
Zeitschrift für Analysis und ihre Anwendungen 

Journal for Analysis and its Applications


Volume 15 (1996), No. 4, 851-863 

On the Green Function of the Landau Operator 
and its Properties Related to Point Interactions 

V. A. Geyler and V. V. Demidov 

Abstract. The Green function C of the Schrödinger operator with a magnetic field (i.e. the 
Landau operator) H is studied. Two representations of G are used, namely in form of an 
integral and of a series. The space-variable asymptotics as well as the energetic ones are 
obtained. The analytical and asymptotical properties of C we obtain are related to point 
perturbations of H. 

Keywords: Schrödinger operator, magnetic fields, Green functions, zero-range potentials 
AMS subject classification: 35J 10 

0. Introduction 
By a Landau operator, we mean a three-dimensional Schrodinger operator H with a 
uniform magnetic field B (see [5: Subsection 1.3]). After the discovery of quantum 
Hall effect by K. von Klitzing [19], periodic and stochastic perturbations of the Landau 
operator become the subject of intensive studies both in mathematics and in theoretical 
physics (see, e.g., [3, 5 - 7, 23, 25] and the references therein). A number of results 
explaining some properties of quantum Hall systems has been obtained by means of 
point perturbations of the Landau operators (see [2, 8, 11, 12, 14, 16]) etc. The simplest 
way to strict mathematical justification of such results is based on the use of the Krein 
resolvent formula (see [1, 21, 23]). The possibility of this use takes placeonly if the Green 
function G of the unperturbed operator possesses some analytical and asymptotical 
properties. Our first goal in the present paper is to show that the Green function of 
the Landau operator has properties required for existence of the Green function of the 
operator H perturbed by a zero-range potential supported on an infinite discrete set 
[13] (see Theorem 3 and equation (5.5)). 

The advantage of zero-range potentials is the possibility to find the spectral param-
eters of perturbed operators in an explicit form. For this purpose explicit formulae for 
the Green function G are required. Our second goal is to derive such formulae (see 
Theorems 1 and 2). In this connection we give direct proofs of the main results using 
the formulae for C, although certain of the proofs can be obtained by the use of general 
properties of pseudo-differential operators [126]. Some results of the present paper have 
been announced without proofs in [10, 131. 
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1. Preliminary 

The self-adjoint operator H we consider is the closure of the following symmetric oper-
ator defined on the space C°(lR3): 

	

H0 = (------ + x2)2	. a	2	82 

	

-	 (1)
\ ôxi 09X2	3 

(see, e.g., [5: Subsection 1.3]). Here > 0 is the number of magnetic flux quanta 
through a unit area of the (x1,x2)-plane and the magnetic field B is derected along 
the x3 -axis. It is well known that H has absolutely continuous spectrum a(H) and 
that a(H) = {, +) where w = 47r. Using the Kato inequality (see [18: Theorem 
2]), it is easy to show that the domain of H is a subset of C(R3 ). Hence the resolvent 
R(() = (H - (i of H is a Carleman operator, i.e. R(() has a measurable integral 
kernel G(x, y; () obeying

fR3 I
G(x,y;2dy 

for almost all x E R3 and for all ( E p(H) = C \ a(H) (see [20: Chapter III, Theorem 
4.2]). 

At the beginning we recall some relevant properties of the two-dimensional Landau 
operator H 2 which is-by definition the closure of the symmetric operator H 2 defined 
on the space G'°(R 2 ) by the relation 

(2)	7	3	)2	a 
+	

2 

\ ôxi 
H0 = I —z--+irex 2	- irexi) 

(see, e.g., (9: Subsection 1.1]). The spectrum of H 2 is a pure point one and consists of 
infinitely degenerate eigenvalues (the Landau levels) ej = w(1 + )(l > 0). The Green 
function G (2) (x, y;() of the operator H 2 has the explicit form 

