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On the Existence of Connecting Orbits 
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Abstract. Two existence criteria of orbits connecting a pair of critical points of planar differ-
ential equations are given. 
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1. Introduction 

In this paper, we consider the differential system 

dx 
--=X(x,y) 
dt 
d 

-=Y(x,y) 
dt 

in the plane R2 where X and Y are continuous and assume that solutions of arbitrary 
initial value problems are unique. Let the vector field V = (X, Y) define a flow f(p, t) 
and let P1,P2 E R2 be two isolated criticalpoints of the system (1.1), i.e. V(p i ) = 
V(p2 ) = 0. 

Definition 1.1. If there is a point Po E JR2 such that 

,I'm f(po,t)=p 1	and	lirnf(po,t)=p2, i—.+oo 

then f(po, IR) is called a trajectory connecting p' and P2 

In some previous papers (see, e.g., [3, 4, 6]), generally it is assumed that one of two 
critical points P1 and p2 is a repeller or an attractor (about their definitions, see [31). 
In the present paper we shall give some existence criteria for connecting orbits which 
contain no such assumption. 
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2. Definitions 

Let p be a simple closed curve surrounding a critical point Q of the system (1.1). Then, 
a positive or negative parabolic sector of Q in p is defined as open subset D of the 
interior of p with boundary consisting of 

(i) the critical point Q 
(ii) the positive or negative semi-trajectory arcs f(M1 ,R) and f(M2, R+) or 

f(M1 ,1R) and f(M2 ,R), respectively, and 
(iii) the oriented closed subarc p12 from M1 to M2 

and such that when t - +oo or t - — oo, then f(M1 , t) - Q (i = 1,2) and the closure of 
D contains no negative or positive semi-trajectory f(M, R) or f(M, R+) which tends 
to Q as t - -oo or t -* +, respectively, where M E P12 (see [5: p. 163]). 

Definition 2.1. A positive or negative parabolic sector D is said to be regular 
if the trajectory (M) through any point M E P12 is not tangent to P12 at M and 
f(M,t) - Q as t - + 00 or t - -00, respectively. 

Definition 2.2. Let D be a regular positive or negative parabolic sector. An 
endpoint Ni E f(M1 , R) of a simple curve -y is called an interior-side point of -y with 
respect to D if y is not tangent to the trajectory f(M1 , R) at N1 and if there is a 
neighbourhood u(NI ) of N1 on the curve y such that either u(NI ) C D or the positive 
or negative semi-trajectory originating from any point in u(N I ) must intersect the closed 
subarc P12 

For N2 E f(M2 , R), an interior-side point of y with respect to D can be defined 
similarly. 

Let T C R2 be an open subset, T and ÔT its closure and boundary, respectively, 
and let f(p, [a, b]) denote the finite arc of the trajectory f(p, R) corresponding to the 
interval [a, b]. 

Definition 2.3 (see [5: p. 37]). A point Pa E OT is called an exit point of T with 
respect to the system (1.1) if there exists an e > 0 such that f(po,(—e,O)) C T. An 
exit point p0 is called strict if there exists an e > 0 such that f(po, (0, e)) C R2 \ T. 

An entrance point (a strict entrance point) can be defined similarly. 

In what follows, the set of exit points of T will be denoted by Si and the set of 
strict exit points by S. 

Let.
To={pETlf(p, t i ) T for some t i >o}	 (2.1) 

and Ti = T0 US1 . We define the function t: T1 - R by 

tP = sup f t ? 0 f(p, [0,t]) C T}.	 (2.2) 

It is easy to see that f(p, [0,t]) C T and f(p,t) E Si. 

The following lemma holds (see also [2: p. 25]).
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Lemma 2.1. Let T c R2 be an open subset satisfying S 1 = S, i.e. all exit points 
of T are strict. Then the function t, defined by (2.2) is continuous. 

Proof. By the condition S 1 = S it follows that, for any given p e T1 and e > 0, 

f(p, [tn , t,, + e))	T U S1 

and there is a point t' E (t,, t, + e) such that f(p, t') V T. Let V be a neighbourhood 
of f(p, t') in R2 which is disjoint from T, and let U be a neighbourhood of p in R2 such 
that f(U,t') c V (by the continuity of f(p,t)). Then, for p' E U  T, f(p',t') V T. 
This implies t,, < t'. Further, by t' E (t,t + e) it follows that t' < t,, + e. Therefore, 
t, < t, + e. This shows that t, is upper semicontinuous. 

