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Hyperbolic Linear Skew-Product Semiflows 
R. T. Rau 

Abstract. A spectral theory for evolution operators on Banach spaces has been developed in 
[14, 15] considering associated Co-semigroups on vector-valued function spaces. It is then quite 
natural to substitute the shift on R by an arbitrary flow a on a topological space X and to 
substitute the evolution operator by a cocycle 4 over a. This task was performed by Latushkin 
and Stepin (cf. [8, 9]) for hyperbolic linear skew-product flows assuming some norm continuity 
of this flow. In general only strong continuity can be obtained (cf. Sacker and Sell [18) and 
Example 2 below). Following a suggestion by Hale [7: p. 601 we consider strongly continuous 
linear skew-product flows in Banach spaces and characterize hyperbolicity through a spectral 
condition. 
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1. Introduction 

The qualitative behavior of (semi-)flows on (locally) compact spaces or (-)finite mea-
sure spaces is described by notions like stability or exponential dichotomy of the associ-
ated linear skew-product (semi-)flow. In the finite-dimensional situation the Sacker-Sell 
spectrum permits an important and useful characterization of these properties (cf. [6, 
16, 17, 181, which was extended recently to norm continuous cocycles on infinite di-
mensional Banach spaces by Latushkin and Stepin [8]. However, all truely infinite 
dimensional situations, e.g. flows originating from partial differential equations or func-
tional differential equations, only yield strongly continuous cocycles. This causes serious 
problems and new phenomena (see Example 8). 

In this paper we find a Co-semigroup setting on C(X)- or L 2 -spaces which yields 
not only to a spectral characterization of stability and hyperbolicity (see Theorems 10, 
12, 17 and 18) but also permits application of standard perturbation theorems for semi-
groups to obtain "robustness" of these properties under a large class of perturbations. 
Finally, our results extend or are parallel the recent spectral theory for evolution families 
originating from non-autonomous Cauchy problems (see, e.g., [1, 10, 12, 14, 15]). 

We now start by introducing standard concepts from the theory of cocycles and 
semicocycles over flows. 
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Let X be a compact Hausdorff space, E a Banach space, £(E) the space of all 
bounded linear operators on E and £ 3 (E) the space £(E) endowed with the strong 
operator topology. Further, let ir : E x X x R - E x X. be a linear skew-product flow 
(cf. [17]), i.e. r is a flow on E x X and 

ir(v,x,t) = (ca(v,x,t),a(x,t))	(v E E, x E X, t E R) 

where a is a flow on X and a(,x,t) E £(E) for all x E X and t E R. We call ir 
strongly continuous if a is continuous and (v,.,.) is continuous for all v E E. Let 
(J: X x R -* £(E) be the mapping given by 

(x,t)v = p(v,x,t)	(v E E,x E X, t ER). 

Thenis a strongly continuous cocycle over a (cf. [18]), i.e. c satisfies the following 
properties:

(1) e C(X x 

(2) 4'(x;t + s) = $(a(x,t),$)(x,t) for all x  X and t,s ER. 

(3) 4)(x, 0) I for all x  X. 

(4) CF(x, t) is invertible with	(x, t) = c1(a(x, t), —t). 

Note that there is a one-to-one correspondence between linear skew-product flows 7r and 
pairs (a, '1') consisting of a flow a and a cocycle 'f' over a. 

In addition we call a mapping : X x R - £(E) satisfying the corresponding 
conditions (1) - (3) a strongly continuous semicocycle over a. Then we call the map 
ir: ExXxlR  —+ExXgivenby 

ir(v,x,t) = ((x,t)v,a(x,t))	(v E E, t > 0) 

linear skewproduct semiflow. Note that if such a semicocycle admits only values in 
invertible operators on E, then it can be extended to a cocycle on X x R. 

Linear skew-product flows arise rather naturally in the study of differential equations 
as the following examples will show (cf. [3, 17, 19]). For a detailed discussion of the 
Navier-Stokes equation we refer to [18: Subsection 4.1]. 

Example 1. Let a ': X x R - X be a continuous flow on a compact 'metric space 
X, E a Banach space and A: X -- £(E) a continuous mapping. Then for all x E X 
the mapping t i- A(a(x, t)) defines a continuous and bounded £(E)-valued function. 
Let denote the fundamental solution of the linear differential equation 

IL(t) = A(a(x, t))u(t). 

