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Behavior of a Bounded Non-Parametric H-Surface 
Near a Reentrant Corner 

K. E. Lancaster and D. Siegel 

Abstract. We investigate the manner in which a non-parametric surface z = f(x,y) of pre-
scribed mean curvature approaches its radial limits at a reentrant corner. We find, for example, 
that the solution f(x, y) approaches a fixed value (an extreme value of its radial limits at the 
corner) as a Holder continuous function with exponent Z as (x,y) approaches the reentrant 
corner non-tangentially from inside a distinguished half-space. We also mention an application 
of our results to a problem in the production of capacitors involving "dip-coating." 
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1. Introduction 

In this paper we consider first a bounded non-parametric surface z = f(x, y) of pre-
scribed mean curvature over a domain whose boundary has a reentrant corner P and 
which, when considered as a surface in R, has a boundary branch point above the reen-
trant corner. In this case, it is known that there is a half-space from whose directions 
the radial limits off at P are identical (i.e. Proposition 1). We will determine the man-
ner in which f(x, y) approaches this value as (x, y) approaches P in the vicinity of this 
half-space. We will also prove that if the prescribed mean curvature H is real-analytic, 
then "cusp solutions" do not occur and therefore the radial limits vary continuously 
with direction. We consider second a non-parametric minimal surface z = f(x, y) over 
such a domain. In addition to the behavior of f from the vicinity of the half-space 
mentioned previously, we will determine the behavior of I near P from directions not 
in the half-space. 

Throughout the paper we will let H E C' 6 ( R3 ) for some 5 E (0, 1), Q be a bounded 
Lipschitz domain in R 2 , and P be a (fixed) point on aQ. For convenience, we will 
assume P = (0, 0). Define Tf = yI . If 2 

and NI = V Tf. We are interested in the 

following boundary value problems. 
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Problem 1. Given a piecewise continuous function : t9Q - R, find a function 
f e C2 (Q) fl C°(Q U C) such that 

	

Nf(x,y)=2H(x,y,f(x,y)) for (x,y)EQ	 (1.1) 
f(x)y)=ç5(x,y)	 for (x,y)eC	 (1.2) 

where
C={(x,y)EOQ: is continuous at(x,y)}. 

Problem 2. Given a piecewise continuous function -y: ÔQ - [0, irJ, find a function 
I E C2 (Q) fl C'(Q U C) fl C' (n) such that 

Nf(x,y) = 2H(x,y,f(x,y)) for (x, Y) E 	 (1.3) 
Tf(x,y) . ii(x,y) = cos(y(x,y))	for (x, Y) E C	 (1.4) 

where 

C = {(x,y) E 9Q : ' -y is continuous at (x, y) and ÔQ is of type C 1 near (x,)} 

and v(x,y) is the exterior unit normal to Q at ( X 1 Y) E C. 
These problems need not have a solution if appropriate boundary curvature con-

ditions are not satisfied, as has been well illustrated (see, e.g., [3, 17]). However, if 
the boundary value problem has only one "bad" point, at P, either because ÔQ is not 
smooth at P or the boundary data is discontinuous at F, there may exist a function 
f E C2 (Q) fl C°(Q \ {P}) which satisfies Nf = 2H in Q and satisfies the boundary 
condition at each point of aQ \ {P}. In some cases (see, i.e., [2, 10, 12, 14]) it has been 
shown that the radial limit of f at P = (0,0) in the direction 9, 

Rf(9) = lim f(r cos 9,r sin 9), 

exists whenever (r cos 9, r sin 9) E Q for all sufficiently small r > 0 and Rf(9) varies 
continuously with 9. 

Unfortunately, in [2] (and in the concluding remark in 111]) the possibility that Rf(9) 
might have jump discontinuities was not considered (see 112: Section 121 and [141). On 
the other hand, no example is known, at least to the authors, which contradicts the 
conclusions of [2] and these results are known to be correct when H is constant (in a 
neighborhood of the z-axis). 

One of the surprising conclusions obtained in, for example, [2, 10, 14] was the 
behavior of Rf(9) as 9 varies. For simplicity, let us assume ÔQ \ {P} is of type C1, 
ac has one-sided tangents at P, these tangents make angles 9 = a and 9 = /3 with the 
x-axis, where a < /3 < a + 27r, and 

{ (rcos9,rsin9): 0< r <r(9) and a <9< 13} c Q 

for some r(8) > 0. We define Rf(a) to be the limiting value off at P as P is approached 
along the portion of ÔQ which is tangent to 8 = a and we define Rf(/3) similarly; when f 
satisfies (1.4), it is not clear that these limiting values need exist. We may summarize the 
current state of knowledge concerning the behavior of Rf(9), including the possibility 
that Rf might have discontinuities, by the following
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Proposition 1. Let  E C2(l)flC°(ri\{P}), I o C°(), satisfy (1.1) and one of 
(1.2) or (1.4) on O \ {P} (with I € C'(Q \ {P}) if (1.4) is satisfied). Then either 

(i) there exist ach 80 with a < a0 < j90 < 9 and there may exist a countable set 
C [ao,/3o) such that RI exists on [a,$j \ I, RI E C°([a,131 \ I), and 

is constant on [a, ao] 
RI' is strictly monotonic on [ao,/30 ] \ I 

is constant on [I3101 

or
(ii) there exist a 0 , go, 01 with a a0 <0 1 <0 1 +7r < /90 j9 and there may exist a 

countable set IC [ao,9,)U(9 1 +7r,/9o] such that RI exists on [a,131\I, RI E C°([a,/3]\I) 
and

is constant on [a,ao] 
is strictly increasing (decreasing) on [ao, 9,] \ I 

Rf	is constant on [9 1 , 9 1 + ir] 
is strictly decreasing (resp. increasing) on [9 + ir, /90 \ I 
is constant on [001 0]. 

If f satisfies (1.4) on Oil \ {P}, then Rf(a) and Rf(f3) both exist. In addition, if H 
is constant (on a neighborhood of the z-axis), 0 E C°(Oil), and f satisfies (1.1) on 
Oil \ {P} or if f satisfies (1.4) on Oil \ {P} and either H(O, 0,.) is strictly increasing or 
H(x, y, z) depends only on z, is analytic, strictly decreasing, and unbounded from one 
side, then I = 0. 

Notice that in case (ii), we have a central "fan" [0 1 , 0 1 + in] of directions in which 
the radial limits are all the same. This requires /9 - a > in, of course, so that Il has 
a reentrant corner at P. Let f be a solution of either of the boundary value problems 
which has radial limits for all 0 E [a, /9] and assume these limits behave as in (ii). Then 
the function f actually extends to be continuous on 7-1, where 7-1 is the portion in il of 
the (open) half-space {(r cos 9,r sin O) : r > 0 and 0 < 9 < 0 1 + 7r 1, when we define 
1(0,0) to be Rf(91). 

Here we examine the manner in which f(x,y) approaches its radial limits Rf(9) 
as (x, y) - (0, 0). We find, for example, that f(x,y) approaches the value Rf(9,) as 
a Holder continuous function with HOlder exponent independently of H and il, and 
boundary condition whenever case (ii) of Proposition 1 holds and (x, y) approaches P 
non-tangentially from inside il fl 7-1 (Theorem 1(v)) provided H(0, 0, Rf(9 1 )) 0 or H 
is real-analytic (near the z-axis). We also find that RI is continuous in neighborhoods 
of 9 1 and 9 1 + in in (a,/3) (i.e. 01 , 0 1 + in 0 I in Proposition 1) and Rf E C°([a,8]) 
(i.e. I = 0) if H is real-analytic. We restrict our attention to case (ii) of Proposition 1 
because it represents the more complicated situation; the behavior of f near P would 
be given by Theorem 1(iii) when Ri is monotonic on [a, /9] \ I. 

If H 0, then a solution I of (1.1) is a non-parametric minimal surface and may be 
represented parametrically in terms of the Fourier coefficients of its boundary values. 
We examine this case in Theorem 2 and find, for example, that the location of the 
central "fan" of constant radial limits given in case (ii) of Proposition 1 is determined
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by the first few Fourier coefficients (i.e. (2.9)). While the determination of these Fourier 
coefficients depends on finding the "boundary correspondence" between the boundary 
of a parameter domain and the graph of 0, numerical algorithms based on this idea 
have been developed and implemented, such as [16] (developed under the supervision 
of Professor H. J. Wagner). The conclusions of Theorems 1 and 2 may have numerical 
applications in two ways. First, the formulas in Theorem 2, such as (2.9), may make 
programs such as E16) more general by removing the need for a symmetry assumption 
used to determine Oi. Second, programs for finding non-parametric H-surfaces may be 
improved by making use of the a priori knowledge of the behavior of solutions of (1.1) 
near P. In particular, special finite elements near P or special modifications of other 
procedures might prove to be useful numerical tools. 

