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Fourier° Multipliers 
between Weighted Anisotropic Function Spaces 

Part II. Besov-Triebel Spaces 
P. Dintelmann 

Abstract. We determine certain classes M(X ,q0 (wo), Y 11 (w1 )) of Fourier multipliers be-
tween weighted anisotropic Besov and Triebel spaces X, ,0 (wa) and 1' 11 ,qj (wi ) where p0 < 1 
and w0 , w1 are weight functions of polynomial growth. To this end we refine a method based 
on discrete characterizations of function spaces which was introduced in Part I of the paper. 
Thus widely generalized versions of known results of Bui, Johnson and others are obtained in 
a unified way. 
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1. Introduction 

This is the continuation of the first part [6] of this work in which we considered Fourier 
multipliers between Besov spaces. Concerning definitions and notations we refer to this 
paper. Now we refine our methods to deal with the more general situation of Besov and 
Triebel spaces. This leads in particular to a generalization of the two theorems 

n( ..L. - 
M(h 0 ,L 1 ) L'—'pioo	] 

M(h Bp',' \ _9 
Pa'	pl,gl) 4-'

(0 <P0 < 1 <P1 <00) 

1 0 <P0< 1 <P1 <00 

1 < q <00 

S i( € R 

and

due to Johnson [11] and Bui [2]. These results are generalized to weighted anisotropic 
Besov-Triebel spaces and the ranges of the parameters involved are widely extended. 
Furthermore we sharpen these characterizations of multipliers by a couple of negative 
results. 
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2. Triebel spaces 
For  < p,q < 00, s E R and w E W the (anisotropic inhomogeneous) Triebel space 
F;,q(R;P,w) which is denoted by F ,q (w) for short contains all I E S' (the space of 
tempered distributions) with finite quasinorm 

IIfI Fp3,q (w )II = Mw 
For remarks concerning the literature related to these spaces confer the references given 
in the first part [6] of the paper. 

To extend our discrete methods to the F ,q (w) spaces we have to look for a discrete 
counterpart of F, q (w). To this end we use the sequence space f q (R'; P, w) which is 
denoted by f g (w) for short (0 < p,q	, s E R, to E W) and which contains all 
complex sequences a =	with finite quasinorm 

a If,qII =	 wafl1(.)^

jEN 

eqM 
kEZ'  

in which w = w(A2 _,k) and 1 j denotes the characteristic function of the set 

=A2
- (k+ [_)fl). 

These sets have measure 2' and constitute a covering of R n of pairwise disjoint ele-
ments for each fixed j. The connection with the Besov spaces is given by 

IIfI B ,,(w )II = 11f IF,,(w)II	and	II a I b ,(w)II = IIaIf,9(w)II. 

The unweighted spaces (i.e. w 1) are denoted by F ,q and f,q as usual. In the 
sequel the symbols X q (w) and Y q (w) always denote Besov or Triebcl spaces and the 
associated sequence spaces are denoted by x ,g (w) and y ,q (w), respectively. 

The discrete characterization of F ,q (w) reads as follows. 

Theorem 2.1 (Discrete characterization of Triebel spaces). For f E S' define the 
sequence sef by

JEN 
sef =

/ kEZ" 

j jEN For finite sequences a = (ak)kEZ,. of complex numbers define the functzon fua by 

fua =	. (1)(. - k)+	a . ( 1 1 )(A2 . - k). 

	

kEZ"	 j=1 kEZ 

Assume 0 <p,q < oo, s E R and to E W. Then the operators 

Se: F, , (w) - f;,()	and	fu: f ,q (w) - F;,q(w)
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are bounded (the unique extension of fu to f 9 (w) is denoted by fu, too). Furthermore, 
fu o se = id on F q(w) and

II sefIf,q(w )II	If 

for all I E S'. 

Corollary 2.2 (Boundedness of linear operators). Assume 0 < po, pj, qo, qi < oo, 
E R and w0 , w 1 E W. A linear operator T X°,,0(WO) 9 1''j',q(t0i) is bounded 

if and only if seTfu : x°0,q0 (wo) Yp,g1(Wi) is bounded. The respective operator 
quasnorms are equivalent. 

3. Boundedness of matrix operators 

Corresponding to the case of Besov spaces we start with the following lemma which can 
be proved by straightforward computations. 

Lemma 3.1 (Boundedness of A and A(wo,w i )). Assume 0 < po, pi, qo, q i	00,

S O , S i E R and w0 , w 1 E W. For a matrix A = ( A m)''n define A(wo,w i ) by 

KmEZ^

IEN 

A(wo,w i ) = 

^(W j) j

 As"	
1 

m k,m (wo)  

with (wo)L = wo(A2 _m) and (w i ) = w i (A2 _jk). Then the relation 

IAIx 0 (w0)	1 
I I p o, q o	ypi , q,(Wi)11 = A (wo, w i )1x ,q0 , Yp i

Sj
 ,qi 

holds for all A. 