Now let p E T1 and let e > 0 be arbitrarily given. By the definition of t,,, it 
follows that f(p, [0, t,, - e]) C T, hence f(p, [0, t,, - el) fl 97' = cb. Therefore, for every 
T E [0, t, - E], there is a neighbourhood U, of f(p, T) in R2 which is disjoint from YT. 
Since the trajectory arc f(p, [0, t, - ]) is compact, a finite number of the U, cover 
f(p, [0, t, - E]). Let U be their union. Since U is open, there is a neighbourhood V of 
p in R2 such that f(V, [0,t,, - e]) c U. Since U nOT = , the inclusion p' E V implies 
f(p', [0, t,, - ]) fl OT = q. Thus t,,, > t,, - e, and t, is lower semicontinuous. This 
completes the proof I 

Definition 2.4. If a simple closed curve C is the union of alternating non-closed 
whole trajectories and critical points, and if it is contained in the w-limit set (or a-limit 
set) of some trajectory, then we say that C is a singular closed trajectory. 

3. Results 

In this section, we shall prove first the following theorem (see Figure 1). 

Theorem 3.1. Suppose the following: 

1. Let p and P2 be two critical points of the system (1.1) and let one of them, say 
P1, has a regular negative parabolic sector D 1 in some simple closed curve 

2. Let M1 and M2 be two endpoints of the oriented closed subarc p12 of D1. 

3. Let NI N2 be a simple curve connecting the points Ni E f(M1 , R) and N2 E 
f(M2 ,R) such that each Ni (i = 1,2) is an interior-side point of N1 N2 with repsect 
to D1.

4. Let B be the region enclosed by the segmental arcs M, M 2 , N, N2 and the trajectory 
arcs	 and let the following three conditions be satisfied: 

(i) There is only one critical point P2 in B. 
(ii) There are no closed trajectories and singular closed trajectories in B. 

(iii) All exit points of B lying on the curve N, N 2 are strict. 

Then there must be in B U D 1 a trajectory connecting p1 and p- (see Figure 1).
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Proof. Since D 1 is a regular negative parabolic sector, it follows from Definition 
2.1 that every point of the segmental arc M1 M2 is a strict entrance point of B. The 
theorem proof proceeds by reduction to absurdity. Suppose there are no trajectories 
joining p and P2• Then, by the Poincaré-Bendixson theory of planar systems and by the 
conditions (i) and (ii) it follows that the positive semi-trajectory f(p, R) originating 
from any point p E M1 M2 must leave B from the point p' E N1 N2 for increasing time. 
It is easy to see that p' E Si (where S 1 denotes the set of exit points of B). According 
to (2.2) we can define the function t,=sup{i > OIf(p,[O,t]) C B) in the subset of B. 
Then p' = f(p,t) E N, N2 for p E M, M2 . Let 

K = {' E A7p' = f(p,t) for some p E i'v11.M2}. 

Now we can prove that K = N, N2, i.e. every point of the arc N, N2 is in K. In fact, 
by the conditions of the theorem, each of the Ni (i = 1,2) is an interior-side point of 
N1 N2 with respect to D 1 . This means (see Definition 2.2) that every point in some 
neighbourhood of Ni (i = 1,2) on the arc N1 N2 is in K. Therefore, if there is a point 
p' E N1 N2 such that p'0 is not in K, then K is a disconnected set on the arc N1N2. 

N	M. 

N2 

Figure 1 

Since by Lemma 2.1 and by the continuity of the flow f(p, t) it follows that p' = f(p, t) 
is a continuous function of p, the are M1 M2 will be mapped into a continuous segmental 
arc in K. But this is impossible because K is disconnected and the images of M1 and M2 
lie in two distinct connection components of K. Thus we have proved that K =, 
hence NI N2 c S 1 . Further, by the definition of K, we know that for every point 
P', E N, 1 there must be a point P i E Mi M2 such that p = f(p' , 

Consider now the mapping p' = f(p, t) from M, M2 to N, N2 . As stated above, it is 
surjective (onto). Further, if f(p, t 131 ) = f(p2, i,, 2 ) 1 then by the uniqueness of solutions 
it follows that pi = P2. Hence this mapping is injective. Let 

t,, =inf{i	Of(p',[t,Oj) C B}. 