2. Statement of main theorems 

Before stating our first theorem, we require the following 

Definition. For (x, y) E Q, we define 0(x, y) to be the argument of x + iy which 
satisfies a < 0(x, y) < 0; that is, x = r cos 0 and y = r sin 0 with r2 - x 2 + y2 and 
O(x,y) e (a,.8). 

Theorem 1. Assume H E C" 6 (R 3 ) for some (5 E (0, 1), Q is a bounded Lipschitz 
domain in R 2 , P = (0,0) e 3Q, and f E C 2 (Q) n C°(cl \ {P}), f C°(), satisfies 
(1.1). Suppose either 

(a) there exists a pIecewise continuous function 0 defined on 91 and continuous on 
ô \ {P} such that f = on ac \ {P} 

or

(b) 3Q \ {P} is of type C 1 and there exist e > 0 and -y E C°(ÔQ \ {P}) such that 
y(x,y)e[e,7r—e] for all (x,y)Eô1\ {P} and 

Tf(x,y).v(x,y) =cos(y(x,y))	for (x,y)E3)\{P}. 

Suppose the graph off over Q has finite area, and, for some M > 0, If (x, )I M for all 
( X I Y) E Q. Suppose also thatRf is not monotonic on a,/3] (i.e. case (ii) of Proposition 
1 holds), 01 E (a,/3-7r) is as indicated in case (ii) of Proposition 1, and either H(x,y,z) 
is real-analytic in x, y, z or H(0, 0, Rf(01 )) 54 0. Introduce new coordinates (, ) given 
by

= —cos(0 i )x —sin(9 1 )y	and	9 = sin(8 i )x - cos(0 i )y	(2.1) 

(as in Figure 1). Denote f in these new coordinates by f, so that f(±,) = f(x,y). Let 

= { (r cos 0, r sin 9) E	r > 0 and Oi <0<0 1 + 

and .s = sgn(Rf(0 1 ) - Rf(0 1 - 77)) 'for any sufficiently small positive i.
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1/

Figure 1: Original (i.e. x, y) and rotated (i.e. ±,) coordinates
for the domain Q with 7-1 shaded 

Then:

(i) The constant

(u . rn IJ(0)_Rf(9i)I) =
To	1912. 

is well defined and positive. 

(ii) For any closed C' domain D which satisfies flu {P} C D C Q U {P}, 

f(x,y) = Rf(9 1 ) + sfe(,) + R(x,y) 

and
1 fe(x	

9e Y) 
= 2 (Y( C ( X , Y)) —I + e(C(x,y))2) - s(C(x,y)) 2  - 

where the graph of f' is contained in the parametric surface {(2uv,e(3u2v—v3),u2—v2) 
V 20) (see Figure 2), A,B,C are given by 

A(x,y) = y2 + V4e4 x6 + y4 

B(x,y) = 2(y2 +	+ y4) - 2ex2 

43	/_4eyA(x,y) - (B(x,y)) 
C(x,y) = 2e3(B(x,y)) -

	4e23(A(x,y))(B(x,y))
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the remainder R(x,y) = o(f e (x , y)) as (x, y) in D approaches (0, 0), and the remainder 
R(x,y) = 0((x 2 +y2)P) as (x, y) in D approaches (0,0) if 	the (5,) coordinates)
aD = {( (t), (t)) : t E R}, ((0), 9(0)) = (0, 0), and (t) = 0(2(t)) as t - 0. 

(iii) There exist a dense open subset A of (ao,9 i ) U (S + 7r,80 ) and a function 
g E C°(A) such that 

f(x,y) = Rf(9(x,y)) +g(S(x,y)) + O(x 2 + y2) 

as (x, y) in S approaches (0, 0), where S is a sector of the form 

S = {(rcosS,rsinS) E : r >0 and 6 S 

with [6, 61 C A. 

(iv) If H is real-analytic in a neighborhood of the z-axis, then Rf(S) exists for all 
SE [a8] and RI E C°([cl,/3J). 

For certain types of approach to (0,0) in (ii), we obtain simpler formulas. In par-
ticular:

(v) IfS = {(r cos 5, r sin 9): Si + e S Si +7r - f)  for some e >0, then 

f(x,y) = Rf(S 1 ) + se- II + O(Vfx 2 + y2) 

as (x, y) in 	approaches (0, 0). 

(vi) As ± - 0,

2	2 
J(±,0) = RI(S 1 ) + se 5 ± + o(I±I') 

We may also determine the behavior of RI(S) as S approaches Si from below or 9 + ir 
from above. In fact: 

(vii) As 9 1 Si or S 10 1 + ii-, 

4s 
RI (S) = RI(S 1 ) + T- tan	- S) + 0( I tan ( 9 - 9 1 ) 1 2+6 ).	(2.2) 

Remark 1. As an illustration of these results, suppose Si = -ir (so ± = x and 
= y), let A be as in (iii), and consider approaches in ci to (0,0) along rays. As r - 0+, 

RI(a)+o(i) 
RI (S) ± g(S)r 2 cos2 S + o(r2) 
RI( 51) ± ercos9+o(r) 

f(r cos S,r sin 0) = RI ( S1) ± e(rsin9) 2 + o(r 
Rf(S1 )± 1 ercosS+o(r) 
Rf(S) ± g(S)r 2 cos' S + o(r2) 
RI(fl)+o(1)

if a< 9< 
if a0 <S<S (SEA) 
if S = S 
if S <S < Si + ir 
if S = Si + ir 
if 0 1 +lr <9< fib (SE A) 
if fib <Sfi.
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Remark 2. From conclusion (vi), we see that Rf is continuous at 01 and 9 + ir 
and so, in the notation of Proposition 1, 0 1 , 01 + ir I. 

Remark 3. Notice that conclusion (vii) generalizes (11: pp. 654 - 655]. 

Figure 2: A portion of the parametric surface 
{ (2uv,3u 2v - V 3 , U2 - v 2 ) : v 01 near the origin 

Suppose H 0 and Q is a bounded Lipschitz domain in R 2 which is locally convex 
at each point of ÔQ \ {P} and can be written as 

= {(rcos9,rsin9) : 0< r <r(8) and a<9< 0	 (2.3) 

for some constants a and /3 with 0 </3 - a < 27r and some function r with r(9) > 0 for 
a < 9 < /3. Suppose also that 0 is piecewise continuous on ô. (We observe that if 
is continuous and 	C°(), then case (ii) of Proposition 1 automatically holds.) Let 
I E C2 (Q) fl c o (?!\ {P}) satisfy 

Nf=0 in Q 

I =	onô\{P}.}	
(2.4) 

Assume f 0 C°()) and Rf is not monotonic on [a,/3]. Let B = {(u,v) : u 2 + v2 < 
1 and v > 0}. Using the procedure in [10, 11] (also [2]) as indicated in the comments 
below preceeding the proof of Theorem 1 and an appropriate conformal map of the unit 
disk onto B, we find that there exists X E C°(B : R3 ) fl C2 (B : R3), 

X(u,v) = (x(u,v),y(u,v),z(u,v))	((U, V) E
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such that
X=0 mB 

X•X=O mB 

l X l=IX l in B
(2.5) 

x (u, 0) = y(u, 0) = 0 for uE[.-1,1] 
z(u,v) = f(x(u,v),y(u,v)) for (u, v) E B 

lXu(u,v)1 0 0 iff(u,v) $ (0, 0), 
and K is an orientation reversing homeomophism of B onto Q, where K : B -i is 
given by K(u, v) = (x(u, v), y(u, v)). Notice that X(B) is the graph of f over 

Let us denote by a = a,, (Q, ) and b = b,, (Q, ) the Fourier sine coefficients of 
x(cos t, sin t) and y(cos t, sin t), respectively, so that 

lr 
21' a. 	- j x(cos 9, in 9) sin(nO) dO 

0	
(n> 1).	 (2.6)

bT,= / y(cos 9, sin 9) sin(nO) dO 

Let c, = c(cl, ) denote the Fourier cosine coefficients of z(cos 9, sin 9), so that 

C n = Jz(coso, sin o)cos(no)de	(n > 0).	 (2.7) 

Definition. Define 9 to be a strictly increasing map from (-1, 1) to (a, /3) such 
that

x v (u,0) = I zu(tL , 0 ) I cos ( 9( u ))	and	y(u,0) = lzu(u,0)lsin(9(u)) 
with 9(0) 1im_o+9(u). Set a0 = 1im...._i+9(u) and /30 = lim...i_9(u). (We 
observe that 9(0) = 9 + ir if 0 1 is given as in (2.9), tan a 0 = lim j _ i °' and 
tan i3 = lim 1 Y-(- ,O).

 
x(u,0) ) 

Definition. Let u be the map from (a,8) to [-1,1] satisfying the conditions u E 
C°([a,fi]) and u(9(t)) I fort e (-1,1); notice that u —1 on [a,ao] and u 1 on 
[/3o,/9J. 