Now we prove a boundedness criterion for matrix operators analogous to the one 
for the case of Besov spaces. There we used a Sobolev-type embedding theorem for the 
sequence spaces b, q (w) which was straightforward from the embedding of 4 spaces. In 
the case of Triebel spaces the things are a little more complicated. 

Lemma 3.2 (Sobolev-type embedding for f q ) . Assume 0 <Po,pi, qo, qi 5 oo and 
s 0 , s 1 E R. Then

fp3o°,qo '4	 (SO —	= s - 
Proof. By the embedding of 4 spaces it suffices to prove that id: 

is bounded. This can be done by standard methods using an idea of Jawerth [9] (cf. 
[18: p. 129]) and has already be done in [4] U 

Theorem 3.3 (Boundedness criterion for matrix operators). Assume 0 < po,pi, 
qo, qi < 00 and so, s 1 E R. For a matrix A = ( A m " ),n put 

i	- (2.( -°-. —so)	 (A' tEN B(A; So, P0, y 1 ,qji -	P0	sup	k m)mEZ lYpi ,qi 
) ,EN ^too kEZ
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Then:

a) The inequality

' B(A ) SO, P0, y,,,,, )	IIAIxi	II

p3 °0 ,qo' !Jp
S i , g, II 

always holds. 

b) If Pa < min{1,p i ,q 1 } or max{po,qo} < min{1,p i ,q i }, then the equivalence 

I IAI'3°	3	 II 

	

Jp 0 q0 y , ,qi	B(A; S ,Po, y qi) 

holds for all A. 

c) If max{po, qo }	min{ 1, p', q }, then the equivalence 

I IAIbS0	Sj	 II 

	

po qo' P' qi	B(A; So, Po, y, ,gi ) 

holds for all A. 

Proof. Assertion a) can be proved as in [6] with the help of the sequences 

(1 for j=l and k=m 

	

(ei),,, =	 (j,l E N; k,m E 
0 otherwise 

To prove assertions b) and c) we refine the proof given in [6]. To this end we restrict 
ourselves to finite sequences and consider only the case of y"'  Put r = 
min{1, p i , q i }. For x e	we obtain the estimate 

CO

(aj A1(x) < ((a •A)'m0)n e1kEZ 
mEZ' j0 kEZ"

< /(0 J •4 
)\l \JEN 

- \k	Ek)moIkEZ r 

/  
Ael(x))jEN £,. 

	

•	mEZ" 

for all a and all x E Ri'. Applying the generalized Minkowski inequality twice we are 
lead to the relation 

	

A
(	

ae) f 

	

j=0 kEZ"	•	• 

I	/	 j€N	\ 

	

<	(\ 2' 31 (\	I(	Ae)I1( .))	tr )
	

£q, 
• 

	

MEZn	 kEZ"	lEN	P1 

EN \r\. 

I(a . AeI1(.)) 
2	)IEN mEZ'	 kEZ" 	El
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jEN  

((2:31	 II I(AeI1(.))

 

-) IC  

	

ley	

le 1 

lEN	'kZn mEZ

jEN 

(( i '	I(Ae1(.)))	
) e Z LEN 	l

kEZ 

< 
(IcI	

Ae'	)EN	'I 
- 

Now using the Sobolev-type embedding presented in Lemma 3.2 and the definition of 
B(A; so, po,fq 1 ) we get 

Aj cr lpi qi 
 (j=O kEZn	/  

IIAeIfP1',ql 'I

	

30	 3EN 
(Ia I . II	IX po,qo II) n sup sup	 VrM II ,EN kEZ" I6	30poqoIi 

- B(A;so,po,f	' . III b° qji	r,rII 

C B(A; So,Po, fP13 ',qi ' IIaIx; ,qo II 

where c = SO + , ( i. - 1'L • This completes the proof U r	pa' 

4. Fourier multipliers 

For M E 5' the operator TM is given by 

TMI = F'[M.Ff]	(f ES) 

and the class of Fourier multipliers between the two spaces X q0 (wo) and Y'11,q1(wi) 
is defined by

.x30 

	

M (X ,q0 (wo), Y.' qj (w1)) = { M E S' TM . p0q0(wo)	ysi (w1) bounded} 
P1 ,qI 

equipped with the quasinorm

1X 
M I M ( X ,q (zo), Yp31 q (wi)) II = II TM po

3°,qo(w0), Y
P1
51

 , q I(
w1

 )II 

Concerning general results we have the following proposition.
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Proposition 4.1 (Change of s). Assume 0 < po, p ,qo,q i < 00, so, s 1 E R and 
w0 , w 1 E W. Then 

M(X ,q0 (wo), 1'p ', q (Wi))	M(x;—:°(wo), }'p q, (wi)). 