Then the function ir given by 

ir(v,x,t) = (4(x,t)v,a(x,t))	(v E E) 

is a (norm continuous) linear skew-product flow on E x X.
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Example 2. Consider the equation 

ü(t) = Au(t), u(0) = x 

on a Banach space E with non-linear operator A. Suppose that A generates a (non-
linear) strongly continuous semigroup (S(t)) t >o on a subset X C E (cf., e.g., [21: pp. 
16]). If for all x E X the operator 5(t) is Fréchet-differentiable with derivative (1(x, t), 
then 41( . ,.) : X x - £(E) defines a semicocycle over the semifiow (S(t))j> 0 , which 
is in general only strongly continuous (cf. 13: pp. 170]). If 5(t) is one-to-one and Y C X 
a compact attractor of the semigroup, i.e. S(t)Y = Y for all t > 0, then we can extend 
(S(t)),>o to a flow a: Y x R -+ V. Thus we obtain a linear skew-product semifiow on 
E x Y given by ir(v,z,t) = ((x,t)v,a(x,t)). 

In the sequel we use basic results in the theory of Co-semigroups and refer to the 
books of Goldstein [5], Nagel [11] and Pazy [13]. Concerning the theory of vector-valued 
integration we refer to Diestel and Uhl [2]. 

2. Flows on compact spaces 

Under the above assumptions let us abbreviate a(x, —t) = x t. To the system (a,4) 
consisting of a continuous flow a on X and a strongly continuous semicocycle 1 over a 
we associate a family (T(t)) j > 0 of linear operators on the Banach space C(X, E) defined 
by

T(t)f(x) = (x . t, t)f(x . t)	 (1) 

for all x E X and f E C(X, E). Note that T(t) is well defined, i.e. T(t)f E C(X, E) 
for all f E C(X,E). Moreover, since 1( . ,.)v : X x - E is continuous for all 
v E E, we obtain that 4(.,t)v : X x {t} - E is bounded for all v E E. By the 
uniform-boundedness principle we derive that ((x, 0)z€ is uniformly bounded. Thus 
T(t) E £(C(X,E)) for all t E R. 

Proposition 3. The operator family (T(t))>o given by equation (1) is a strongly 
continuous one-parameter semigroup on C(X, E). 

Proof. Note that from the definition of cocycle we obtain 

(t + s), t + s) = 4(x . s, s) c1(x . (t + s), t) 

for all t,s 20 and x  X. Thus 

T(s)T(t)f(x) = I(x . s, s)T(t)f(x . .$) 
= (x . s, S) 4).(X . (t + s), t)f(x . (i + s)) 
=4(x(t+s),t+s)f(x.(t+s)) 
=T(s+t)f(x) 

for all x E X and I E C(X, E). Therefore T(s + t) = T(s)T(t) for all t, s 0.
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It suffices to show that (T(t))>0 is strongly continuous in 0. Let f E C(X, E) and 
f> 0. Since X is a compact Haus(iorif space the topology is induced by an uniformity. 
Therefore the mapping 10 a is uniformly continuous on X x [-1,+1]. Thus there 
exists 0 < 5 < 1 such that 

If(x.i ) — f(x)iiif 0a1 (x , t )_f o a 1 (x,O)ii	e 

for all x E X and all 0 t Si. Since 1(X) is compact there exist elements x 1 ,... , x, e 
X such that 

1(X) c U B(f(x))	where B(f(x 1 )) = {v E E: li v - f(x)iI <}. 

Moreover, the mapping (x, t) - 4(x . t, t )f( x ) is uniformly continuous on X x [0, 1] for 
all i = 1,..., n. Thus there exists 0 < 52 < 1 such that 

114'(x t, t)f(x 1 ) - 1'(x, 0)f(x)ii 

for all x E X, 0	t	62 and i = 1,... , n. Furthermore, by the uniform- boundedness 
principle we obtain that

sup	iI cI (x . t,t)	M < +oo

IEX,tE[0,1I 

for some constant M. Let now x E X be arbitrary. Then there exists an index i E 
{1,... ,n} such that 1(x) E B( (f(x l )). We conclude 

1I T( t )f(x ) - f(x)ii = 11 4 (x t, t)f(x . i) - f(x)ii 

iI(x t,t)f(x . t) - 1(x .t,t)f(x)ii 

+ ii(x t,t)f(x 1 ) - f(x)ii 

il(x t , t )li(iif(x . t) - f(x)ii + 111( x ) - f(x)Ii) 

+ ii(x . t,t)f(x 1 ) - f(x)ii + lif( x ) - f(x)ii 

for all 0 <t S = min{6 1 ,52 } and all x  X. Therefore T(t)f - fast —401 

Remark 4. Since (T(t))> 0 is a strongly continuous semigroup it is exponentially 
bounded, i.e. there exist constants C > 1 and /3 > 0 such that 

1I T( t )iI	Ce t	(t > 0). 

Since 1I T( t )ii = SUpx ii'I)(x , t )Ii we obtain that a strongly continuous semicocycle on a 
compact space X is always uniformly exponentially bounded in x E X, i.e. 

sup ii(x , i )ii 15 Ce' t	(t > 0)

zEX
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for suitable constants C 2 1 and ,3 > 0. 
In the sequel we call (T(t))j>o the evolution semi group corresponding to the pair 

(a, (1). By G we denote its generator. 