Lemma 1. 
(a) For each u E (-1,1) with IX(u, 0)1 = Iz(u, 0)1 54 0, 9'(u) =	> 0 du 

(b) Set L	{9(u) : u E (-1,1) and z(u,0) 0 0}. Then u E C'(L) and u'(0) 
>0 if 9 EL. dO

Notice that L = ( ao,flo) or L = (ao,9 1 ) U (9 + 7r,/3o). We observe that the 
conclusions of Theorem 1 continue to hold (with e = e2 = — (cos(9 1 )a2 +sin(9 1 )b2 ) and 
A (ao,9 1 ) U (O + ir,fio).) In addition we can obtain the radial limits of I at P and 
the asymptotic behavior off near P from the Fourier coefficients a, b, c as indicated 
in the following



Behavior of a Bounded Non-Parametric H-Surface	827 

Theorem 2. Let 0 be given by (2.3), f be the solution of (2.4), and X E C°( 
R3 ) n C2 (B : R3 ) satisfy (2.5). Suppose z(0,0) = 0; hence a 1 = b1 = c1 = 0, c = 
a +b > 0, Q has a reentrant corner at P (i.e. fl —a > ir), and the parametric minimal 
surface X has a boundary branch point at X(0,0) = (0,0,co). Let Rf(cx) and Rf(fl) 
denote the limits of 0 at (0,0) along aS2 from the appropriate directions. Then Rf(6) 
exists for all 9 E (a, /3), Rf E C°([a, 0]), and 

Rf(9) = z(u(9),0) = CO + >cn(u(9)) n	(9€ [a,flJ).	(2.8) 

Define 9 1 E (a,/3 — it) by
sin(GI)a2 — cos(9I)b2 = 0.	 (2.9) 

Then 	0 on [0 1 ,6 1 +7r], u 0 on [a,9 1 )u(9 1 +ir,fl], and when 9€ (ao,Oi)U(91+ir,/3o),
u(0) satisfies

cc

	

n(sin(9)an — cos(9)b)(u(9))' = 0,	 (2.10) 

and if u E (-1,0) U (0, 1) satisfies (2.10), then u = u(9). Further, if u E (-1,0) U (0, 1), 

nbn 	cos(9(u)) — (nan Un—I) sin(8(u)) = 0
	

(2.11) 

Set s = sgn(Rf(Oi ) — Rf(a)) and define g: [ce, /3] —* R by 

g(0) =	
>1n2 c [nP(9)u(9) - ()] (u(9)Y_ 

n(cos(9 1 )an + sin(9i)bn)u(9)"')2 

where
'ç-OO (fl\ 

P(9) -	
) ( cos(9)b, — sin(9)a)(u(9))"3 

- >n=2 n(n - i)( cos(0)b — sin(9)an)(u(9))?l_2 

Then as (x, y) —* (0,0)with either 

liminf 9(x, y) > ao	and	lim sup 9(x, y) <91 
(x,Y)—.(O,O) (z,g)—.(O,O) 

or
liminf 9(x, y) > 01 + it	and	urn sup 0(x, y) < 13o, 

(x,Y)-.(O,O)	 (z,y)—.(O,O) 

we have
f(x,y) = Rf(0(x,y)) + g(0(x,y)) 2 + 0((x2 + y2)2) 

where = - cos(0 i )x - sin(0 i )y and V = sin(9i )x - cos(9i )y.
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3. An application 

As part of the process of manufacturing some capacitors, a well-known international 
firm applies a, metallic coating to the bottom and a portion of the side of the capacitor 
using "dip-coating." One example of this part of the process consists of lowering the 
capacitor approximately 0.5 mm into a liquid metallic paste, letting it sit in the liquid 
for up to 20 seconds, removing it from the paste, turning it upside-down, and heating 
it until the coating dries. The manufacturer would like the coating of the side to 
have a uniform height, as in Figure 3, since otherwise precisely predicting the electrical 
properties of the device in advance might be difficult. However, the actual coating of a 
typical capacitor in the shape of a rectangular parallelpiped is "crescent shaped" as in 
Figure 4. If capillarity is primarily responsible for the shape of the coating, as seems 
to be the case, then our results can be applied to this problem, as illustrated in the 
following section. 

Figure 3: The desired coating of the side of the capacitor 

Consider a constant contact angle - y E (0, f) and a rectangle R with vertices V = 
{(0,0),(-2a,0),(0,-2b),(-2a,-2b)} for some a > 0 and b > 0. Let C be a circle of 
radius r0 > V'a2 + b2 centered at (—a, —b), B be the disk of radius r0 centered at 
(—a, —b), and T = B x {0}. Since the container which holds the metallic paste may not 
be too important, we will consider S U T to be the container and assume the metallic 
fluid makes a contact angle of with the side of the container. The side of our capacitor 
is represented by B x [0, oo). Let ci0 be the portion of the plane which is inside C and 
outside B and let I E C2 (Q0 ) fl C 1 (o \ V) be the solution of 

Nf=isf+A	in 
Tf . v=cos	on R\V 
Tf . v=0	on C 

where ,c> 0 and .A are appropriate cons€ants. Then f(x, y) represents the height of the 
liquid above the point (x, y) and the wetted portion of (half of) the side of the capacitor 
is the set 

{(x,0,z): —2ax<0,0<z<f(x,0)}U{(0,y,z): _2by0,0zf(0,y)}. 

If a = b and y E [, f), [14: Corollary 2] implies f E C°(); we suspect f is con- 
tinuous at each point of V even if a 54 b. On the other hand, there is (numerical and
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experimental) reason to suspect that f will be discontinuous on V if E (0, ). If f is 
discontinuous at (0,0) E V, then the results of Theorem 1 hold. For example, if a = 
then the radial limits of jr at (0,0) are constant on [—f, —+-y], [-i, ], and [lr-7,lr] 
and near (0, 0, Rf()) the graph of f is similar to Figure 2. 

Figure 4: An approximation of the actual coating of the side of the capacitor 

4. Proof of Theorem 

Before beginning this proof, we wish to discuss briefly some results, specifically from [2, 
6, 10, 11, 14] which we will use. In [2, 10, 11, 14] the graph z = f(x,y) is represented 
parametrically in conformal coordinates. This representation is obtained as follows: 

(a) For each e > 0, the portion of z = f(x, y) outside the cylinder Ce = {(x, y, z) 
x 2 + y2 <f2 } is represented as the image of a map Y from the unit disk into R 3 which 
is given in conformal coordinates and satisfies an appropriate three point condition. 

(b) As e approaches 0, the maps Y are proven to converge to a map Y whose image 
is the closure of the graph of I and which satisfies other appropriate conditions (e.g. Y 
is conformal, of type C2 inside the unit circle, of type C° on the closed unit circle, etc). 

We note that the uniformization theorem is needed when H 0 0. 

In [6], Robert Gulliver proved that minimizing surfaces of prescribed mean curvature 
do not have interior branch points. As one aspect of his investigation, he studied 
the behavior of prescribed mean curvature surfaces near branch points using, in part, 
modifications of the method of Hartman and Wintner [8); we shall use the techniques 
in the proofs of Lemmas 2.1 and 7.3 and Corollary 7.1 of [6]. 

The proof of Theorem 1 will be given in six steps. Let 

QW= {(rcos9,rsin8) E Q : 0< r < 

1' = {(x,y,f(x,y)): (x, y) E ÔQ \ {P}} 

so = { (x,y,f(x,y)): (X ) Y) E 

We will use the unit half-disk 

B={(u,v):u2+v2<1 and v>0}
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as our parameter domain and we will divide its boundary into two parts: 

hlB={(u,0):_1<u<1} and ô l B = {(u , v):u 2 +v 2 = 1 and v>O}. 

Step 1. There is a parametric description of the surface S0 

X(u,v) = (x(u,v),y(u,v),z(u,v))T E C 2 (B: 1R3) 

which has the following seven properties: 

(1) X is a homeomorphism of B onto 5o 

(ii) X maps 8'B strictly monotonically onto r. 