Proof. It can be carried over from [6] since the mapping 

I" : CN x Z - CN x Z	with	I,,oi = (23) jEN 
k>kEZn 

is an isometric isomorphism I : f ,q (w) — 

Now we are in a position to formulate and prove our main results. 

Theorem 4.2 (Fourier multipliers between Triebel spaces). Assume 0 < Po,Pi, 
qo, q i < 00 and .s 0 , s 1 E R. Furthermore, assume that w i EWd and that d > 0 and 
wo E W satisfy the condition 

11

( 'tj'D	< 00. If either O 

a) P0 < min{1,pi,qi} 
or

b)po=min{1,pi ,q 1 } andqo	min{pi,qi}, 
then

M(F; ,qo (wo),F; 11 q1 (w i ))	.T[B,(wi)]	(a = v(	—1) +.51 - SO).PO 

Proof. a) From the equivalences in Lemma 3.1, Theorem 3.3/b) and [6: Corollary 
4.21 we obtain the relation

r3	II M (F; ,q0 (wo) F5 ' (Wi))	. MX(wo, WI 
)lfqo, Jp,1 ,qi II 

,. B(M(wo,wi);so, PO, f,'q) 

IIMV[B,(wi)]M. 

b) Using [6: Corollary 4.2], Theorem 3.3/a) and Lemma 3.1 one gets the inequality 

j M I .T [B (w i )]M	CO B()vI(wo, w i ); So, PO, f;,',q,) 

C1 .	 i M(wo, w1 )iposo 1,qo, p5 1	i 
,,q, II 

t 

C2	M (F; ,q0 (W0), F; q, (w )) 

from which the embedding 

M(F; q0 (wo) 1 F p , ,q ,(w i )) '	F[B D.(wi)j P1 

follows. Because of Po = min {1,p i ,q 1 } and q < min{p1,qi } we have max{po,qo} < 
min{pi , qj }. Thus we can apply the assertion [6: Theorem 5.3) from Part I of this paper 
to get

.F[fi	(w 1 )] '—* M(B° P1 ,	 po,max{po	(wo), B 
mm {p ,q, (wi)).
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Using the diagram

T 
B'°	

1
B3' p0.niax { p,go }(1)	 p,,rnin{p,,g,}k'l) 

idI id I 
TM 

F
90
'°

go (wo)	 FP1°' ,q (w1) 

we now conclude the desired embedding
F' g, (w 1 )) .TIB ,	)] (w 1	M (F;(w) 

	

,q0o,	pi  
which completes the proof I 

Remarks. The first result of this type goes back to Johnson [10: Theorem 5] who 
proved

M(Hi, H9 )	F[B4O0(lR"; 1,1)]	(2 p < oc). 

Here the Hardy spaces H9 may be identified via H9 F90 2 ( R T1 ; I, 1) with homogeneous 
Triebel spaces. Johnson extended this result in [11: Theorem 8] to 

	

.n(L_i)	 I0<po <1 
M(H90 , L91 )	F[B91(R"; 1,1)]

1 <pi <00. 

Here again L9 can be identified with a homogeneous Triebel space via L9 F90 2 (R"; I, 1) 
(1 <p < oo). Both results were carried over to the inhomogeneous case by Bui [2: The-
orem 4 1 and read (using the Triebel space notation) 

M(F ,2 (R TI ; I, 1), F90 2 (R"; I, i))	F[B,00(Rh1; I, 1)]	(2 < <	) 

and

1	4—i	 p,,	
'	

0<po 
<00(R";I,1)j	

1 
M(F 0,2 (R'; 1,1) F° ,2(Rv; I 1)) '-4 

91 1 <P1 <00. 

They follow by choosing qo = q = 2 und so = s 1 = 0 in Theorem 4.2. The unweighted 
version of the first part of Theorem 4.2 was already proved in [4]. 

Theorem 4.3 (Multipliers between Triebel and Besov spaces). Assume 0 <po,Pi, 
< oo and s 0 , s 1 E R. Furthermore, assume that w 1 E Wd and that d > 0 and 

wo E W satisfy the condition	 < co. If either 
WO 

a) po < mini 1, p i , qi} 
or

b) P0 = mini 1, p i , q i } und qo 5 qi, 

then

M(Fp300 ,qo (wo), B ,g ,(w i )) '- .1[B	(w i )]	(a	v(-- - 1) + s 1 - So) . 4 —'	 91,00	 90 

Proof. The assertion can be proved in the same way as the previous theorem I
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Remarks. In the case of homogeneous spaces Johnson [11: Theorem 7] proved the 
assertions