By C(X, £ 3 (E)) we denote the vector space of all functions a = a( . ) from X to 
£(E) such that a()v : X x a(x)v E E is continuous for all v E E. By the 
uniform-boundedness principle we obtain sup, II a(x )II <+co for all a E C(X, £(E)). 
Thus we can endow C(X,L(E)) with the supremum norm. Note that the canonical 
imbedding 'I' C(X,r(E)) - £(C(X,E)) defined by ('F(A(.))f)(x) = A(x)f(x) is an 
isometry. Thus we identify C(X, £ 3 (E)) with its image in £(C(X, E)). 

We now repeat or modify some basic definitions. By r we denote the unit circle. 

Definition 5 (see [9, 17]). 

(1) A Co-semigroup (T(t))j>o on a Banach space E will be called hyperbolic if 
a(T(i)) n r = 0 for all t > 0. A generator G of a Co-semigroup will be called hyperbolic 
if a(G) fl iR = 0. 

(2) A semicocycle 'I X x - £(E) over the flow a (resp. the corresponding 
linear skew-product semiflow ir) on a Banach space E is called hyperbolic if there exists 
a projection-valued function Q e C(X,L 3 (E)) such that 

Q(x . (—t))(x,t) = 4!(x,t)Q(x)	(t E R, x E X) 

and there exist constants M 2 1 and a > 0 such that 

lI(x , t)vII < Me -" Il v il	(v E Q(x)E) 

11 4)( x , t )v I[ 2 M l eat IIvIl	(v E (I - Q(x))E) 

for all x E X and t E R. A cocycle (P : X x R - £(E) over a (resp. the corresponding 
linear skew-product flow ir) on a Banach space E is called hyperbolic if the restriction 
of 4 to X x IR+ is hyperbolic as a semicocycle. 

(3) A cocycle 4 : X x R - £(E) over a (resp. the corresponding linear skew-
product flow ir) on a Banach space E is called exponentially dichotomic if there exist 
constants M 2 1 and a > 0 and a projection-valued function P E C(X,L 3 (E)) such 
that

II(x, t)P(x) cI	(x, s )II	Me —'(t—S)	(t 2 s, s E R, x E X) 

II'(x , t)(I - P(x)) 1 (x, s)II	Me st)	(s 2 t, s E R, x E X). 

We derive the following proposition concerning the uniqueness of a projection cor-
responding to an exponentially dichotomic cocycle. 

Proposition 6. Let I X x R -* £(E) be an exponentially dichotomic cocycle on 
a Banach space E with projection-valued function P € C(X,.C(E)). Then 

ImP(x) = Es(x)	v € E: liiII(x,t)vII = o} 
f +00

Im(I— P(x)) = Eu( x )	v € E: lirnI(x,t)vII = 0}.
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Moreover, the projection corresponding to a hyperbolic cocycle is uniquely determined. 

Proof. We only prove the first equality, while the second one can be obtained in a 
similar way. For x E X the inclusion ImP(x) c Es(x) is obvious. On the other hand 
let v E Es(x). Then v = v 1 + v2 , where v 1 = P(x)v and v2 = (I - P(x))v. Since 
II(x , t )v II -* 0 as t - +oo and 

II(x , t)v2 II	11'(x, t)v i 11 + II(x , t)vIt 
we derive that SUPt>O II(x , t ) v2II	M < +00 for some constant M > 0. Since v2 =

(I - P(x))Y' (x, t)4(x, t)v2 it follows 

1 v 211	11(1 - P(x))11! ' (x, )M II'( x , t)v2 

for all t > 0. Thus v2 = 0 and v = v 1 E ImP(x). The uniqueness of the projection P 
follows from the characterization of its range and its kernel I 

In the sequel we identify the Banach algebra C(X, C) with its canonical image in 
£(C(X, E)). 

First we obtain special properties of a spectral projection corresponding to a hyper-
bolic evolution semigroup. 

Lemma 7. Let the evolution semzgroup (T(t))g>o be hyperbolic and let Q be the 
spectral projection of T = T(1) on the spectral set cr(T) fl {z E C : Izi < 11. Then 
mQ = Qrn for all in E C(X,C) and Q e C(X,.C,(E)). 