(iii) X is conformal on B: X . X, = 0,X = X2 on B. 

(iv) AX := X, +Xvv = 2H(u, v)Xu xX,, 
where H(u,v) = H(x(u,v),y(u,v),z(u,v)). 

(v) X e C°() and x y = 0 on 

(vi) X(u, v) = (0,0,0) if and only if (u, v) = (0, 0). 

(vii) Writing K(u, v) = (x(u, v), y(u, v)), K(cos t, sin t) moves clockwise 
about Oil as t increases, 0 t it and K is orientation reversing on B. 

Proof. The existence of the map X follows as in [2] when f = on Oil \ {P} and 
as in [14] when f satisfies (1.4) on Oil \ . {P} (see the comments preceeding the proof of 
the theorem) I 

Step 2. There, is a C 2 -extension of X, still denoted X, into a neighborhood W of 
(0,0) such that, for some a, b, A E R with a2 + b2 = A2 > 0, 

X(u,v)= (2auv,2buv,co+A(u2 _v2))T+p(w) 

where co = Rf(0 1 ) and Dkp(w) = o(IwI2) for k = 0,1,2 as w = u + iv - 0 ((u, v) E 
W). We may (and will) assume A > 0. 

Proof. From [9], we know that X E C" 1 (B U O"B) for all 1A E (0, 1). From Step 
1(iv) we see that

Lx = 2H(x(u,v),y(u,v),z(u,v))(yoz, yvzu). 

Let us denote the right-hand side by k(u,v) and consider x(u,v) as the solution of a 
linear equation (actually Poisson's equation). Let K be a compact subset of B U a" B. 
Since k(u,v) is in C°' 5(K) and x(u,0) = 0, [5: Theorem 4.11 or Lemma 6.10] together 
with [4] implies x E C 2 ' 6 (K) (and so x E C2 (B U O"B)). Similarly, y E C2'6(K) 
(and so y E C2 (B U O"B)). From the fact that X is conformal we see that z( . ,0) E 
C2 ' 6 (K fl (-1,1)); a similar argument to that above then shows that z E C2,6 (K). 
Thus X E C2 6 (K : R3 ) for each K which is a compact subset of B U O"B; hence 
X E C2 (B U O"B : R3 ). From [5: Theorem 6.19 and the remark following it] we see 
that X E C3 6 (K : R3 ) for each K as before.
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Claim. X can be extended to be of type C 2 on the closed disk Eq with Eq = { (u, v) 
U2 + V2 < 77 

2 1 for all sufficiently small ij E (0, 1) such that in this disk X satisfies the 
system

AX = AX,, + BX,,	 (4.1) 

where A and B are matrices which are continuous on Eq and of C'-type on the closed 
half-disks

1	 2	2	2 

	

Eq = (u,v): mu +v	71 2
	v 0 

and
E={(u,v):u2+v2<T,2 and v<0}. 17

Assuming the claim is correct, the reasoning used to prove 16: Corollary 7.1) yields 
some m > 1 and some T E C3 \ { 0} such that 

X(u,v) = (0,0,co) + Re{rw m } + p(w) 

where D k p(w) = o( I wI m_k ) fork = 0,1,2 as w = u+iv -4 0. Since X is a "two-to-one" 
map of 8"B into T, m must be even. Since X is one-to-one on B, m must equal two. 
Now X(u,0) = (0,0,z(u,0))T and X(u,0) = (x(u,0),y(u,0),0)" for —1 < U < 1 
and X is conformal on B U ô"B, so T = (ia , ib , A)T where a,b < 0, we may introduce 
new coordinates (x, y, ) with i = —z and so obtain A > 0; we will assume this in the 
following. (Notice that this assumption implies sgnz,,(u,0) = sgnu. Regarding Step 2, 
also see [71.) 

Proof of the Claim. Let us denote H(x(u,v),y(u,v),z(u,v)) by H(u,v). We 
first wish to extend X as a C2 -map on E1 and then show that it satisfies a system of 
the form (4.1). Since we already know X  C2 (BUa"B) and x(u,0) = y(u,0) = 0 for 
U E (-1, 1) and it follows from the conformality of X that z,,(u, 0) = 0 for u E (-1,1), 
we wish to extend z(u, v) as an even function of v across v = 0 and extend x(u, v) and 
y(u, v) across v = 0 in a manner which makes the corresponding second derivatives of 
x and y from v > 0 and v <0 agree at v = 0; notice that if H(u,0) 54 0, then the odd 
extensions of x and y across v = 0 will not be of C 2 -type at (u, 0). We extend X by 
defining, for v <0, 

x(u,v) = —x(u,—v) 
- 2H(u, —v)(yv(u, —v)z,,(u, —v) + y,,(u, —v)z(u, —v))v2 

y(u, v) = —y(u, —v)	 (4.2) 

- 2H(u, —v)(x(u, —v)z,,(u, —v) + x,,(u, —v)z,,(u, —v))v2 

z(u, v) = z(u, —v). 

Using the fact that x(u,0) = y(u,0) = 0, we see that X is of C 2 -type on E: E1. 
Differentiating (4.2) 12 gives 

x(u, —v) + { 2 [H(u, —v)z,,(u, —v)Jv 2 }y(u, —v) 

+ {2[H(u, —v)z,,(u, _v)] V 2 }yv(u, —v) 

= —2x,,(u,v) - {2H(u,—v)y(u,—.v)v2}z(u,v) 

+ {2H(u,—v)y(u, —v)v2}zv(u,v)
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and
x0(u, —v) — {2[H(u, — v)z(u, —v)v 2] } yn(U, —v) 

— {2[H(U,V)ZtL(u,V)v2]}yv(U,_V) 
= — x(u,v) + {2H(u, — v)yuv(u, —v)v2}zo(u,v) 

— {2H(u, — v)yvv(u, —v)v 2 }z(u, v). 

Analogous equations hold for yu(u, —v) 
form

/ x(u, —v) 

(1+ C) f yu(U,V) 
x,(u,—v) 

\yv(u,-v)

nd yv(u, —v). This leads to a system of the 

\	/x(u,v)\ 

1 = I yu(u,v) 1 +d	 (4.3) 
i	x,(u,v) 
/	\ yv(u,v) 

for v < 0, where C is of C'-type on E and C = 0 for v 0, d = dz + d'. z where 
d,d' are of C'-type on	and d = d' = 0 for v = 0. It follows from (4.3) that for37
(U, V) E	with 77 sufficiently small 

x(u, —v) = — x(u,v) + fi 

y(u,—v)=—y(u,v)+f2 1	 (44) x0(u,—v)=x(u,v)+f3 
J Y,, ( U , — v) = yv(u,v) + 14 

where 

It = 

with f, E C' on	and f = 0 for v	0. Additional functions with these same
properties will be labeled f, respectively ft ,, with i > 4. 

Taking the Laplacian of equations (4.2) 1 - 2 and using the formula 

/(y(u, —v)z(u, —v) + yu(u, —v)z(u, _v)) 

= (Ly),z + yv(z)u + (y)uZv + y(Az) + 2yiz + 2zLy 

(the right-hand side being evaluated at (u, —v)), the analogous formula which holds 
when y is replaced by x, and Step 1/(iv) to write Lx, Ay, and Az in terms of first 
derivatives yields 

x(u,v) 

= —Ax(u, —v) - 4H(u, _v)(yv(u, —v)z(u, —v) + y 0 (u, —v)z(u, _v)) + 

= —211(u, — v)yv(u, — v)z(u, —v) - 6H(u, —v)yu (u, —v)z(u, —v) + 

= { —2H(u,—v)y(u,—v)}z(u,v)+f7.
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To obtain the last equality, we have used (4.4) and the fact that yn(u,0) 0. Similarly, 
we have

Ly(u,v) = {2H(u,—v)x(u,—v)}z(u,v)+f8. 

In addition, we have 

Lz(u, v) = /z(u, —v) 

= 2H(u, —v)(xu(u, —v)yv(u, —v) - x(u, —v)yu(u, _v)) 

=19 

since x(0,0) = yu( O , O) = 0. 

We now define a matrix A =	as follows: 

o	for v>0 
all =

1171	for v<0 
( 0
	

for v>0 
a12 =

1172	for v<0. 

I-2H(u,v)y(u,v) for v ^ 0 113 = —2H(u,	V)yv(U, v) + 175 for v <0 
( 0
	

for v>0 
a21 =

1181	for v<0 
10
	

for v>0 
a22 =

1182	for v<0 
( 2H(u, v)x(u, v) for v > 0 a23 

= j 2H(u, —v)x(u, —v) + 185 for v < 0 
10
	

for v>0 
a31 =

ifs'	for v<0 
( 0
	

for v>0 
a32 =

1192	for v<0 
o
	

for v>0 
a33 =

1195	for v<0. 