10 <P0 < 1 Pi <00 
M(HPQ, bp 1,q, (R"; 1,1))	T[.,(R'; 1,1)]	1	q < 

8' ER 
where .s =	— 1) + s, and 

PC

Pi <00 
3. M(H, , E ,q, (R" ; 1,1))	F[B4O0(R'; 1,1)]	2 q < 00 

Isi ER 
in which the Hardy spaces may be identified with homogeneous Triebel spaces (cf. 
the previous remark). Bui [2: Theorem 41 carried over both these results to the case 
of inhomogeneous spaces.- They read (using Triebel spaces in the notation instead of 
inhomogeneous Hardy spaces)

I

0 <P0 < 

s,

M(F2(R;	, P1 ,q,	//	[B,(R; 1,1)]	1	P1, qi <1) B3' ( R"; I ii

ER
 where as above s = n(-- — 1) + s 1 and 

P0

1 P1< 00 

M(F 2 ( R TC ; 1, 1), B 3' ( R'; I 1V __P1, 1  
'1 '	(BjR;I,i))	I 2< q <00 

S1ER. 
These results can be obtained by choosing qo = 2 and s 0 = 0 in Theorem 4.3. The first 
part of Büi's theorem was already proved in [4] in the unweighted case. 

Theorem 4.4 (Multipliers between Besov and Triebel spaces). Assume 0 <po,pi, 
qo, q i < 00 and S, s 1 E R. Furthermore, assume that w 1 E Wd and that d > 0 and w 0 E 
W satisfy the condition 

11 (1+I.I)'11 < 00. If po < min{1,p i } and qo min{pi,q,}, 
then

M (B s ,q0 (wo), F ,5, (w i ))	F[B, (wi)]	(o = v(	- 1) + s, — SO).PO 
Proof. The embedding 

M (B ,q0 (wo), Fjq, (w i )) '—* F[B , ,(w,)] 
is shown in the same way as in the proof of Theorem 4.2/b). For the converse embedding 
we use 16: Theorem 5.3] from Part I of this paper which states that 

.T[B , 00 (w i )] '—.9 M(Bq0(wo),	,rnin{p, q, } (w1 )). 
Using the embedding B' min{pq}(W1) '—.* F q ,(W i ) we obtain the desired inclusion 

.1B ,	'—* M (Bp'-	-",q, (WO), F;,' q, (w,)) 
and the proof is complete I 

Remarks. Theorem 4.4 was proved in [4] in the unweighted case under the slightly 
stronger hypothesis max{po,qo}	min{1,p,,qi}.
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5. Negative results 

In this section we study the question under which conditions on the parameters of the 
function spaces the corresponding multiplier classes are empty. To this end we need the 
method of complex interpolation for Besov spaces and some duality arguments. 

Theorem 5.1 (Complex interpolation of Besov spaces). Assume 1 po,p	00,
1 qo,qj < cc and so, s 1 E R. Furthermore, let w0 , w 1 E W and 0< 9 < 1. Then 

[Bp°,q0(wo), B;,q,(wi)Je 

where =	 = --+ -,s =(1 —9)so+Os i andw =w8.w. 

For problems in connection with complex interpolation of weighted Besov-Triebel 
spaces confer the remarks given in (12: p. 321 if.]. 

Proof of Theorem 5.1. We give a brief outline of the proof because the method 
is standard in interpolation theory (cf., e.g., Bergh and Löfström [1: Theorem 6.4.3]). 
First observe that for 1 u cc and v E W the inequality 

li v F-1 [f]ll	C li v f 
holds with a constant C > 0 independent of f. This follows from the definition of W. 
For 1 < u < cc, 1 r < cc, t E R and v E W consider the space £(L(v)) of sequences 
of tempered distributions normed by

= 
Similar as in the proof of [1: Theorem 6.4.31 one can show that the two mappings 

•	 I: B j, r(V) — £.(L(v)),	If = ('[j'f1)jEN 
and

cc 
P: £(L(v)) . B ,r(),	P(g)jeN =	'[rijgj] 

(1j = .,+i) retract B r (V) to £.(L(v)). The boundedness of I is straightfor-
ward and the above inequality is needed to show the boundedness of P. The identity 
P o  = id is obvious since Tb is identical 1 on the support of Oj. Thus by [1: Theorem 
6.4.2] it suffices to prove that 

[t0(L0(w0)), £ (L v , (wa))] 

To this end observe that the mapping f f given by 
J(z) = ([23"0w0]" 12" w1 ]Z . 1(z) )jEN 

is an isometric isomorphism 
F[(L0(w0)), £ (Lv , (w 1 ))] — F[ qo ( Lpo ), £q (Lv,)]. 

From this we conclude 
(gj)jEN [(Lp0(wo)),	(L,,, (w ))]	= 11(2i"wgj)jENI[eqo(Lp.),eq,(Lp,)]oll. 