Proof. Set F1 = QC(X, E) and F2 = (I - Q)C(X, E). Since T(t)Q = QT(t) for 
all t > 0 we conclude that (T(t))> 0 induces semigroups (T1 (t)) 1 >o and (T2(t))>0) 
F1 and F2 with generators G 1 and C2 , respectively. For a Co-semigroup (T(i))> 0 one 
has r(T(t)) = Ow for all t > 0, where w denotes the growth bound of (T(i)) 1 > 0 . Since 
r(Ti (1)) < 1 we obtain w(G I ) < 0, where w(G i ) denotes the growth bound of (Ti (t))j>0. 
Since T2 (1) is invertible wederive by [13: Chapter 1/Theorem 6.51 that (T2 (t)) 1 > 0 can 
be extended to a group ( T2 (i)) jE IR. Since r(T2 (-1)) < 1 we obtain L,,(—G2 ) <0, where 
c(—G2 ) denotes the growth bound of (T2(—t))1>o. Thus there exist constants M > 1 
and a > 0 such that

IT1 ( t )II < Me —c"	( t > 0)	 (2) 
and

T2(-t)II < Me	(t > 0).	 (3) 
Since II T( t ) (I - Q)f II	II T ( t )f II + II T( t )Qf 11 we obtain limt....+ II T( t )f II = 0 if and 
only if f e F1 . Let f E F1 and in E C(X, C). Then II T ( t ) rh fll	II m II II T ( t )fII and thus

limj_, !IT(t)mf 11 = 0. Therefore mf E F1. 

On the other hand let 12 E F2 and in E C(X,C). By rn j we denote the multiplier 
m j : x	m(x . i). Then 

IIQmtf2 II = IIQm 1 T ( t )T2( —t )f2 II 
= IIT(t)QmT2(—t)f211 

II T ( t )Qm II 11 T2(— t )f2 II 
lI T1 ( t )II IIQU ll'll lI T2 (-t)Il 1112 
M2,-2allpll IlnllIIf2ll
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and we obtain

Qmf2ll	M'2e2 ° t IlQll urn_ill 111211 = M2e2 ° t IIQII Il m Il 1112 

for all t > 0. Therefore we conclude that Qrnf2 = 0. But this implies Qmf = QmQf + 
Qrn(I - Q)f = mQf for all f E C(X, E). Hence mQ = Qm. 

We have to show that Q E C(X,C3(E)). To see this let x E X and set P(x)f(x) = 
Qf(x) for all I E C(X, E). Without loss of generality we assume Q 0. We claim that 
P(x) defines a linear operator on E. To see that P(x) is well defined let I E C(X, E) 
such that 1(x) = 0. By the linearity of Q it suffices to show that P(x)f(x) = 0. Let us 
assume that this is not true, i.e. 6 := IIQI( x )lI > 0. Since f is continuous there exists 
an open neighborhood U of x such that 11f(y)II <6IIQIV for all y E U. By Urysohn's 
lemma there exists a continuous function mu : X - [0, 11 such that 

mu(y)—{1 
fory=x 

- 0 foryEX\U. 

Hence II mufIl < 6 11Q11' . As shown before we have muQf = Qmuf and therefore 
Il muQfII <JJQJJ 11 muf 11 < 6. But this is a contradiction to muQf(x) Qf(x) = 6. 
Therefore P(x) is a well defined linear operator on E. Moreover, P(x) is a bounded 
projection since Q has the same properties. 

Let P : X 30 x -, P(x) e £(E). Then Qf = Pf for all f E C(X, E). Since 
Q is a bounded operator on C(X, E) we obtain (considering constant functions) P E 
C(X,r3 (E)) U 

The counterexample [15: Example 71 was based on the fact that for an operator 
S E £(E) the condition

IISvlI ^: 711 V 11	(v E E) 

for some -y > 0 does in general not imply the invertibility of S. This observation leads 
us immediately to the following example, which shows that the implication (b) =- (a) 
in Theorem 3.2 of [9] does not hold in general. 

Example 8. Let X = {x} consists of a single point, a = ldx and i the probability 
measure on X, i.e. z({x}) = 1. Further, let H = L2 (R+,C), S the operator on H given 
by

Sf(t)=ff(t_1) fort? 1 
1. 0	for 0<t<1 

for some 6 > 0 and a : X 9 x - S E £(H). Then the linear Extension & of the 
homeomorphism a (see [9: p. 1241 for the definition) can be identified with S. Moreover, 
we can identify the operator Ta on L2 (X, IL, H) given by 

Ta 1(Z) = a(a'(x))f(a'(x)) 

with the operator S. Then T0 and & satisfy the assumptions of [9: Theorem 3.2]. But 
II Sv ll = e ll v ll for all v E H and o(Ta) = o(S) = {z E C IzI < e}. 

This example and some obvious modifications show that without additional assump-
tions on the semicocycle 1 over a we will not be able to characterize the hyperbolicity 
of the semicocycle by spectral properties of the corresponding evolution semigroup. 

Similar to [15: Definition 8] we make the following definitions.
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Definition 9. We call a semicocycle over a eventually dense if there exists r > 0 
such that (x, r) has dense range for all x E X. Then a linear skew-product semiflow 
is eventually dense if the corresponding semicocycle is eventually dense. 