G 2 (x,y;() =	
/1	\
	

P7r^x	
(x _,)2

4ir	_)exPA_ire	
2	] 

X G - ,1;(x _)2)	
.	 (2) 

where r is the Euler 17-function, 'I' is the confluent hypergeometric function (see (4: Vol. 
1, Subsection 6.5]) and the symbol A denotes the standard symplectic multiplication 
in 1R2 i.e. x A y = - 2Y1 for x,y E R2 with x (x 1, x2) and y = ( y I, y2) . In 
connection with (2) we shall need the formula (see [24: -Vol.1/Formula 6.5(2)]) 

00
/ 

r(a)(a,i;x) 
= 

J e zt	 (x >0, Rea >0).	(3) 
0



On the Green Function of the Landau Operator	853 

The orthogonal projection P1 onto the eigenspace of H 2 corresponding to the eigenvalue 
El is an integral operator with kernel

	

-	1 
Pj(x,y) = exp [_iirex A -	

(x 2 y)2 
j 

L 1 ( ire(x - 
)2)	 (4) 

where Lj is the l-th Laguerre polynomial (see [4: Vol. 2, Subsection 10.121). 
Throughout the paper we consider the continuous branch of the square root /' = 

(1/2 on the complex plane C with cut along the negative real semi-axis x 0 defined 
by the condition Re N/'(- > 0. We shall use the notation x j for the orthogonal projection 
of vector x on the (x 1 , x 2 )-plane. The symbol D denotes the function 

-


	

41 (x, y) = exp [_ix(x 1 A yj) - 	
(X _L

2	j 

and the symbol R the domain 

	

= {(x,y)e R3 x	: x	y}. 

2. The series representation of G(x, y ; () 
The following theorem is the main result of this section. 


Theorem 1. The following assertions are valid: 

(i) For every ( E p(H), 

G(x,y;()= (x,y) 
F^6,,

	

1	 (6)
oo exp[_(w(l+ 21)_Ix3_y3I 
L, (7r(x j - yj)2

 ) 
(i+'—) 1=0	

cJ 

where the series converges locally uniformly in the domain R x p(H). Hence the 
function C is continuous in this domain, and for every fixed (x, y) E R the function 
G(x, y; . ) is holomorphic in p(H). 

(ii) If Ej 91 (o e a(H) (I > 0), then for every (x, y) E R6 there exist the limits 

lim G(x,y;() = G(x,y;(o)	and	lim G(x,y;() = G(x,y;(o) 
( — Co	 (—Co 

which are continuous functions in (x, y) E R. 

(iii) For every (o E p(H) the function c G0) is continuable to a continuous 
function on the whole space R3 x R3. 

The proof of the theorem is based on the lemma below.

(5)



854	V. A. Geyler and V. V. Demidov 

Lemma 1. Consider the series 

00  

S(x;	exp(_Ix3I)L(p2)	
(p2=x+') () = >  

n=O 

and the formal termwise derivative of S(x; () with respect to ( 

00 [ exP(—v'	(l'31) + 1x3 Iexp(viIx3I)] L 0 (p2 ).	(7)
S'(x)=
0=0 L	(n—() 

The following assertions are valid: 

(i) The series S and 5' converge locally uniformly in the domain (R3 \ {0}) x (C \ 
R).

(ii) If Co E R \ N, then there exist the limits 


	

urn S(x;() = S(x;(o)	and	urn S(x;() = S(x;(o). 
C—Co 

(iii) For every ( E C \ R+ there exists the limit lim.....o S'(x; ). 