Combining [1: Theorem 5.1.2] and [1: Theorem 5.1.11 yields 
ID IT \ 0	 '	£ 11L	L I q o	po)' q,\ piJJ	—' q kL pa' pu	£9) 4—' q L p 

from which we infer the assertion U
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Concerning duality a slight modification of the proof presented in [18: Subsection 
2.11.2] results in the following theorem. 

Theorem 5.2 (Dual spaces). Assume 1 <q < cc, s E R and to E W. 

a) If 1 p < cc, then 
B' (L -'	p',q''wI 

where + 7 1 and +=1 P	p	 q	'j 

b) 11 0 <p <1, then 

(B (w)) ' '4— B° ii'	(a = zi( - 1) - s) 4—'  cc q,( 

where+ = 1. 

Now assume wo(x) = (1 + IxI) 0 and w 1 (x) = (1 + I x I)'' with d0 ,d 1 E R. Then 
one can use wo(x) = w0 (—x) and the corresponding formula for w 1 to show that the 
relation

M (B; ,qo (wo) B'' (w 1 )) '	M ((B'' (w1 ))', (B'° (wo))')	(1) p,,q, '.	p,,q, ' po,qo 

holds if the dual spaces are Besov spaces again. In the unweighted case this has been 
done in [4]. 

Concerning proofs of negative results we remark that we only have to consider the 
case of Besov spaces as long as the parameter q is not involved in the hypothesis (this 
will always be true in the sequel) because of the embedding 

B ' (w)	
^ SER,w0<p,q<cc

B;min{pq}(W) ' F;(W)	p,max{p,q}	 w. 

First we generalize a well known result of Hörmander [8]. Therefore we need the follow- 
ing lemma which can be proved by straightforward computations. 

Lemma. Assume So, Si E R, 0 <q < cc and w(x) = (1 + xI)d with d > 0. Then 
the embedding

iBi"c'°(w))	M(B230q, Bq) 

holds. 

Theorem 5.4 (Trivial Fourier multipliers in the case of po > p1) . Assume 0 < 
Po,Pi <cc, 0< qo,qi	cc, so,s 1 E Rand w(x) = (1 + IxI) d with d> 0. Then 

M(X ,q0 (w) Y" (w)) = {0}	(PO > p1). 

In the case of Pa > 1 this is even true for all d E R. 

Proof. First we notice that the assertion for unweighted Besov spaces follows from 
a modification of Hörmander's argument. This situation was already considered in [4]. 
All other cases are reduced to this one.
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Let X 0 ,,0 (w) = B°,0 (W) and Y,;1I,qj(W) = B q1 (w). From the diagram 

B 3° w)  
Tif

 B (w) po.go"	 pj.q1 

idJ	 idl 
TM

Bt'(wj	 B'(w) 

we infer
M (B; ,q0 (w), Bp' ,qj (w)) '-* M(B'(w), B	' (w))	 (2) 

(this argument also works in the case of different weight functions). 

1. Assume p >1 and ME M(B q0 (w),B q1 (w)). Additionally we assume that 
p ' > 1. The above embedding and the duality results in Theorem 5.2 and (1) show that 

31+1/1) B'°'( 
iJ.

	

lvi E M(B'(w) B 31 w)) '-* M(B2	' p'0 ,	'.w 1	pj,2 ( 

Now apply complex interpolation 

E	(w)	B - " , +1( -D1 1/2
  '	B°° +2)/2	(1 

,. l. 

TM	
ITM 

[BP I  ' (w) B'°' (1)1	Bc" —,o-2)/2	(1 = 1	1) f.....1	rj,2	 + U) 11/2 

to obtain
31+221B30_2)/2). ME M(B  

It suffices to show that r0 > r1 (notice that we are in an unweighted situation) and this 
follows from a simple computation. 

In the case of p ' :^ 1 we first use a Sobolev-type embedding 

Bpi'1,q11 w) '-	(w)	(t = s 1 + u( 2 j- - 
,q1 

which proves

M(B 4O (w), B ,qi (w)) '- M(B; q0 (w), B p01)12,qj (w)). 

So we are again in the above situation and the theorem is proved in the case of po > 1. 
2. Now assume p0	1 and M € M(B,q0(w),B,q1(w)). Using a Sobolev-type 

embedding we get

B" - 1 (w) '-# B	(s = s i + v(- - 1))
PO
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and

	

9B(w)]	{B°2(w)]	(a =	—1) + (s -1) - (SO + 1)). 
Po 

From 6: Theorem 5.21 and Lemma 5.3 we infer the embedding 

M(B	(w) B3 ' (w)) 

	

g o	'	pig, 

- p M(B"° 1 (w) Bps ' - '(w)) '- M(B(w),B(w)) 0

	

'	p,,2P 

'- F[B	(w)] '-*	I B i ° 2 (w)] '-* M(B°',B'). , 

We use complex interpolation 

	