We call a semicocycle $ over a eventually compact if for all x E X there exists r > 0 
such that 4)(X, t) is compact for all t r. A linear skew-product semiflow is eventually 
compact if the corresponding semicocycle is eventually compact. 

We now state the main result of this section. 

Theorem 10. Let Cl! be an eventually dense or eventually compact semicocycle over 
a and (T(t))>o the corresponding evolution semigroup on C(X, E) given by equation 
(1). Then the statements 

(1) the evolution semigroup (T(t)) f >o is hyperbolic 

(2) the seinicocycle l! is hyperbolic 

are equivalent. 

Proof. Part (1) = (2): Let Q be the spectral projection on the spectral set 
a(T(1)) fl {z E C: 1 .1 < 11. Thus Lemma 7 yields the inclusion Q E C(X,L3(E)), i.e. 

x	Q(x) where Q(x) are projections on E. From inequality (2) we conclude 

lI T1 (t)Qf II = II T ( t )QfII < Met IIQfII	(t >_ 0, 1 e C(X,E)). 

Let U be an open neighborhood of x E X. By Urysohn's lemma there exists a continuous 
function a: X - [0, 1] such that a(y) = 0 for all y E X \ U and a(x) = 1. Then 

	

II T ( t )Qf( x (—t))II	sup IIT(t)Qaf(y (—t)) 
yEU 

= SUP IIT(t)Qaf(y)II 
yEX 

<Me t sup IIQaf(y)II 
yEX 

= Me	sup IIQaf(y)II 
YE U 

sup IlQf()II. 
yE U 

Since U can be taken arbitrary and Qf is continuous we obtain 

Il T ( t )Qf( x (—t))II < Iet IIQf(x )II	 (4) 

for all t 2 0,x E X and f E C(X,E). Therefore 

II'l! ( x , t )Q( x )v II	Met ItQ(x )v II	(x E X, t 2 0, v e E) 

and we obtain

1I 4) (x , t ) v II	Met II v ll	(t 2 0, v E Q(x)E, x E X).
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Moreover, QT(t) = T(t)Q for all t E R and thus Q(x (—t))(x, t) = 1(x, t)Q(x) for 
all t E R and x E X. 

On the other hand inequality (3) implies 

11 T2( t )( I — Q)fII = II T( t )( I — Q)fII ^! M ' e° t II( I - Q)fII 

for all t > 0 and I E C(X, E). As above we obtain 

II(x , t )v II ^: M ' e ' t II v II	(t >_ 0, v E (I—Q(x))E, X 	X). 
Part (2)	(1): Let r > 0 such that 4)(x, r) has dense range for all x E X (resp. 

(I) (x,r) is compact for all x E X and all t > r). For x E X let y = ox,r). By the 
definition of a hyperbolic semicocycle there exists a projection-valued function Q : X -p 
£(E) satisfying

Q(y)(x,r)	c1(x,r)Q(z) 

for all x E X. Note that this function defines a (bounded) projection on C(X,E). 
Let Er := (I — Q(x))E and E,, := (I — Q(y))E. Then (x, r) induces a mapping 
z(x,r) : Er —* Eyr For each x E X consider the trajectory {ax,t) : t E R}. 

Then U(s + t, s) = x,$),t) with s E Rand i > 0 defines an evolution family (see 
[15] for the definition). Since this evolution family is eventually dense (resp. eventually 
compact) (cf. [15]) we obtain as in the proof of [15: Theorem 9] that I 2 (x, r) is invertible 
for all x E X. 

Note that T(t)Q = QT(t) for all i ? 0 and thus (T(t))j> 0 induces a semigroup 
(T1 (t))> 0 on the range of Q and a semigroup (T2 (t))> 0 on the kernel of Q . We derive 
that T2 (t) is invertible for all t > 0(see the proof of [15: Theorem 9] for details). Then 

11 T1( t )II =	sup	IIT(t)fII 
I E F,, If 11< 

= - sup	sup IIT(t)f(x)II 
JEF, lIfII:51 rEX 

=	sup	sup II(x . i, t)f(x t)II 
JEF,,IIfII<1 rEX 

<Me t	sup	sup IIf(x . t)

IEF,,IIfII<1 rEX 

=Me —" for all t>0 

and
11T2(—t)II < Me —a '	(t > 0). 

Therefore we obtain that

lim lI Ti( t )II = in lIT1 (nt)Il = 0 

and
limIIT2(—t)nIl = , Il T2(—nt )ll = 0 

n—co

for all t > 0. This implies for the spectral radii r(Ti (t)) < 1 and r(T2 (—t)) < 1 for all 
I > 0. Since p(T(t)) = p(Ti (t)) fl p(T2 (t)) we derive r n o(T(t)) = 0 for all I > 0. Thus 
we have completed the proof I
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An example of an eventually compact semicocyle can be obtained from solutions of 
the linearized Navier-Stokes equation (for detailes we refer to [18: 4.1]). 