Further, we define a matrix B = (b1 ).. 1 by 

for v>0 b11=0 
1 f73 for v<0 

b12=I0 for v>0 
1174 for v<0 

I 2H(u,v)y(u,v) for v	0 b 13 =
1.176 for v<0
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10	for v>0 b 21 lf83 for v<O 
10	for v>0 b 

22 1f84 for v<O 

b23 = —2H(u,v)x(u,v) 
I

for v 20 
186 for v<0 

b31 2H(u,v)y(u,v) for v 20 
f93 for v<0 

b32 = 2H(u,v)x(u,v) for v 20 
for v<0 

b fo	for v>0 
'1196 for v<0

With these choices for the matrices A and B, we see that (4.1) holds and so our claim 
is established I 

Step 3. Let us rotate the xy-plane through an angle of 9 + it and denote the new 
coordinates by T and V, where T= - cos(91 )x - sin(9 1 )y and = sin(9 1 )x - cos(8I)y. 
We may write

ç) fl?1 = {(,): <0 and y2 + 2 <2} 

where
= { (r cos 9, r sin 9): r > 0 and 9 <0<01 + 7r } 

for e > 0 sufficiently small. Let us replace w by VA- w. Subsequently, let X(u, v) = 
((u, v), (u, v), z(u, v)) T be given by 

X(u,v) = 

= (- 
cos(9 1 )x(u, v) - sin(9i )y(u, v), 

sin(9j )x(u, v) - cos(Oj )y(u, v), z(u, v)) 

and define k(u,v) ((u,v),y(u,v)). Then for some e,e ER with e 54 0 

(u, v) + iz(u, v) = 2uv + i(co + u 2 - v2 ) + iew3 + o(w)
 I y(u,v) = e(3u 2 v - v 3 ) + 5(w) 

where ci(u) =5(u) = 0 for —1 <U < 1, D k cr(w) = O(IwI3_Ic ) fork	0,1,2,3 and
D'&(w) = O(1w1 3 + 5_k ) fork = 0,1,2,3 as w = u + iv — 0 ((u, v) E W). 

Proof. We claim first that sin(O i )a - cos(9i )b = 0. Notice that the unit vector 
approaches	as u —* 0+ and approaches (—,—,0) as u --+ 0—. Let 

Oa E (a,13) satisfy ( —a , —b) = (cos(Oa),Sin(9a)). Since X(B) is a graph over the (x,y)
plane, the argument of the vector (x(u,0),y(u,0)) is greater than 9a + 7r if U > 0 
and less than 9a if u <0, where we require our argument function to vary continuously 
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and have range [a, /3]. Using the general comparison principle and the fact that z(u, v) 
approaches co as w = u + iv approaches 0, we see that Rf(6) co for all 6 between 0. 
and 0. + ir. From our assumption about the behavior of RI, this means 0,, = 6 1 and so 
a = — cos(O1) and b = - sin(6 1 ). Our claim now follows. 

From the proof of [6: Lemma 7.31 we see that there exists a complex number C such 
that (u, v) Re{Cw 3 } + 5(w). Since (u,0) = 0, Re  = 0 and so C = ic for some 
real e. Thus we have 

(u, v) + iz(u, v) = 2uv + z(co + u 2 — v2 ) + a(w) }

	
(4.6) 

(u, v) = e(3u2 v - v3 )+ &(w) 

where a(u) &(u) = 0 for —1 < u < 1, D k cx(w) = o(1w1 2_Ic ) for k = 0,1,2 and 
D c &(w) = o(1w1 3_k ) for k = 0,1,2 as w = u + iv -* ü ((u,v) E W). Since X E 
C3,6(d+) for some d> 0, we may consider the third degree Taylor expansion T(u, v) 
of X about (0,0); the error term X(u, v) — T(u, v) will be in O(IwI36) as II(u , v )II -+0. 
Let

T13(u + iv) = >i: 
(a)i ()3_J ( + 

iz)	UV 

Since	(0,0) = 0, we find as in the proof of [6: Lemma 2.11 that T13 is analytic in
w=u.+iv. Thus

(u, v) 2uv + e(v3 - 3u2 v) + i(w)

	I (u,v)=e(3u2vv3 )+a2 (w)	 (4.7)

z(u,v) = co + u 2  v2 + e(u3- 3uv2 ) +a3(w)  

where D!caj(w) = O(w1 3 ) for k = 0, 1, 2,3. Since	0)	0) 0, we see that
= O(v I w 1 26 ) for j = 1, 2. 

We claim finally that e $ 0. We will assume e = 0 and reach a contradiction. Let 
us suppose first A = H(0,0,co) $0. From Step 1(iv), we see that 

= 2H(i,,z)(±z -	= 8A( U2 + v 2 ) + o(1 w 1 2 )	(4.8) 

and so must be of the form 

(u,v)b = d4 u 4 + d3 u 3 v + d2 u 2 v2 + d 1 uv3 + dov4 + o(1w14) 

for some constants d,. If we compute (4.8) implies 12d4 + 2d2 = 2d2 + 12d0 = 8A 
and d3 + d1 = 0. Thus d0 = d4 and, since y(u,O) = 0 implies d4 =0, d0 = 0. Then we 
have

(u,v) = d3 (u 3 v — UV 3) + 4Au 2 v 2 + o(1w14).	 (4.9) 

We claim that d3 = 0. Suppose otherwise. Consider the map 

g(t) = (p cost, p sin i)
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where p > 0 is fixed and 0 t ir. For p > 0 small enough, (4.9) implies g has three 
changes of sign on (0, 7r) and therefore g(t)g(ir - t) < 0 when 0 < t < t0 if t 0 > 0 
is small enough. Notice that y(u, v) > 0 if u 54 0 and v > 0 is small enough, since 
(,,(u, 0), Q(u, 0)) points into the upper half-plane if u 54 0. This means g(t)g(ir - t) > 0 
if 0 < t < e for e > 0 small enough, which yields a contradiction. Therefore, we see that 
d3 =0 and

y(u,v) = 4Au 2 v2 + o(1w14). 

However, this implies 9(u, v) > 0 near (0,0) in B and this is impossible since < 0 in 
QW fl H. Therefore, we have e 54 0 if A 54 0. 

Suppose now that H is real-analytic, H(O, 0, co) = 0, and e = 0. Then (u, v), (u, v), 
and z(u, v)) are real-analytic on B U &'B and so extend to real-analytic functions in 
a neighborhood of (0, 0). 'Since properties (iii) and (iv) of Step 1 hold when v > 0, 
analyticity implies they continue to hold in this neighborhood. We may write 

(u, v) = E I: ak,ukvt. 
k=O i=I 

Let m be the total degree of the first non-zero term in this power series expansion of 
and let i denote the terms of total degree m, so that (u, v)	(u, v) + O(IwIm).
Equation (4.6)2 implies rn 2 4 and so

rn-I rn-k
i(u,v) = 	>i ak,,ukvl.

k=O 1=1 

Since H(0,0,z(0,0)) = 0, we see (as in (6: Lemma 2.1 1) that 

Q(u,v) = rlm{w m } +O(wI m )	 (4.10)

for some r > 0. Let g be given by 

9(p, t) = (p cos t, p sin t). 

Then the form of (4.10) implies g(p, t) = rpm sin(mi) + o(prn) as p - 0. We may choose 
€ > 0 small enough that, for each k = 1,.. . , in and 0 < p < c, sgn(g(p,t)) = ( _ i)k for all 
t E ((kl)lr +6, —6) where 6 = this occurs since sgn( Tp rn sin(int)) = ( i)k if p > 0 Tn	

5M 
and i E	 ) and, for p> 0 small enough, this term dominates g. A little thought 
will show that there is a closed Jordan curve a= {k(u(s),v(s)) : 0	s	11 in 
with the properties that u2(s)+v2(s) < 2 (u(0), v(0)) = (,0), (u(1),v(1)) = 
there exists 0 < s1 < 1 such that (u(s), V ( S )) > 0 if 0 < .s < s1 and i(u(s), v(s)) < 0 if 
s1 < s < 1, and there exist S2 and s 3 with 0 < 82 < s3 < 1 such that 

1>0 if0<s<s2 
(u(s),v(s))	< 0 :f S2 < s <s3 

1>0 ifs3<s<1
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Let p(s) = /u2(s) + v2 (s) and i(s) E [0, ir] be the argument of u(s) + iv(s). Then our 
earlier remarks yield

sgn(g(p(s), i(s))) = sgn((u(s),v(s))) = ( _ 1)k 

if i(s) E (• + 6,	— 6) (k = 1,. .. , m); thus (u(s), v(s)) has at least m — 1 
mm changes of sign as s varies from 0 to 1, since t(0) = 0 and 1(1) = ir. However, a was 

constructed so that (u(s),v(s)) has only two changes of sign as s varies from 0 to 1. 
This contradiction implies e 54 0 U 

Step 4. If we write f(,) = f(x,y), then 

= CO- ei 3 + 0 (/x2 + y2) 

as	approaches (0,0) non- tangentially from inside N. Since Rf(9 1 ) = co, we see
that conclusions (i) and (v) of Theorem 1 hold. 