It is easy to see that t, ' is defined for every point p' E Ni N2 . Thus we get the inverse 
map p = f(p',t,,). Using the same argument used in Lemma 2.1 we can prove that the
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inverse map is continuous. Hence p' = f(p, t) is a homeomorphism from M_,M2 onto JV. Therefore M, M is mapped topologically onto Ni N2 by trajectories of (1. 1), 
and B is filled by these trajectories. But this contradicts the fact that p2 E B. Hence 
Theorem 3.1 is proved U 

Remark. In the case that there is a regular positive parabolic sector D, a theorem 
similar to Theorem 3.1 can be proved provided we make the change t - —tin the 
system (1.1). 

Theorem 3.2. Suppose the following: 
1. Let P1 and P2 be two critical points of the system (1.1) and let one of them, say 

P1, have a positive parabolic sector D 1 with respect to some simple closed curve p. 
2. Let M1 and M2 be two endpoints of the oriented closed subarc P12 of D 1 , and 

let f(M,t) (i = 1,2) are unbounded fort - -. 
3. Let B be an unbounded sectorial region bounded by two unbounded curves 

p 1 Mg Uf(M1 , lT) (z = 1,2) with the same endpoint pi and containing D 1 in its interior, 
and let the following three conditions be satisfied in B: 

(I) There is only one critical point p2. 

(ii) There are no closed trajectories and singular closed trajectories. 
(iii) Every positive semi-trajectory of the system (1.1) is bounded. 

Then there must be in B a trajectory connecting pi and p2 ( see Figure 2). 

M1 

Figure 2 

Proof. Consider the critical point P2 and construct a circle P2 of radius r with the 
centre P2 such that p2 fl P12 = . We distinguish the three cases 

(I) there is at least one hyperbolic sector of P2 in P2 

(II) there are no hyperbolic sectors of p2, but it has at least an elliptic one in P2 

(III) there are no hyperbolic and elliptic sectors of p2 in P2 

and consider them step by step; 
Case (I): It is easy to see that there must be a point Ni € P2 such that f(N1 , t) -* p2 

as t -* —oo. By condition (iii), the positive semi-trajectory f(N1 , R+) is bounded. 
Therefore, by the Poincaré-Bendixson theory of planar systems and condition (ii) we 
have f(N1 , t) -+ p' as t -* +oo.. Hence Theorem 3.2 holds.
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Case (II): By [5: P. 164], there is at most a finite number of elliptic sectors of p2 
in P2 Since there are no hyperbolic sectors, the number of elliptic sectors is even and 
there must be at least , one negative parabolic sector. Thus there must be a point N e P2 
such that the trajectory f(N, IR) connects p and P2. Hence Theorem 3.2 holds. 

Case (III): In this case, all sectors of p2 in p2 are parabolic. If there is one base 
solution (see [5: p. 162]) y(t) such that -y(t) —* P2 as t —, —oo, then the same argument 
used in case (I) implies y(t) — p, as t —* +. Hence Theorem 3.2 holds. 

Therefore, in what follows, assume that all base solutions are positive, i.e. they 
tend to P2 as i — +. Consider a positive semi-trajectory f(q, IR+) which tends to 
P2 as t —* +, where q E P2 - It is easy to see that f(q,t) must be unbounded for 

-+ —oo because otherwise its a-limit set must contain critical points or closed orbits. 
But this contradicts conditions (i) and (ii). Therefore, there is a simple curve MN 
connecting the point M E f(q,R) and the point N E f(Mi ,1R) or N E f(M2,Rj 
such that MN fl P2 = and MN fl D 1 = 0 (see Figure 2). By 15: p. 169], after deleting 
the hyperbolic part and the elliptic portion in every parabolic sector, one obtains a 
subregion S of the interior of P2 such that the positive semi-trajectory through any 
point of S is interior to S for t > 0, and it tends to p2 as t -# +00. Similary, after 
deleting the hyperbolic part and the elliptic portion from D 1 , one obtains a subregion 
Di C D i and Di possesses properties similar to S. 

From the continuous dependence of solutions on initial conditions it follows that the 
positive semi-trajectory originating from any point in a small neighbourhood of M on 
the curve MN must enter S for increasing time, thus it tends to P2 as i — +00, while the 
positive semi-trajectory originating from any point in a small neighbourhood of N on the 
curve MN must enter Di for increasing time, thus it tends to p' as t — + 00. Similarly, 
for any point p E MN, if f(p,i) —* P2 or f(p,t) — pi as t —* +00, there is an open 
neighbourhood a(p) of p on the curve MN such that for any point E a(p) the positive 
semi-trajectory f(, lR+) must enter S or Di for increasing time, thus f(p', t)—* P2 or 
f(p, t) —* P1, respectively, as i — Therefore, there must be a point Q E MN such 
that f(Q,t) tends to neither P2 nor p1 as i — +. By condition (iii), it follows that 
the w-limit set of f(Q, t) contains some closed trajectory or some critical point different 
from P1 and P2 But this contradicts the conditions (i) and (ii) U 