Proof. Assertion (i): Let 0 0 i E R3 . Since 

IL(x)I < e '	(n E N, x	0)	 (8) 

(see [4: Vol.2/Formula 10.18(3)]), the assertion is evident if x 3 54 0. Let x 3 = 0, and 
hence > 0. Denote 8 = and 82 = 2j3 . Then 

( P2	7r -.	-1 -1Ln  2e2p 2 n 4 COS (2p—)+O(n)	 (9) 

uniformly as p runs through [6 1 ,82 ] (see [23: Vol.2/ Formula 10.15(1)]). Equation 
(9) shows immediately that the series (7) converges uniformly in the region 1131 < 1, 
p e [61,82] and ( E K where K is an arbitrary compact of C \ R+. Since the domain 
C \ R+ is connected, it remains to show that for some fixed 0 < — Co E R the series 
S(x;(o) converges uniformly with respect to x in the region 1x31 1 and p E [81,62]. 
For this purpose we write the series S(x; (o) in the form 

	

S(x) 1: a.(X3)b.(p)	 (10) 

where

a(x3) = n exp(—n - Co	 and	(p) - '31)	 - L(p) 
V/n- n 

We shall prove uniform convergence of the series (10) in the region IX31 	1 and p E

[8 1 ,82 ] via the Abel-Dirichlet criterion. First we show that the sequence {a(x3)}0>0
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decreases for sufficiently large indices n and tends to zero uniformly with respect to X3. 
Denote	 __ 

f(A) 
Aiexp(—/A—___(ox3)	(A>() 

It is easy to show that f'(A) < 0 if A is sufficiently large. Therefore there is an integer 
no such that the sequence {an(x3)}n>n 0 decreases. As lim_ 00 a fl (x 3 ) = 0 for all 
X3 E [-1, 1], the sequence {a(x 3 )}fl>o converges uniformly with respect to x3 by the 
Dini theorem. 

Let us prove now uniform boundedness of the partial sums of the series E b(p). 
By virtue of equation (9) it suffices to prove uniform boundedness of the partial sums 
of the series

cos(2.../ip— ) 

n>O	728 

in [8 1 , 62 ). By the Euler-Maclaurin formula [22: Subsection 8.21 we have 

cos (2'p -= 7 cos (2./p - dx 1:	5
728	 x8 n=no	 no

i [ cos (2/iiP_fl 

0	

+ cos (2	_)1 +Ri(rn) + 2	 5
M	] 

where the remainder R1 (m) admits the estimate 
rn	 I, 

1 tIfc,Jp—) 
IR1(m)I	

,s (2	
) dx 

8	X8 
no

+00 

-	

+00	 +00 

I 
dx	762 1 dx	65 1 dx 
rs + -- I iT + - I —ii 32	xT	

-. 
J xa	512j xW 

no	no	no 

To estimate the integral

i =fx Cos (2v'p -	
dx, 

no 

changing	by the variable t we obtain

7r\ 
- I = 2 J t — '4' cos (2tp -
	

dt.
 41 

Since t	decreases monotonically to zero, the expressions 

I t - -	
— 41 

cos(2tp 
x 
—dt
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are bounded uniformly with respect to .s and p in the region s > and p E (5 , 521 (by 
the Abel-Dirichlet criterion for uniform convergence). Thus assertion (i) of the lemma 
is proved. 

Assertion (ii): It is sufficient to note that repeating the previous arguments we can 
prove the following statement: 

Let (o E R \ N and x 0 E R3 \ {O}. Then there exist a neighbourhood U of xo, a 
neighbourhood V of Co in the closed upper half-plane and a neighbourhood V_ of (0 in 
the closed lower half-plane such that the series S converges uniformly in the set U x V+ 
or in the set U x V_ if an appropriate choice of a continuous branch of the square root 
in the corresponding neighbourhood of Co is performed. 

Assertion (iii): It suffices to verify that 

urn	Ix3Iexp(—\/	(1x31) = 
O96z3—.O 0	 in - Cl 

locally uniformly with respect to ( E C \ R (remember that IL0 (p2 )l <	Let us

consider the expression 

exp ( — Vn —( l x31)	n	 n
exp[(_/T+ /i)lx3l]. 