IB°°'(w) , Bs+l '	B 3°'	(1 =	+ )to	PO	2 

	

2,2 j	4	102 (we) 

TM	
ITM 

1 [231-1(w) , B'j9 B39 (we) 

to show
M E M"B° 1 (w 9 ) B39 (we)) .	to,2	'	11,2 

where w9(x) = (1 +IxI)°)' and so = (1 -9)(s i - 1)+9(s -1). Now choose 0< 9 < 1 
such that t 0 > 1. Because of Po > P1 we have t 0 > t 1 and so we are in the situation 
considered in the first part of this proof I 

Theorem 5.5 (Trivial Fourier multipliers in the case of d0 < d 1 ). Assume 0 < 

PO,Pi <co,O<qo,qi <oo and so, s 1 ER. Ifwo(x)=(1+IxI)d0 and wi(x)=(1+IxI)'' 
with do, d i > 0, then

M(X;,qo(wo), Y;,',q , (w i )) = {0}	(d0 < d1). 

Remark. When restricting to the weight functions 

	

WO(X) = (1 + IxI) 0	and	WI(X) = (1 + IxI)'' 

with d0 , d 1 > 0, we obtain a complete characterization of the determined classes of 
Fourier multipliers in the general case of d0 , d 1 > 0. In these characterizations given in 
the previous section the situation d0 > d 1 is covered whereas the above theorem covers 
the remaining case of d0 < d1. 

Proof of Theorem 5.5. We use the embedding (cf. formula (2)) 

M (Bs0 (w0 ), B q, (w 1 )) '- NI (Bi' (wo), Bp,' (wi)). ,2 po,qo 

Without loss of generality we may restrict to the case of Po ^ P1 since otherwise the 
assertion can be deduced from Theorem 5.4.
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1. Assume Po > 1 and M e M(B ,q0 (wo),B q1 (w i )). From B 0 (w i ) .+ 
B'(wo) and the duality results of Theorem 5.2 and (1) we conclude that 

	

M (BP' O 	B ,q, (w i )) '— M 'B°'(wo), B, ' (w1)) . PD,2 
'—+ M(B30+1B(wi ),B'(w i ))  p, .2 
'— M (B' 1 (--) B°'--") '	p'1 ,2	' w	'	( p',2	'wj) 

Now apply complex interpolation 

1 B30+1 (wo) . B" (_L)J 	B(50-31 +2)/2	 i	1	1P0.2	' p,2	w	L '' r0 ,2	(w)	(— = — + r)ro 2 

TM	

jTM

	 (w(x)=(l+ lxi) 2 

[B"'(w i )	B'°	'-4	(.i—so-2)/2	_)•	1	1p,,2	,	p,2	w1	_'	Br,,2	 (r, = 2p, T 

to obtain
M E M(B o1+2)/2 (w) B' —.O_2)/2)

	

'	r,,2 
From Theorem 3.3/4) and Lemma 3.1 we get 

B(M'(w, 1); ( S o — S i + 2)1 2 , r0 , b($' —so-2)/2

	

r,2	) 
< IIM(W, 1\Ib(30_+2)/'2 b' —so-2)/2 —	)I r0 ,2	' r,,2	II 

(so .+2)/2	B' —so-2)/2 Co . M'M(Bro,2 ,	(w), r,,2	) 
<00. 

Because of d0 < d i we have 11 -'—	= oo and thus M 0 follows from [6: Corollary 
4.2/b)]. This proves the theorem in the case of Po > 1. 

2. Now assume po < 1. Additionally we assume that p' > 1. From the duality 
results of Theorem 5.2 and (1) we conclude that 

M(B;,90(wo), B q , (w i )) '—p M(B'(wo), B'(wi)) 

,—* M(B(),B2(-)) 

where s = —(so + 1) +	— 1). Our next step is the proof of an embedding result. 
Holder's inequality implies that

< 1(1 +11)	' Ii . 

	

lI p	Iw 

with i(x) = (1 + xI)"° P holds for 1 < p < 00 and all I E S'. This leads to 
B, 2() '—i B,, ,2 () which in connection with the duality results of Theorem 5.2 and 

wo w (1) yields the embedding 

M(Bpo°,qo (w0)' BS1 (w 1 )) '—+ M'B''(--) B3 p',,2 w,	oo,2 

	

- p M	— 'B'(),B2(J)) ' 
--p M(B2(ü),B'(wi )).
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Choose p so large that d0 +	<d1 and we are in the situation considered in the first 
part of this proof. 

In the case of pi 1 we first use a Sobolev-type embedding 

B 3 '(w1 )

	

'-+ B,q(Wi	
P1 

	

)	(a = s 1 + v( - 

to obtain
M(B;°,q0(wo),	,q, (w 1 )) '- 1vI (B;°,qo(wo), B ,q1 (w1 )). 