Proof. Let us use (4.5) to determine the preimage in B of the line = m. If 
(u, v) E B such that (u, v) = m(u,v), then 

(e + mC)(3u2v - v 3 ) - 2muv = o(vIwI2) 

If q(w) (e + mC)(3u2 - v 2 ) - 2mu = o(11 w 11 2 ), we have 

3(e + rnC)u2 — 2mu - (v 2 (e + me) + q(w)) = 0. 

Using the quadratic formula to solve for u when e + mC 0 and taking the root Um(V) 
which approaches 0 as v approaches 0, we obtain 

M - \/M2 + 3(e + mC)2v2 - 3(e + m)q(w) 
Um(V) =	 3(e + mC) 

If rn = 9 is bounded away from 0, we get 2mum(v) = (e + mC)v2 + o(1 v 1 2 ) . From (4.7) 
and the fact that (um(v),v) = j (u m (v),v) we obtain for m 54 0 

(um(v),v) = --V3 + 0(v3) 
M 

= —ev 3 + 0(v3) 

z(Um(v),V) = Co - v 2 + 0(v3 

If (, ) approaches (0,0) in such a way that the limiting values of O(, ) lie in (—ir, 0) 
(so m = tan(9(,)) is bounded away from 0), we obtain 

= CO -	+ 0(.../x2 + y2) 

and Step 4 is proved U
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Step 5. Conclusions (ii), (vi) and (vii) of Theorem 1 hold. 

Proof. Let us define u(x,y) and v(x,y) for (x,y) E ci by the conditions that 
(u(x,y),v(u,v)) E B and

X = x(u(x,y),v(x,y)) 

Y = y(u(x,y),v(x,y)). 

Notice that if D is a closed C'-domain with 7-lu {P} C D c ci U {P} and if (x, y) E D 
approaches F, then (u(x,y),v(x,y)) —* (0, 0). 

Notice that
(, 0 = ( (u(x, y), v(x, y)), (u(x, y); v(x, y))) 

where (x, Y) E ci and (x, y) and are related as in Step 3. Let us write u(±,) = 
u(x,y). The behavior off as (x, Y) E D approaches (0,0) is given by the behavior of 
the parametic surface X(u,v) as (u, v) approaches (0,0); that is, by the behavior near 
(0, 0) of the parametric surface 

Xe(u,v) = (2uv,e(3u 2 v, 	— v 3 ),co + u2 

Now (4.7) i implies

(u, v) — 2uv	
e(v2 3u 2 ) + O(i w 1 26 ) = O(1w12) 2v	2 

and so
= (u, v) 

+ O(iwi2)	
as IW12 = u 2 + v 2	0.	 (4.11)2v 

Similarly, (4.7 )2 implies

(u, v) — e(3u 2 v — v3) 
= O(iw126) 3ev 

and so
y(u,v) + ev3 

U 
=

	

	 + O(i w
1
2 )	as I wI —* 0.	 (4.12)3ev  

Combining (4.11) and (4.12) yields 

4ev4 + 4v — 3e 2 = O(v2IwI26)	
as IWI —* 0	 (4.13)

where u = u(±,) and v = 
Let A be implicitly defined as a function of i by the quartic equation (in A) 

+4A—t=0	 (4.14)

where we consider and y to be fixed and choose A to be the solution of (4.14) which 
satisfies A > 0 and A = (±,) for t =	4ev4(,) + 4i3(±,). Let v(x,y) denote 
the value of A when t = t 0 3e±2 , so that 

cB() — J_4eA(±,)_(B(±,))	
(4.15) 

=	 -
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for (x, Y) E D. From (4.13) we have t 1 — to = 0(v2 i w I26 ) . Since 
dA 1	 1 

	

dt = 16ev3 +4 —	vIw12 
we obtain

= v(,) + O(v I w I) .	 (4.16) 
Now from (4.11) and (4.16) we find 

u((u,v),(u,v)) =	X	
+ O(uiwI ö )	 (4.17) 2u(2, ) 

and so (4.7) 4 yields 
2 (u, v)

4v 2 ((u , v), (u, v))
— v 2 ((u,v),(u,v)) + O(iwi2) z(u,v) = co -F

as 1w i — 0. Since f(,) = z(ü(±,),i3(±,)), the only remaining difficulty is writing 
the condition O(iw(±,)i26) explicitly in terms of and g. Unfortunately, if we use 
(4.15) - (4.17) to find iw126 explicitly in terms of t and g, we get a mess. (The reader 
is invited to try this using, for example, Maple V .... good luck.) Oii the other hand, we 
know that z(u,v) = co + u 2 — v 2 + O( 1 w 1 3 ) and so we certainly have 

z(u,v)=co+(u2—v2)(1+o(1))	as Iwi-0. 
This yields

f(x,y) = Rf(& i )+sfe (x , y)(1 +o(1)). 
Hence we see that our remainder R(x,y) is o(fe(x,y)) as (x, Y) E D approaches (0, 0). 

Now suppose 9D = {(2(t),(t)) : t e R} with ((0),(0)) = (0,0) and (t) = 
0(:i2 (t)) as t —+ 0. Then a straightforward calculation using (4.7) shows that if u(t) = 
ü(1(t),(t)) and v(t) = (5(t), (t)), then v(t) = O(u(t)) and u(t) = O(v(t)) as t —' 0. 
Using (4.7) we have

O(iwI2) = 0((x2 + 

Actually, we have
(	2	2 

O' 2+_j0(@r +y) 2) whenv=O(u) 
%W	

—

 

0((x2 + y2)) when u = o(v). 
The proof of conclusion (vi) of Theorem 1 follows from this discussion since (u, v) = 0 
if and only if 3u 2 = v2 + 0( 1 w 1 26 ) as I WI — 0 and so u(, 0) = O(i3(2, 0)) and i3(, 0) = 
O(ii(,0)) as i — 0. 

Recall
Rf(0) = z(u(0),0) = CO + (u(9))2 + O(iu(9)13) 

as u(9) —* 0. Notice that u(8) —* 0 i and only if  E (a,91)U[9i+ir,/3) and tan(9-91)--* 
0. Since (u(9), 0) = tan(9 — 9 )(u(0), 0), we have 

3eu2 (0) + O(iu(9)I26) = tan(9 — 0 1 )(2u(9) + O(Iu(9)12)) 
or 

u(9) =	tan(9 — 8) + O0u(9)i 6 ) =	tan(9 — 8) + 0(1 tan(O — 3e	 3e 
as tan(9 — O) —* 0. Then (2.2) follows. This completes the proof of Step 5I
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Step 6. Conclusions (iii) and (iv) of Theorem 1 hold. 

Proof. Let us write 

c(u) = z(u,0) 
a i (u) =	(u,0) 
a2 (u) = .(u,0) 

b 1 (u) =	0)	—H(0, 0, z(u, 0))a2(u)c'(u) 

b2 (u) =	0) = H(0, 0, z(u, 0))a i (u)c'(u) 

b3 (U) = ZVV  

Notice sgn(a I (ZL)) = sgn(u), 92 ( U) > 0 if and only if u j4 0, and sgn(c'(u)) = sgn(u). 
Now

i(u,v) = a i (u)v + b i (u)v 2 + 0(v3) 
y(u,v) = a2 (u)v + b2 (u)v 2 + 0(v3) 
z(u,v) = c(u) + b3 (u)v2 + 0(v3) 

and so

v = (ai(u))1 (± - b i (u)v 2 + 0(v)) = (a2(u))_1 ( - b2 (u)v 2 + 0(v)). 