In — Cl	exp(—/Ix3I) = In — Cl 

It is clear that this expression tends to one locally uniformly with respect to ( E C \ R+ 
and uniformly with respect to x 3 , IX31 S 1. Let now R+ be given. Then there 
exists a neighbourhood V of (o such that for all CE V we have 

exp ( —\/' I x3l) <CecP(_'ilx3l) 
-	n 

for some C > 0. As exp(—/Iz3I) decreases monotonically by n, it is sufficient to prove 
that

+00 

lim 1x31 J exp(—v'Ix3I) dt = 0.	 (11) 
O;dz3—.O 

The change of variable	= i- yields 

+00	 +00

(12) f exp(_Ix3l)d < -2 1 x 31 1n 1 x31+1 x31 I 
exp(_) 1x31	

J	T 
1	 1 

for 1x31 < 1. Obviously, (12) implies (11), and the lemma is proved I
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Proof of Theorem 1. It is evident that the operator H is the sum of two operators 

H = H 2 0 I 3 + IX 1 ,Z 2 0 (-)
	

(13) 

where L3	f and I is the identity operator in the corresponding subspace. By

virtue of (13), we obtain the resolvent R(() as sum of the series 

R(() = 
co

Pi 0	±Ej	 (14) 

which converges in the strong operator topology. It is well-known that the second factor 
in the sum (14) has the integral kernel 

( X , Y) - - ___ 1 

	

2exp(	-yl).	 (15) 

From (14), (4), (5) and (15) we obtain equation (6) (in the sense of strong operator 
topology). Therefore the statements of the theorem follow from the corresponding 
statements of Lemma 11 

Remarks. (1) Strictly speeking, the Green function G(x, y; () as a function of 
(x, y) is defined in R3 x R3 almost everywhere only. To avoid ambiguity we consider 
from here on the function G(x, y; () as pointwise sum of the series (6) if x j4 y. 

(2) The formal representation of the function C in the form (6) has been obtained 
in [25] without proof of convergence of the series (6) in any sense. 

3. Auxiliary results 
At first we introduce the notation I J = {x E R3 : x j A 0). Consider the integrals 

+00 

AX;) = fr(_	 (16)2	 2 

+00+00
/	\ 

	

Ji(x)= f fexP(iPx3_7rxii)(J- t )	
dtdp	

(17) 
00 0 

where x E R2 \ {O} and ( E p(H). 
Lemma 2. For any 6 > 0 the integrals (16) and (17) converge absolutely and locally 

uniformly in the region lxii ^ 6 and Re( - 6. Therefore, the functions J and Ji 
are jointly continuous in (x,() and J(x;) = J1(x;(). 

Proof. Because of equation (3) it suffices to prove that the integral (17) converges 
absolutely and uniformly in the mentioned region. It is evident that the assertion follows 
from the estimate

- 

+ 60+00

exp(—flt) 
(t12 dtdq	 (18) 11  

00 0
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where a > 0 and P > 0. Using the well-known formula 

+00
e — c_kr2 dx =	(A E C, k > 0)	 (19) I  

we get

	

+00 2	 1 Idq=/(in±)2. 

Because

	

I	 I /  
in 1+t \ 

(
)	

= 0(1) (1	 + t 0+) and	In	
)	

= O(t) (t .. +oo)	(20) 

we obtain the estimate (18) I 
Lemma 3. Let x E R and Re( < . Then 

+00 

J(x; () = 27r/ f exp {-7r [(x i_ yj )2 (e t - 1)' + (x 3 - Y3 )2t-1] } dt 
exp ((21 	)i)(i - e_t)	

.	(21) 

Moreover, the integral in the right-hand side converges locally uniformly in the domain 
(R3\{0})x{(EC: Re( <). 