Now we are again in the situation p' > 1 and the theorem is proved I 

6. Proof of the discrete characterization 

It remains to prove the discrete characterization of function spaces which was the basis of 
our considerations. Therefore we need a few preparations. We start with the anisotropic 
version	

1 
Mf(x)=sup	

Je(.—y):5r
If(y)Idy	(xR'1) r>O iJJ . /- rj  

of the Hard y-Littlewood maximal function. The following inequality due to Fefferman 
and Stein 171 in the isotropic case plays a basic role in the theory of function spaces. 

Theorem 6.1 (Fefferman-Stein inequality). Assume 1 < p,q < oo. Then there 
exists a constant C> 0 such that 

	

(14fj)jeNItqII p	II(fj)jENIqII 11, 

holds for all sequences of functions (fi)jE N E Lp(Cq). 

According to Marschall [13: Subsection 1.1.4] this is a consequence of the extrap-
olation theory of Rubio de Francias [15] and the scalar case due to Calderón [3]. A 
different proof was proposed by Seeger [17]. 

Additionally we need a second maximal inequality due to Peetre [14] in the isotropic 
unweighted case. We will derive it from the following multiplier assertion. 

Theorem 6.2 (Vector-valued Fourier multipliers). Assume 0 < p,q < oo and 
m, E S with supprij ç { e R" : () < 2} for all j E N. Furthermore, let w E W 
and N> minp,g) Then there exist constants C,M >0 such that 

K
sup w(.

[71Ff](. - z)I )

jEN	
C - A . I(Wfj)jENItqI IP ZERfl	

- z)	2i(z)IN 	liii "P 
with

A = sup 11( 1 + ,1)M .	[(A;, .)] Il JEN 

holds for all sequences (fj)jEN of tempered distributions.
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Proof. First modify the inequality in [16: Theorem 1.4.21 with the help of the 
anisotropic Hardy- Littlewood maximal function to get 

sup w(x - z)_g(x - z)I	C0 . (M[wgI*](x)) 
[1 + o(z)1' 

where the support of Fg is contained in a given compact set. Then use anisotropic 
substitutions and the anisotropic Fefferman-Stein inequality in Theorem 6.1 to modify 
the proof of [16: Theorem 1.9.1]I 

Now choose 71j =	 j+r and f, = 2i3 F l [qsj.Tf] to get the announced maxi- 
mal inequality. 

Corollary 6.3 (Peetre maximal inequality). Assume 0 < p,q < oo, .s E R and 
w E W. If N > min{p,q}' then there exists a constant C >0 such that 

sup w(.
2)31[fj(. - 4

V ^ c . ill IF;,q (w)II —z) 
^zERn [1+2U(z)]N	)jEN p 

holds for all I E S'. 

To prove Theorem 2.1 we also need the following lemma. 

Lemma 6.4. With a E CNXZ" we associate the sequence ([a],), EN of functions 
defined by

[a](x) =	a• [1 + ê(A2,x - k)J_ L	(x E R'). 
k EZ' 

Assume 0 <p, q < 00, S E R and w E W. Then there exists a constant C> 0 such that

lw . II(233[a]j('))jENIqII M	C IIaIf,q(w) 

holds for all a E f, ,q (w) and a sufficiently large L > 0. 

Proof. Let x E We decompose Z n into the sets 

Kr{kEZ: 2r _1<(ko _k)<2r+ 1 _11	(rN). 

Define by
1 1	i1) -,+j	.	(3) 

For y E <> we have (k - A2,y) y and (A22 y - k) ^ -y. Let k E Kr and x E
ko 

Then
- k) + 1 

<Co . ((ko - A21 x) + ü(A2j x - k) + 1) 

Co.(1+7+p(A2ix—k)) 

Ci . [1 + ü(Avx - k)].
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Furthermore we have the relation 
w(x) <C2 w(A2i k)[1 + (x - A2lk)]d C2 . w' . - [1 + ( A2,x - k)]d 

for a suitable d> 0. Choose 0 <t < 1 so that 1 < <oo to obtain 

w(x)[](x) <C2. j ajk 	+ (A2,x - 
kEZ" 

C3 >	2IaIw 
r=O kEK,. 
00  

C3 12("'  

	

-	 r=O	kEK, 
The sum over Kr will now be estimated from above by a maximal function. We use the 
inequality 

e(x - y) < C4 . (e(x - A2 - 1 k0 ) + (A2 - 1 k0 - A2 - 1 k) + (A2 - 1 k - y)) 
C4 (72 + (2 1 - 1)2-i + 72.7) 

which holds for all y E <>(k E Kr) to get 

i (IaUw)t = 23vf
I'kEK

i aIw1(Y)]dy 
kEK	 0(z-y)<2 , 

C6 2rvM[
	

IIw1 ] (x) 
kEZ 

since If Y E RTh : e(x - y) <C5 2T_i}1 = C6  

Now insert this in the above estimation of w(x)fa](x) and take L > 0 sufficiently 
large to obtain

