of Remark 3.1, 
YV = 4A0 where A0 is a Eit',it]-valued bounded analytic function. Further, 

X =	= (Y - 

We set the pair (w, F), associated with the operator Y by formulas (3.3) and (3.4), as 

F+k'1 -	PYk'	1 
LO = A0	and	F_ k' - [V * k' _w*4*Xk'jj
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The lifting Y for the pair (w, F), constructed by formula (3.2), has the form 

=	= 

and
171K9, X + F+ = {(Y - P+Y) + P+Y}I K9 , = YIK'. 

Let us prove the second part of the statement. We assume that the pair (w, F) 
is a solution of the (L')-problem. Using (3.2), we construct the lifting Y, and, next, 
we associate the pair (a', F) to this lifting. It follows directly from our reasoning that 
CD = w and F+ = F+. It only remains to observe that the difference F_ - F_ satisfies 
the functional relation

(F_ - F_)(T'k') = t(F_ - 

for all k E K9 . Since the function (F_ - F._)k' lies in the space H' (W), all its negative 
Fourier coefficients are equal to zero. Thus, we get (F_ - F_) 0 on K9 . The proof 
is completed I 

Acknowledgments. I would like to thank P. M. Yuditskii for helpful discussions 
and remarks, which permitted me to simplify the proofs and to improve the general 
structure of the paper. 
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