Since the additional condition on the semicocycle was not necessary to obtain the 
implication (1) =>, (2) of Theorem 10 we obtain the following corollary. 

Corollary 11. Let be a sernicocycle over a and (T(t))> 0 the corresponding 
evolution semzgroup on C(X, E). If (T(t))> 0 is hyperbolic, then the semicocycle I is 
hyperbolic. 

In the invertible situation exponential dichotomy can be characterized by the spec-
trum of the evolution semigroup. We call the group hyperbolic if the corresponding 
semigroup is hyperbolic. 

Theorem 12. Let (T(t))> 0 be the evolution semigroup given by equation (1) on 
C(X, E) with corresponding cocycle 1. Then (T(t))g>o can be extended to a group and 
the statements 

(1) the evolution group (T(t)) t ea is hyperbolic 

(2) the cocycle 4D is hyperbolic 

(3) the cocycle	is exponentially dzchotomic 

are equivalent. 

Proof. We only have to show the equivalence (2)	(3). Part (2)	(3): Since

Q(x (—t))c(x,t) = (x,t)Q(x) for all t > 0 and x e X we obtain Q(x(—t)) = 
(x,t)Q(x)1(x,t) for all t E R. By the principle of uniform boundedness we de-

rive SuPzEx IIQ(x)Il < M for some constant M. Since by assumption the cocycle is 
hyperbolic we derive 

11( x , t)Q(x)' (x, s )II = [ (x, t)T(x, 0)Q(x)1(x, s)II 
= 1((x , t)4(x (—s), —s)(x, s)Q(x)' (x, s) 

= II(x (—s), t - s)4(x, s)Q(x)4' (x, s)II 
= II I (x (—s), t - s)Q(x . (—) ) II 
< MMe 

for all t > s and all x E X. Moreover, we obtain for all v E E 

(M + 1 )[I v II	11( 1 - Q(x))vII 
= 1I4 1 (x, t - s)(x, t - s)(I - Q(x))vII 

= 1V1 (x (s - t), s - t)(I - Q(x (s - t)))1(x, t - s)vM 

> M'	11(1 - Q(x (s - t)))(x, t - s)vII 
= p f_ 1 ea(s_t) II4(x t - s)(I - Q(x))vII 

and thus 

II(x , t)(I— Q(x)) 1 (x, s ) v II = 11 1 ( x (—s), t - s)I(x, s)Q(x)4' (x, s)Il 
= 11 1 ( x (—s),t —s)(I - Q(x(—s)))vII 

< M(M + 1)e(3t)IIvII.
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Therefore

11'(x, t)(I - Q(x))' (x, s)II	J.4(1W + 1)e3t)	(s > t). 

Hence 4 is exponentially dichotomic with corresponding projection Q. 

Part (3) =. (2): Let P = P() denote the projection-valued function corresponding 
to the exponentially dichotomic cocycle . Then 

II(x , t)P(x)II = Il I ( x , t)P(x)' (x, 0)11 

for all t > 0 and hence

(x,t)vII = II(x , t )P ( x ) v II	Me—` JJ v JJ 

for all v E P(x)E. On the other hand 

l v ii = 11( 1 - P(x))vli 
= ll(z , 0 )(I - P(x))1(x,t)4(x,t)v 

Me_ai pI(x , t)vii 

for all v E (I - P(x))E and therefore Ii(x , t ) v ii > M1et Ii v iI for all v e (I - P(x))E 
and all t > 01 

We are now able to relate the spectrum of T(t) and G to the so-called dynamical 
spectrum of a linear skew-product flow ir. For A E IR let 

x, t) = (4),\ (x, t)v, a(x, t)) 

be the shifted flow, where A (x,t) = e"(x,t). Then Sacker and Sell [17] called the 
set of all A E IR for which Ir A fails to admit an exponential dichotomy the dynamical 
spectrum dynE of 7r. 

As shown in Theorem 12 a linear skew-product flow (resp. a cocycle) is hyperbolic 
if and only if it is exponentially dichotomic In [15) we generalize the notion of the 
dynamical spectrum and denote by dynE the set of all A E R such that the shifted 
semicocycle -cDx is not hyperbolic. 

We immediately derive the following corollary. 

Corollary 13. Let ir be a strongly continuous linear skew-product semiflow on E x 
X. Let ir be eventually dense or eventually compact and denote by G the generator of 
the evolution semigroup (T(t)) t2^o corresponding to ir on C(X, E). Then 

dynE = In io(T(1)) \ f 0} 12 Reo(G). 