Hence
z(u,v) = e(u) +	2(uv) + 0(v2I(u,v)I) a(u) 

and, when u is bounded away from 0,

- z(u,v) = c(u) + b3(u) ---x 2 (u,v)0 + ( l(u,v)I3). ai(u) 

Let u 1 represent an element of (-1,0)U(0, 1) and notice that the vector (v(ui3O), 
v(u i , 0)) points in the direction #i E ( - 1, —ir) U (0, ) where 

a2(ui)  
(u i ) - = tan 9. a i	0(ui3O) 

Let us write h = . Then RI is continuous at 91 if and only if h is strictly increas- 
ing near u 1 . If H is real-analytic near the z-axis, then X(u,v) is real-analytic on a 
neighborhood of {(u,0) —1 <U < 11. This implies his analytic on (-1,1). Suppose 
h(u) = tan 01 for u1 < u < u1 + e, for some e > 0. Analyticity implies h(u) = tan 
for all u € (-1,1) and so h is constant. However, (4.7) yield h(u) = u + 0(u 2 ) and 
so h cannot be constant. Therefore h is strictly increasing on (-1,0) U (0,1) and so 
Rf E C°([, /3)). This proves assertion (iv) of Theorem 1.
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Let J = {u E (-1,0) U (0,1): h'(u) > o}. For u E (-1,0) U (0, 1), define 9(u) E 
(ao,9 1 )U(9 i +ir,flo)by 

(x(u, 0), yv(U, 0)) = z(u, 0)1 ( cos(9(u)), sin(9(u))) 

and (u) = 9(u) - 9 - ir; notice tan((u)) = h(u). Let A = 19(u) : u E J}. Then A is 
a dense open subset of (ao,9 1 ) U ( O + 7r,f30 ) and Rf E C°(A). Let [e1,2] C A and 

S = {(rcos9,rsin9) : fi <9< e2 and r > 0 I - 

Let (x,y) € S and let	be related to (x, y) by (2.1) and define O(,) = 9(x, y) -
— 7r. Then u(9(x,y)) € J and 

h(u(9(x, 1/)))
- 

If we let ü, ti and ü denote ü(±,),i3(,) and u(6(,9)), respectively, we have 

h(ü) = h(ü) + H(0,0,z(ü,0))	i5 + 0(f) 2 ) 

and so

ft - = H(0, 0, z(i, 0))(c'(i))3 + 0(2) 
 h'(u)(a i ( i))2 

This implies

= z(ü,0) + (c'(i))4H(0,0,z(i3O)) + 
0(i32) 

and

f(, ) = Rf(9(, )) + (O(, ))i + 0(2) 

where
(9) - (c'(ü(9)))H(0,0,RJ(9)) 

-	h'(ü())(a i (u(9)))3 

and ü(0) = u( + O i + ir) for 6 € (0 - 0 - ir : 0 € A}. This completes the proof of 
assertion (iii) of Theorem 1 I
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5. Proof of Lemma 1 

Suppose u 0 E (-1,1) and IXu(uo,O)I 54 0, let Oo 0(u 0 ), and define 

.(u, v) = ( (u,V),(U,V),(U,v)) 

where
(u, v) = cos(Oo)x(u + uo, v) + sin(90 )y(u + uo,v) 
(u, v) = - sin(9o)x(u + uO, v) + cos(90 )y(u + uo, v) 
(u, v) = z(u + U 0 , V). 

Then (0,0) = z(0,0)I > 0 and Q(0,0) = 0. We may extend X by reflection across 
the u-axis as a parametric minimal surface. If we continue to denote this extended 
minimal surface by X, then X is a vector of harmonic functions and 

(u, —v) = (- i(u, v), —(u, v), (u, v)). 
We may write

.k(u,v) =	Re{A(u+iv'} 

and it is easy to see that A = (—ian,—ibn,cn) for some real numbers a n , bn and e,. 
Notice that A0 = (O,0,co) and gu (O,0) = (O,0) = 0, so 

(u, v)	an IM ((U + iv)) = a 1 v +2a2 uv +... 

CO 

(u, v) 1: bn IM ((U + iv)) = 2b2 uv +. 

Considering the sign pattern of (p cos t,p sin t) and (p cos t, p sin t) for small p as t 
varies from 0 to it, we see that a 1 > 0 and b2 > 0 (e.g. the last part of the proof of Step 
3 in the previous section). Since X is conformal, we obtain 

(u, v) = CO +a i u +a2 (u 2 —v2)+ 

If we define 8(u) = 9(u) - 90, we see that 

-- 
v(u,0) tan((u)) for Jul <1—IuoI 

and so
dO	d8	 - 2b2 
du	

- 
-(uo) =	-	 (x(0,O))2	 - 

since sec 2 (O(0)) = sec2 (0) = 1. This proves assertion (a) of Lemma 1. 
To see that assertion (b) of Lemma 1 holds, we note that 0 and u are inverse 

functions, 0 is of C'-type on J = {u E (-1,1): z(u,O) 54 01 (by the implicit function 
theorem), O'(u) > 0 on J, and 0 E L if and only if U E J. 

Remark 4. In the notation of Step 6 of the previous section, Lemma 1 means 
h'(u)>O for all u€L.
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6. Proof of Theorem 2 

The proof of Theorem 2 will be given in six steps. 
Step 1. Define 

ro = {(x,y,c(x)y)) (x, y) E oc} and S0 = { (x,y,f(x,y)): (x, y) E 

Let X E C2 (B R3 )flC°( R3 ) be the homeomorphism of B and S 0 with properties (ii) 
- (vii) of Step 1 of the proof of Theorem 1; here, of course, H 0 and the components 
of X are harmonic functions. Then we may extend X by reflection across the u-axis, 
so that x(u, —v) = —x(u, v), y(u, —v) = —y(u, v), z(u, —v) = z(u, v) and X E CL(E) 
where E = {(u,v) u 2 + v 2 < 11 is the unit disk. If we let a n , bn and cn be defined by 
(2.6) when n > 1 and co = f0 z(cos t, sin t) dt, then 

X(u,v) =	Re{A(u+iv)}	 (6.1) 

for all (u, v) E B, where A 0 = ( 0 , 0 , c0 )T and A = (—za,—ib,c)T for n > 1. Also 
A 1	(0,0,0) and A2 54 (0,0,0). 

Proof. The fact that X can be reflected across a line as a real-analytic parametrized 
surface is well known and, because of (2.5) 3 _ 5 one can check that x and y reflect as odd 
functions of v while z reflects as an even function of v. Now 

CO

an sin(nt)	 (6.2) 

is the Fourier series expansion of x* (t) = x(cost, sin t) since it is an odd function of 
t. Since x is continuous on [0,27r], standard results for Fourier series (see, e.g., [1: 
Subsection 38.10]) imply that (6.2) converges to x in L2([0,2ir]). Since x(t) is the 
boundary value of the harmonic function x(p cos t, p sin t) on p 1, we see that 

x(p cos t, p sin t) =	anp"sin(nt)	 (6.3) 

for 0 p < 1 and 0 t 27r. A similar argument shows that 

y(p cos t, p sin t) = >bnp"sin(nt) 

z(p cost, p sin t) 
=

C" cos(nt). 

It is easy to see that each of these power series (in p) has radius of convergence > 1 for 
each t E [0, 27r]. Indeed, for each fixed Po E [0, 1), x(p0 cost, P0 Sfl t), y(po cost, Po sin t) 
and z(po cost, P0 sin t) are smooth functions oft and so the Fourier series (6.3) and (6.4) 
converge for each t € 10, 27r] (see, e.g., [1: Subsection 38.7]). This means that for each 

E [0,2'r], the power series (6.3) and (6.4) converge when p = po and so have radius of 
convergence > P0. 

Equation (6.1) then follows. From our hypothesis that c 1 = 0, we see that A 1 = 
(0,0,0). As in Step 2 of the proof of Theorem 1, we obtain a2 + b = c and c2 0. 
Thus A2 (0,0,0)1
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Step 2. Rf(9) exists for each 9 E [ce, 01 and Rf is a continuous function of 6. 
Define 6 1 E (a,B - ir) by (2.9). Then u(9) = 0 and Rf(9) = co for all 6€ [9,9 + ir]. 
Further, (2.8) and (2.10) - (2.11) hold. 