Proof. Lemma 2 makes possible to interchange in (17) the order of integration. 
Using equation (19), we obtain 

+00	
x \1	dt 

	

J(x; () =	I ( \1+t)	
exp [-7r^ (xit 

+ in	t [ln()] 0 

The change of variable	= exp(—u) yields the right-hand side of (21). Obviously,

the integral (21) converges on the upper limit of integration absolutely and uniformly 
in any set of the form R3 x {( E C Re(	- 6} where 5 > 0. If u > 0 is sufficiently

small, then e lz - 1 < 2u, therefore for all u belonging to a sufficiently small interval (0, E) 

exp( - ir (xj(eu - 1)' + xu')) exp (-

Moreover, for all (x,() with lxi > S and , Re( < the integral (21) is majorized on the 
lower limit of integration by the concergent integral 

e
du Ji Jexp (_52_1) (1 - 

0 

Hence the lemma is proved I
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Lemma 4. If Re( < , then for every C>0 

	

f
J(x )I dx <+oo.	 (22)


IxI<C 

Proof. We have with some a > 0 and 6 > 0 
+00+00	 2 

fIJ(x;)Idx<2C f J I-L
exP(_/3xt)(j_) 

I z I< C	 kj.I<C°°	
(23) 

	

+00+00	 2 a+q d 
= 2CJ 

f 
[1 -	exp(-3C2t)] (--) 

16 
-00 

Because of (20) the estimate (23) implies (22) I 
Lemma 5 below provides a possibility to continue analytically the function J(x; () 

on the domain p(H). 
Lemma 5. Letn EN, aEC andx >0. Ifa—nZ_, then for any n.E N 

r(a—n)'F(a—n,1;x) 

=
s(a)x(a)(a, 1; x) +	tk(a)xkr(a + 1)(a + 1, 1; x) 

where 3k and tk are rational functions, i.e functions having the form for polynomials 
P and Q obeying degP degQ and Q having only the numbers 1,.. . ,n as possible 
roots. If n = 0, then we can take so = 1 and to = 0. 

Proof. To prove the lemma we need the formula 
- 1,1; x) = (2a 1+ x)W(a, 1; x) - a2 J/(a + 1,1; x) 

(see [4: Vol.1/Formula 6.6(4)]). It implies 

	

F(a - )W(a —1,1; x) = 
2a 1 + Xr(a)(a 1;x) -	 jr(a + 1)(a + 1, 1;x). 

By induction we obtain 

r(a—n)T'(a—n,1;x)= 2a - 
2n + 1 + xf(a—n+1)W(a—n-i-1,1;x) 

	

a a 
	 (24) 
r(a—n+2)w(a—n+2,1;x) a n  

if a - n V Z_. The lemma is immediate from this equation I 
Using Lemma 5, we deduce from Lemmas 2 and 4 by standard arguments the 

following two lemmas. 
Lemma 6. The integral (16) converges locally unifirmly in the domain R 3 x p(H). 

Moreover, for every e > 0 and compact subset K of p(H) there exist C > 0 and m E N 
such that IJ(x;()I !^ (1+4)m if xii? e and( E K. In particular, for everij ( € p(H) 
the function J( . ; () is continuous in the domain R3 • 

Lemma 7. Let C> 0. The n* estimate (22) holds for each (E p(H) I
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4. Integral representations and asymptotics of G(x, y ; () 
At the beginning of the section we get another representation of the function C. 

Theorem 2. Let ( E p(H). Then the following assertions are valid: 

(1) For every (x, Y) E R obeying x j 54 yj we have 

	

G(x, y; () =	y)J(y - x; 0 .	 (25) 

(ii) For every (x, y) E R we have 

G(x,y)=

exp { -	[(x± - yi )2 (e t - 1)' + (x 3 - Y3 )2t-11 } di 	
(26) 

J	exp(( - )t)(i - e_t) 

Proof. Applying the Fourier transform with respect to x 3 to the operator (1), we 
obtain

= H 2 ® I + IZ I Z 2 ®P• 
Needless to say that p2 denotes the corresponding multiplication operator in the space 
L2 (R) of the variable p. Therefore for all f E L2 (R3 ) and ( E p(H) we have 

+00 
! 