Proof. The shifted flow ir A corresponds to the evolution group (TA(t))j>o, where 
TA(t) = e tT(t). Note that 1 V Ia(T(1))I implies that (T(t))j> 0 is hyperbolic. From 
the spectral inclusion theorem it follows that Rea(G) 9 lnio(T(1))P. Using the same 
arguments as in the proof of [14: Corollary 111 we obtain the assertion I
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3. Flows on finite measure spaces 

Let X be a compact metric and H a separable Hubert space. As in the previous section 
we consider a strongly continuous linear skew-product semiflow ir on H x X induced by 
a flow a on X and a semicocycle over a on H x R+. Furthermore, let y be a regular 
Borel probability measure on X invariant under the flow a and assume that iz(0) > 0 
for all non-empty open subsets 0 of X. We associate a family (T(t)) j >0 of operators 
on L2 (X, p, H) defined by

T(t)f(x) = 4(x t, t)f(x t) (5) 

for all x E X and I E L2 (X, i, H). As in [14] standard arguments from the theory of 
vector-valued integration yield that T(t) is well defined and from the norm boundedness 
of 4 on X x {t} it follows that each T(t) is a bounded operator. Moreover, (T(t))j> 0 is 
a strongly continuous semigroup. 

Proposition 14. The operator family (T(t))g>o given by equation (5) is a strongly 
continuous one-parameter semigroup on L2(X,p,H). 

Proof. By Proposition 3 we obtain that, for all f E C(X, H), T(t)f(x) - 1(x) 
uniformly in x E X as t - 0. Since 1L is a finite measure we derive that T(t)f - f in 
the L2 -norm as t - 0 for all f E C(X,H). Since C(X,H) is dense in L 2 (X,p,H) the 
assertion follows I 

We call (T(t))>o the evolution semi group on L2 (X, jL, H) corresponding to (a, ') 
and denote by G its generator. By L°°(X, £ 3 (H)) we denote the space of all functions 
a( . ) : X -+ £(H) such that a( . )v : X x -+ a(x)v E H is strongly measurable (see 
[2: p. 411 for the definition) and bounded a.e. for all v e H. Since H is separable 
we conclude from the uniform-boundedness principle that II a( . ) II = esssupZExlla(x)II 
defines a norm on L(X, £3 (H)). From [20: pp. 256] we obtain the following auxiliary 
result. 

Proposition 15. The normed vector space L°°(X,L3(H)) is a C* -algebra and the 
canonical imbedding 'I' : L 00 (X,C 3 (H)) -+ £(L2 (X, it, H)) is an isometry. 

In the sequel we identify L°°(X, £,(H)) with its canonical image in £(L2 (X, y, H)) 
and denote it by A. By M we denote the C-algebra L°°(X,C) acting in a canonical 
way on L2(X,,u,H). Since p is invariant under the flow a and by assumption p(0) > 0 
for all non-empty open subsets 0 C X we obtain in addition that 

II T( t )II = sup II(	t, t )lI = sup Il I' (x , t)II zEX 

for all t > 0. 

Our next goal is to describe the structure of the spectral projection corresponding 
to a hyperbolic evolution semigroup on L2 (X, j., H). In analogy to the previous section 
we will make use of the following property.
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Lemma 16. Let (T(t))>o be a hyperbolic evolution semigroup on L 2 (X,,t,H) and 
Q the spectral projection of f = T(l) on the spectral set o(T)fl{z E C: Izi < 1). Then 
mQ = Qm for all m E L(X,C) and Q E A, i.e. Q can be identified with a function 
Q( • ) E L°°(X,L(H)). 

Proof. The commutation property can be obtained as in the proof of Lemma 7. 
The assertion Q E A then follows from [20: SectionlV/ Theorem 7.10]I 

In the setting of this section we have to modify slightly the definitions given in the 
previous section (cf. Definition 5). So we call now a semicocycle 1 u-hyperbolic if it 
is hyperbolic in the sense of Definition 5 with projection-valued function Q satisfying 
Q E L°°(X, , £ 3 (H)). Similarly we call a cocycle exponentially p-dichotomic if the 
corresponding projection Q satisfies Q E L(X, it, £3(H)). 

Under these modifications Lemma 16 yields our main characterization of hyperbol-
icity.

Theorem 17. Let 4D be an eventually dense semicocycle over a and (T(t))>o the 
corresponding evolution semigroup on L 2 (X, z, H) given by equation (5). Then the 
statements 

(1) the evolution semigroup (T(t))>o is hyperbolic 

(2) the semi cocycle 4 is it-hyperbolic 

are equivalent. 