Proof. From [10, 111 we see that Rf(0) exists and behaves as indicated and u(&) 
is a continuous function of 6. We notice that (2.8) holds because of the definition 
of u(6) and z(u, v). Also Step 3 of the proof of Theorem 1 implies u(6) = 0 and so 
Rf(9) = z(0,0) = co for 6 e [0 1 , 01 + ir]. We wish to show that (2.10) and (2.11) hold. 
Notice that cc 

X(u,v) = E nRe{iA(u+iv)"'}	 (6.5) 

for u E (-1, 1). Now u(9) E (-1,0) if and only if 9 E (ao,9,), and for such 6, 

X(u(9), 0) = z(u(8), 0)(cos 6, sin 0, 0). (6.6) 

Similarly, u(9) E (0, 1) if and only if 9 E (9 ' + 7r, fib) and (6.6) holds for these 6. From 
(6.5) and (6.6) we obtain the equations 

co
= z(u(9),0) COS 9 

= z(u(9),0)sin9 

and (2.10) follows from solving each equation for z,. Equation (2.11) follows in a 
similar manner. Suppose u e (-1,0) U (0,1) satisfies (2.10). Then (2.10) and (2.11) 
imply 6(u) = 9 and sd u = u(9) U 

Step 3. Let us define coordinates	by 

x= —cos(9 i )x —sin(91)y
= sin(9 1 )x - cos(9 1 )y 

and set Q, = {(,) : (x,y) E l}. Set e = —(cos(6i )an + sin(9i )b) and f = 
sin(9I)a. - cos(6i )b) for n 2; f2 = 0. Define X E - 1R 3 by 

Au, v) = ((u, v), (u, v), z(u, v)) 

where
(u, v) = —cos(9,)x(u,v) - sin(91)y(u,v) 

(u,v)	sin(9,)x(u,v) - cos(81)y(u,v). 

Let ü,: ci 1 - R be defined by

= 

= V
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o that ii(,) = u(x,y) and i3(',) = v(x,y). For each	E Q 1 , let us write
11=ü(,) and Y=i3(,i). Then, as11-0 or — O+, 

= M(U)11 U + 113 k(u) + 0(11 IT3) 1 
= N(1) 2 + U3 1(U) + 0(11 3	 (6.7)

and M(11) > 0 and N(11) > 0 for all Ii E (-1, 1),' where 

00 

M(Ii) = j ne(11)0_2	 1 
n=2	 I 
00	 I 

N(U)=>nffl (11) 0_2	 I 
n=3	 (.	 (6.8) 00 

k(IT) =	( _ 1)me2m+I(IT)2m_2 I 
M=1	 I 

00	 I 
l(U) =	(_1)mf2m+i(IT)2m_2. 

I M=1 

Proof. Notice that ((u,0),(u,0)) points into the first quadrant if u > 0 and
its argument tends to  as u -* 0+. Since (u, v) = i22e0Im{(u+iv)"}, e2 >0, and

(u, 0) 54 0 if u 54 0, we see that M(i) > 0. Now, as in Step 3 of the proof of Theorem 
1,13 54 0 and, since	(u,0) >0 if u 54 0, we obtain N(ü) >0. Now av

= E e,, Im (u(,) + 

1 

Then
fl-I, 

=	e0	
(2k+,) 

(l)k(11)fl_(2k+1)(IT)2k	
(6.9) n2	k=O 

= 

and

= IT 

CO	tJ 

(2k	) (
l)k(11)fl_(2k+1)(IT)2k	

(6.10) n=3	k=O 
= N(11)112 IT+ i(IT)IT3 + 0(ii1J). 

Thus Step 3 is proved I 

Step 4. Define ö(±,) = O(x,y)-8i —ir and u() = u(+Oi +ir) (i.e. u(ö(±,g)) = 
u(8(x,y))). If(i,) E Q 1 tends to (0,0) in such a manner that 

0< liminf 9(,):5 lim sup (,)<8o-91-7r, (±,)(O,O)	(,)—(O,O)
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then

	

u(, ) 	)) = p(u(9(, p)))	+ O((i(, ))4).	(6.11) 

Proof. Notice that 

liminf u(,) >0	and	urn sup u(,) < 1. 

	

(±,)—(O,O)	 (±,i)-..(o,o) 

For	E Q 1 , denote	 and i3(,) by 9,ü and i, respectively. Now 
(2.10) implies

CO

_sin()en)ü(91	0. 

Since cos() - sin() = 0, (6.9) and (6.10) imply 

CO

- sin()en)((u)'1 - 

[j.L] 
+	(1)k 

(2k 1) 
(cos()f - sin()e)(u)2()2'	

(6.12) 

n=3 k=I 

=0. 

We notice that 

if i 54 ii(0) from Step 2 and, from (2.10), if i 

	

- sin()e)	(u)21(ü())' 
n=2  

CO

n( cos()fn - sin(0)e n ) ((u)n1 - — ü - u(9) n=2 
0. 

Notice that 

(ii - ü())L(ü,) = cos()((i 3 O) - (ii(),0)) - sin()((u,0) - 

and so, differentating with respect to ü and evaluating at ü(9), we obtain

	

L(ü(0),O) =	 - 
1 

I(u(), 0)1	
0)(u(), 0) - ,(u(), 0)(u(), 0)]
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On the other hand,

tan((u)) - g.  (u,0) 
- ±(u,0) 

and so
-	d	 - sec2 (9(ü))— = 

dü	 ((u,0))2 

Thus
L(ü(),) = sec2()0 (9),0)) dI	-	 d 

Iz(u(0),0)I th2L(0) 

Hence L(ü, ) > 0 for ü E (-1, 1). Now (6.12) implies 

-	= -Q(u,0,9) 

where

'	In-
00 t] 

=	()k (2k
	) 

(cos()f0 - sin()en)(i)n_(2k+(0)21 
n=3 k=1 

Therefore, if
>=2 ()(cos()f - sin(6)e,,)(i)"3

L(5, 6) 

we obtain
ij - u() = p(ü)(o)2 + O(()) 

Now
p(i) = p(u() + p(u)0 2 + 0((t3))) = p(u()) + 0(02) 

and so i - ü(Ü) = p(ü())02 + O(). Thus Step 4 is proved I 

Step 5. Let ( X I Y) E Q tend to (0,0) in such a manner that 

liminf 9(x,y) >9 + ir	and	lim sup 9(x, y) </3o. (x'Y)—.(o,o)	 (z,y)—(OO) 

Then
f(x,y) = Rf(9(x,y)) + 2 h(9(x,y)) + Q(3)• 

Proof. Notice that we are assuming 

liminf u(x,y) >0	and	lim sup u(x,y) < 1. 
(z,y)—.(O,O)	 (x,y)—.(O,O)
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For (x, Y) E Q, denote ü(2,) = u(x,y), (2,) = v(x,y) and 9(2,) by Ü,i and'6, 
respectively. Then 

f(x,y) = 

= z(ü,i) 
00 [) 

= CO +	>( l)k () c0(u)n_2k(t)2k 
n=2 k=0	 (6.13) 
00 [j 

= CO +	 ( _ 1)k () cn(u() + p(u(0))U2 + 0(4))n-2k()2k 
n=2 k=O 

= RJ() + ()2	c(ü(9))2 [nü()p(ü()) - ()]+ 0(U4). 

From (6.8) and (6.11) we have 

M(ü) = M(ü(9) + p(u(9))ü 2 + 0(U4) 

= M(ü()) + 2	— 2)e0(ü(9))3p(ü(0)) + 0(ü4) 

= M(ü(6)) + ü2p(u())Mi(u(4)) + 0(ü4) 

where

	

MI (u) =	n(n — 2)e0ü'3 

From (6.7) and (6.11) we have 

2 = M(ü(9))ü(0)ü + Mi(ü())p(ü(0))ü(9)ü3 + 0(ü5) 

and so
2: 

6=
M(ü(0))ü(8) + 0(ü

2 ±) = 2M(ü(0))ü(6) + 0(2). 

Therefore, since p() = P(9), (6.13) implis 

f(x, y) = RJ() + 2 n=2 cn(ü()) 2 [nü()p(ü()) - ( fl1 + 0(±) 
(ü()M(Ou()))2 

= Rf(9(x,y)) + 2 2 H((x,y)) + 0(2). 

Thus step 5 is proved I 

Step 6. The case in which (x, y) e Q tends to (0,0) in such a manner that

	

liminf O(x,y) > ao	and	lim sup (x, y) < 90 
(z,y)—.(O,O)	 (z,y)—.(O,O)
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is essentially the same as Steps 4 and 5. 

Remark 5. For numerical purposes, such as in [16], it would be useful to know 
that the series representations (6.3) and (6.4) converge on 0 p :5 1 and 0 t 27r. 
As an example, assume that Ol \ {P} and 0 are smooth. Then x is smooth on 
(0,7r) U (7r, 27r) (see, e.g., 115: Subsection 349]) and hence (6.2) converges to x*(t) for 
each t E (0, ir) U (ir, 27r). Since x(t) = 0 and the series (6.2) converges to 0 when t = 0, 
t = ir or I	27r, we see that (6.3) converges to x(p cos t, p sin t) on 0	p !^ 1 and
0 <t < 27r. A similar argument holds for y and z. 
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