	

/	 i	\- 
< C7 ( M	IaIw1	(x) 

	

\	kEZ" 
Multiply this by 2', apply the quasinorms and the Fefferman-Stein inequality (Theorem 
6.1) to get the estimate 

11 w	l(233k1j('))jENIgII I 

C .	(238 (M. [
	

aLIwL1] (.)) ) 
kEZ	 ,EN 

C7 •	(M [2 3	 (.)) 
- kEZ"	 jEN	z 

:5 C8
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and the assertion is proved I 
Proof of Theorem 2.1. We only consider the case of Triebel spaces because the 

assertions for Besov spaces can be deduced from this by real interpolation or by an 
interchange of the £q and L quasinorms. We need the following four steps to prove the 
assertion: 

1. The operator Se: F q (w) —* f;,() is bounded. 
2. The operator fu: f ,q (w) -+ F q (w) is bounded. 
3. We have fu o se = id in F,q(w). 
4. use . I f q (w)II is an equivalent quasinorm on F,q(w). 
Step 1. Let -y be defined as in the previous lemma (formula (3)). Since the sets 
are disjoint for fixed  we obtain from (x — A2 -, k)	2—' (x E) the relation 

2js (sef)IwL1(x) 
= (2 kEZ	 kEZ 

1	
sup	w(x — z)2 1 I	1 [Ff](x — — (2ir)	0(z)<.2-i

2' IF1 [ Tf](x — z) <C0 sup w(x — z)  
zER"	 [1 + 2ip(z)]N 

Choose N> .in P,9 apply the quasinorms and use the maximal inequality of Theorem 
6.3 to get 

Sef u f; ,q( w) =	 > I(sef)Iw1(.)\	Iq 
kEZn / JEN I 

2'I.T'[.Ff](. - z)I
 

) jEN ZERn 
C0 .	supw(.—z)

[1 + 2)9(z)]N 	tqII I

"p 

^ C1 . 
Step 2. Without loss of generality we may restrict ourselves to finite sequences 

since they are dense in f q (w). First we derive a pointwise estimate of 

I(x) = IF 1 E j1(fu41(x)I	(j E N). 
If j > 2, then the relation 

[q j [(T0 1 )(A2 s. — k)]] (-T) = F' [cb i (A 11+1 .)t,b i ] (A2 :x - k) 
holds for the terms appearing in fua and the right-hand side vanishs in the case of 

II > 1. From this we are lead to (put 1 = j + 1-)	 . 

I(x)	I&I. Is- '	 - k)]](x) 
1=1 kEZ' 

ri 
IaI	—'	 - k)



816	P. Dintelmann 

and similar inequalities can be proved in the remaining cases. Because .F [.] is a 
function from S we obtain 

	

1	 1 

kk I . [1 + ü(A2j+rx - k)]_L = c2 • I,(x)<C2	 > k1j+r() .
r=-1 kEZ"	 r=-1 

for every L > 0 where C2 does only depend on L. Now Lemma 6.4 shows that 

II fu I F;,q(w )II = 11w . I(2Ij( • ))j€NIqII lip 
C3	II (2's [](.))iENIeQ liii p 
C4 IkIf,q(')II 

Step 3. Since S is dense in F ,q (w) we restrict ourselves to I ES. We apply the 
partition of unity

0(b0(e) +	(1(A;1) = 1 

(which follows from the definitions of 00 and ') and the defintion of F' to get 

f(x) =	'Lf1(x) + 

	

= (27r) j	o(	o(). f(e) e	d 

±	(27r) 2 j	(b' (A; 1	f()e' d. 

	

The basic assumption { E R'1 :	2) c [—ir, ir]' (cf. [51) implies that 

E supp4,	;	() <2' 	=	E [—ir,ir]' 

yEsupp' 1 = ü(y):^ 2 = 

and a Fourier series developement yields 

t (A_, e)e 
1 
= 

	

(27r) - 	
i(y)exp(ix . A; 1 )k .dy :exp(ik. 

kEZ" 
1 = I (2ir) (F'ih 

)(A2, x - k) . exp(ik . A_, ) 
kEZ 

( E supp) for j > 1 and 

	

=	1	 - k) exp(ik . )	( E suppo). 
kEZ" (2ir)
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Insert these two series in the above decomposition of f, interchange summation and 
integration and the assertion follows. 

Step 4. We have 

sefl 3

	

	
3,q ( W ) MM11 Cl . 

= C 1 fu(sef)IF, ,q (w)	C 1 C4 sefIf,q(w) 

which completes the proof I 
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