• Proof. Without loss of generality we may assume that to = 1. Part (1) = (2): 
Let Q be the spectral projection on the spectral set a(T(1)) fl {z E C : Izi < 11. 
Thus Lemma 16 yields the inclusion Q E A, i.e. Q : x -+ Q(x), where each Q(x) is a 
projection in H. From inequality (2) it follows 

IT1 (t)QfII	IIT(t)QfII	Me"JJQf II	(t > 0, f E L2 (X, p, H)). 

We consider functions XB ® v with characteristic functions XB E L°°(X, C) of a mea-
surable set B C X and v E H. Since T(t)QXB ® V x (B ,g)T(t)Qil ® v we derive 

I,t) II T ( t )Qf(x )11 2 dp	M2e2°t JB IIQf(x)112 (B  
for any measurable set B C X, where f = ® v. Thus 

ZB II T ( t )Qf(x . (-t)) 2 Ji < M2e2t fB IIQf(x)112d,z 

and we obtain the pointwise estimate 

II T( t )Qf(x . (-t)) <Me"t IIQf(x)II	(a.e. x E X, t >_ 0). 

Therefore

114)(x,t)Q(x)vII 5 MetIIQ(x)vII	(a.e. x € X, t >_ 0, v € H)
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and
II(x,t)vII	Met Il v II	(t 2 0, v E Q(x)H, a.e. x e X). 

Similar we obtain from inequality (3) the estimate 

II(x , t )( I - Q(x))vII 2 M1et II( I - Q(x))vI]	(ac. x e X, t > 0, v E H) 

and hence

	

II(x , t )v 2 M ' et II v JI	(t 2 0, v E (I - Q(x))H, ac. x E X). 

Part (2) = (1): Let r > 0 such that 4)(x, r) has dense range for all x E X. For 
x  X set y = a(x,r). By the definition of a hyperbolic semicocycle there exists a 
projection-valued function Q: X - £(H) satisfying 

Q(y )(x , r )	(x,r)Q(x) 

for a.e. x E X. Note that this function defines a (bounded) projection on L2 (X, p, H). 
Let H := (I - Q(x))H and Hy. := (I - Q(y1 ))H for a.e. x e X. Then cI'(x, r) induces 
a mapping 4) 2(x,r) : H - From the inequality II 4 (x , t )v II 2 M1ct I v lI for all-
* E Hx we conclude that 4 2 (x, r) is invertible for a.c. x e X (cf. [15]). 

Note that T(t)Q = QT(t) for all t 2 0 and thus (T(t)) j >0 induces a semigroup 
(T1 (t))> 0 on the range of Qand a semigroup (T2 (i)) >0 on the kernel of Q . We derive 
that T2 (t) is invertible for all t 2 0 and similar to the proof of Theorem 10 we obtain 
the assertion I	 . . 

As in the previous section we obtain a characterization of exponentially dichotomic 
cocycles. We omit the proof and refer to Theorem 12 and [14]. 

Theorem 18. Let (T(t)) ER be the evolution group given by equation ( 5) on the 
space L 2 (X,a,H). Then the statements 

(1) the evolution group (T(t ) ) iE R is hyperbolic 

(2) the cocycle	is hyperbolic 

(3) the cocycle 1' is exponentially dichotomic 

are equivalent. 

For the next result we need additional assumptions on the flow o In the sequel X 
denotes a compact metric space. By Per, we denote the set 

Per, = {x e X: a(x,t) = x for some t E R}. 

If z(Per) = 0, we call the flow aperiodic. Let p(x) inf{t > 0 : cr(x, t) = x} be the 
period of a point x E X. From [9: Theorems 1.10 and 1.111 we quote the following 
theorem.
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Theorem 19. Let (T(t) ) 1 >o be the semigroup given by equation (5) on L2(X,u,H) 
with generator C. Then the following statements hold: 

(1) If /L(Per,) = 0, then a(T(t))	ra(T(t)) for all t 2 0 and a(G) = o(G) + jIlt 
Moreover, the spectral mapping theorem holds, i.e. 

a(T(t)) \ {0} = e	 (t > 0). 

(2) If the function p is essentially bounded away from zero, i.e. ess inf p(x) > 0, 
then the annular hull theorem holds, i.e. 

a(T(t)) \ {O} C Fe i0(	(1 2 0). 

With this result on the spectrum we can characterize i-hyperbolicity of the semi-
cocycle in terms of the generator C of the evolution semigroup. 

Corollary 20. Let '1' be an eventually dense semicocycle over a, G the generator of 
the corresponding evolution semigroup (T(t))> 0 on L2 (X, a, H) and let a be aperiodic 
or the function p be essentially bounded away from zero. Then the statements 

(1) the generator G is hyperbolic 

(2) the semicocycle 4 is 'u-hyperbolic 

are equivalent. 

As in the previous section this result can be used to characterize the dynamical 
spectrum of the semicocycle 1. 
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