4. An example 

Consider the differential system

dx—

	
2+axy 1 dt 	

1	
(4.1) 

dy 
= y + ay dt 

in the plane R 2 (see [1: p. 366]) where a > 0 and /3 > 0 are constants. By [1: P. 
367] we know that the critical point 0 = (0,0) of the system (4.1) is a saddle node, i.e. 
a critical point whose canonical neighbourhood is the union of one negative parabolic
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sector and two hyperbolic sectors. The negative parabolic sector lies in the half-plane 
x <0, its both boundary trajectories lie on the y-axis and all other trajectories of this 
sector tend to the origin 0 along the direction 8 = ir as t -* —cc. The two hyperbolic 
sectors lie in the half-plane x > 0, and their common boundary trajectory tends to the 
origin 0 along the direction 8 0 as t -i +00. If let

(4.2) 

then it is easy to show the following properties of the system (4.1): 
(1) In addition to the origin 0, the system (4.1) also have two critical points 

0 1
\ 

	

= (o_)	and	A=	16	
$2 

((_fi2)'a(a_fi2)) 

01 is a stable node and A is a saddle point. We shall prove that there must be a 
trajectory connecting 0 and A. 

(2) Choose M2 = (0, -) and construct the straight line y = - through M2 . It 
intersects the straight line y = fix at Z 3 (-, -b). Let x 1 = -	- e, where e 
is assumed to be small enough (0 < e < -) and construct the straight line x = 
through P =(x1, -k). It intersects the straight line y = k 1 at Q = (x i ,k i ), where 

—1+1+4x	—1+1+ 
<k 1 < 2a	 2a 

Let M1 = (0, k 1 ). Therefore, it is easy to see that 

dy 5 <0 for all points on the line segment M2P 
dt > 0 on the line segment QM1. 

and	
d

<0 on the line segment PQ. 
dt 

Thus the union yi = M2 P U PQUQMI together with two negative semi-trajectories 
y(M1 ) (i = 1,2) and the critical point 0 bound a regular negative parabolic sector 
D1.

(3) Choose N2 = (0, -) and construct the straight line y = -	through N2 . It 
intersects the straight line y = fix at Z1 = (-, — k). Let 

R=( 21	1 )  
fi 

where El is small enough (0 < el <	). Clearly,	< 0 for all points on the line
segment N2R.

Vii(4) We know from the second expression of (4.1) that x =	are the abscissa 
of those points on the straight line y = k satisfying	= 0. Consider the straight line
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Y = k' =	- e2 where e2 is small enough. Then, on the straight line y = k' for 
x <0, the abscissa satisfying	0 is as follows: dt 

1
- 62a(a - /32)][1 - C2(C - /32)] a(a_82) 

Moreover, the abscissa of the intersection point of two straight lines y = k' and y = Ox 
is as follows:

F' - e( - /32) *  X = a/3(a_/32) 

It is not difficult to check that i < x. Thus, we can take x 2 such that < x2 < x, 
and let W = (x2, k'). 

(5) Construct the straight line x = -' + el through R. It intersects the straight 
line y = k' at L= (- + e 1 , k'). Construct the straight line x = x2 through the point 
W. It intersects the straight line y = k2 at E = ( X2, k2) where it is assumed that. 

k2 > —1 + V/-1 + -4C, 3 x 
2a 

Clearly, we have k2 > k 1 . Let N1 = (0,k2 ). Then, it is easy to* verify that 

dy f < 0 for all points on the line segment N2R 
di 1> 0 on the line segments LW and EN, 

and
dx f > 0 

'on 
the line segment RL 

dt < 0 on the line segment WE. 

Thus the union
72 = N2RuRLuLWuWEuEN, 

will serve as the simple curve in Theorem 3.1. Consider the region B bounded 
by -y (i = 1,2) together with two line segments N1 M1 and N2 M2 . Noting the fact that 
the y-axis is the union of trajectories of the system (4.1) and the properties of three 
critical points of (4.1), it is easy to see that there are no closed trajectories and singular 
closed trajectories in B. Further, it is clear that all exit points of B lying on 72 are 
strict. Therefore, all conditions of Theorem 3.1 are satisfied and it follows that there is 
in B a trajectory connecting 0 and A.
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