(H - —if (x) = 1 
- / e&dp 
2ir j 

-00
+00	 (27) 

x I G (2, (X _L' Y _L;	P2 ) dy-L J ef(yj,y3)dy3. 
-00 

The integrals with respect to p and Y3 converge here in L2 -norm. Denote temporarily 
y(x,j)J(y—x;() by G(x,y;. Let (E p(H) be fixed. Ifafunction f E L2 (1R 3 ) has 

compact support, then by Lemma 7 the integral (27) converges absolutely and hence 

fG(x, y; ()f (y) dy =f (x, y ) ()f (y) 
R3	 R3 

Therefore G(x,y;() = G(x, y; () for almost all (x,y) ER 3 xR3 . By continuity C(x,y;() 
= G(x, y; () for all (x, y) E R obeying x j y' . Thus part (i) of the theorem is proved. 
Part (ii) follows from Lemma 31 

Theorem 3. Let (o E p(H). Then for every e > 0 there exist constants 5 > 0 and 
C1, C2 >0 such that

	

IG(x,y; ()I	Ci exp(—C21x - yI) 

iflx — y I ^! e and Ko(I 5. 

Proof. Let e > 0 be given. If Ix— y I > , then either Ix.L — y LI ^ or Ix —y < 
and Is3 - I ^ . Therefore the theorem follows from Lemmas 8 and 9 below 1
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Lemma 8. Let (o E p(H). Then for every e > 0 there exist constants S > 0 and 
C 1 , C2 >0 such that

lG(x,y)l Ciexp(—C21x1 — y il)	 (28) 

ifl( — (ol	and Ixi— yil>e. 

Proof. Using (25) and (5), we obtain the assertion from Lemma 61 
Lemma 9. Let (o E p(H). Then for every e > 0 there exist constants S and 

C1, C2 >0 such that
y;	C1 exp(—C2 1x3 - y I) 

ifiC — Col S, Ixi— yjI <e and 1x3 — y31 >E 

Proof. Pick S > 0 such that the disk IC - (ol 5 S do not intersect a(H). By 
Theorem 1 and equation (8) we have

exp(—C I  - yl) 
G(x,y;()l ^ c0>:	lv'( —eu 1=0 

where

 ri

______

=.inf{Re 	: K— Cal <Sand l N}. 

It is clear that for S sufficiently small we have that C > 0. If C> C2 > 0, then 

00 

G(x,y;()l 
Coexp(_C2lx3_y3l)e C23Y3l 

1=0	 h/C—eu 

Ci exp(—C21x3 - Y3 1) 

and the assertion is proved I 
We want to give in conclusion an application of the obtained results to the finding 

of zero-range perturbations of the three- dimensional Landau operator. Namely, we give 
a simple derivation of the diagonal elements Q0,0 (z) of the Krein Q-matrix for the 
operator H. Because of analyticity in z, Q , (z) can be defined up to addive constant 
by the relation

aQ&,a(z)- ôG(a,c;z) 
az -	ôz 

where Re  < (see [17]). From equation (26) we get 

+00
exp	(1 { - 

G(x,y;z)	
=	1 

z=y 16	J	1 - e-1

	

—)t}	
dt. 

0 

Using the equality	
+00

-vi f t -1 e	(1— e) dt = 
0



862	V. A. Geyler and V. V. Demidov 

where ( = ((s, v) is the so-called generalized Riemann (-function (see [4: Vol. .1/Sub-
section 1.10]) and the relation

((s,v) = —s((s,v), 

we obtain at once

Q(cx,c;z) =---( (; - -) +const.	 (29) 

We remark that this equation has been obtained at a physical level of rigour in [7: 
Section VII.2/Formula (VII.2.9)). 
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