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Hyperbolic Linear Skew-Product Semiflows

R. T. Rau

Abstract. A spectral theory for evolution operators on Banach spaces has been developed in
(14, 15] considering associated Co-semigroups on vector-valued function spaces. It is then quite
natural to substitute the shift on R by an arbitrary flow o on a topological space X and to
substitute the evolution operator by a cocycle ® over 0. This task was performed by Latushkin
and Stepin (cf. {8, 9]) for hyperbolic linear skew-product flows assuming some norm continuity
of this flow. In general only strong continuity can be obtained (cf. Sacker and Sell [18] and
Example 2 below). Following a suggestion by Hale [7: p. 60] we consider strongly continuous
linear skew-product flows in Banach spaces and characterize hyperbolicity through a spectral
condition.
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1. Introduction

The qualitative behavior of (semi-)flows on (locally) compact spaces or (o-)finite mea-
sure spaces is described by notions like stability or exponential dichotomy of the associ-
ated linear skew-product (semi-)flow. In the finite-dimensional situation the Sacker-Sell
spectrum permits an important and useful characterization of these properties (cf. {6,
16, 17, 18], which was extended recently to norm continuous cocycles on infinite di-
mensional Banach spaces by Latushkin and Stepin {8]. However, all truely infinite
dimensional situations, e.g. flows originating from partial differential equations or func-
tional differential equations, only yield strongly continuous cocycles. This causes serious
problems and new phenomena (see Example 8).

In this paper we find a Co-semigroup setting on C(X)- or L2-spaces which yields
not only to a spectral characterization of stability and hyperbolicity (see Theorems 10,
12, 17 and 18) but also permits application of standard perturbation theorems for semi-
groups to obtain “robustness” of these properties under a large class of perturbations.
Finally, our results extend or are parallel the recent spectral theory for evolution families
originating from non-autonomous Cauchy problems (see, e.g., 1, 10, 12, 14, 15]).

We now start by introducing standard concepts from the theory of cocycles and
semicocycles over flows.
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Let X be a compact Hausdorff space, E a Banach space, L(E) the space of all
bounded linear operators on E and L,(E) the space £(E) endowed with the strong
operator topology. Further,let 7: E x X x R = E x X. be a linear skew-product flow
(cf. [17]),1.e. 7 is a flow on E x X and

(v, z,t) = (cp(v,a:,t),a(a:,vt)) ‘ (veE, z€ X, teR)

where o is a flow on X and ¢(-,z,t) € L(E) forallz € X andt € R. We call =
strongly continuous if o is continuous and ¢(v,-,-) is continuous for all v € E. Let

®(-,-): X x R — L(E) be the mapping given by
<I>(:c,t)v = (p(v,z,t) (ve E,ze X, teR).

Then @ is a strongly continuous cocycle over o (cf. [18]), i.e. ® satisfies the followmg
propertles

(1)@ € C(X x R, L,(E)).

(2) ®(z;t+s) = @(a(x,t),s)é(z,t) forall z € X and t,s € R.

(3) ®(z,0) =Iforallz € X.

(4) ®(z, t) is invertible with ®~1(z,) = &(o(z, ), —t).

Note that there is a one-to-one correspondence between linear skew-product flows = and
pairs (g, ®) consisting of a flow ¢ and a cocycle ® over o.

In addition we call a mapping ® : X x Ry — L(E) satisfying the corresponding
conditions (1) - (3) a strongly continuous semicocycle over o. Then we call the map
L ExXxIR+—>E><Xg1venby

n(v,x,t) = (@(z,t)v,o(z,t)) (ve E,t 2 0)
linear skew:product semiflow. Note that if such a semicocycle admits only values in
mvertlble operators on E then it can be extended to a cocycle on X x R.

Lmea.r skew- product flows a arise rather naturally in the study of differential equations
as the following examples will show (cf (3, 17, 19]). For a detailed discussion of the
Navier-Stokes equatlon we refer to [18 Subsection 4.1].

_ Example 1. Let a " X x R - X be a continuous flow on a compact metric space
X, E a Banach space and A: X — [,(E) a continuous mapping. Then for all z € X
the mapping ¢ — A(o(z,t)) defines a continuous and bounded £(E)-valued function.
Let ® denote the funda.menta.l solution of the linear differential equation

u(t) = A(o(z,t))u(t).
VThen the function = given by
(v, z,t) = '(Q(z,t)v,o(:z:,t)). (veE)

is a (norm continuous) linear skew-product flow on E x X.
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Example 2. Consider the equation
u(t) = Au(t), u(0)==z

on a Banach space E with non-linear operator A. Suppose that A generates a (non-
linear) strongly continuous semigroup (S(t))¢>0 on a subset X C E (cf., e.g., [21: pp.
16]). If for all z € X the operator S(t) is Fréchet-differentiable with derivative ®(z,t),
then @(-,-) : X x R4 — L(E) defines a semicocycle over the semiflow (S(¢)):>0, which
is in general only strongly continuous (cf. {3: pp. 170]). If S(¢) is one-to-oneand Y C X
a compact attractor of the semigroup, i.e. S(t)Y =Y for all ¢t > 0, then we can extend
(S@t))>otoaflowo: Y xR Y. Thus we obtain a linear skew-product semiflow on
E x Y given by n(v,z,t) = (®(z,t)v,0(z,t)). ‘

In the sequel we use basic results in the theory of Cy-semigroups and refer to the
books of Goldstein (5], Nagel [11] and Pazy [13]. Concerning the theory of vector-valued
integration we refer to Diestel and Uhl [2].

2. Flows on compact spaces

Under the above assumptions let us abbreviate o(z, ~t) = z - t. To the system (o, ®)
consisting of a continuous flow ¢ on X and a strongly continuous semicocycle ® over o
we associate a family (T(t)).>o of linear operators on the Banach space C(X, E) defined
by

T(t)f(z) = ®(z - t,1)f(z - 1) (1)
for all z € X and f € C(X, E). Note that T(t) is' well defined, i.e. T(¢)f € C(X,E)
for all f € C(X,E). Moreover, since ®(-,-)Jv : X x R4y — FE is continuous for all
v € E, we obtain that ®(-,t)v : X x {t} — E is bounded for all v € E. By the
uniform-boundedness principle we derive that (®(z,t))zex is uniformly bounded. Thus

T(t) € L(C(X,E)) for all t € Ry.

Proposition 3. The operator family (T(t)):>0 given by equation (1) is a strongly
continuous one-parameter semigroup on C(X, E).

Proof. Note that from the definition of cocycle we obtain
Sz (t+5s),t+s)=(z s55)(x-(t+s)t)
for all ¢,s >0 and z € X. Thus

T(s)T(t)f(z) = ®(z - 5,8)T(t) f(z - 5)
=®(z-s5,85)P(z - (t+s),t)f(z-(t+s))
=®(z - (t+s),t+3)f(z-(t+3))
=T(s +t)f(z)

for all z € X and f € C(X, E). Therefore T(s +t) - T(s)T(t) for all t,s > 0.
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It suffices to show that (T'(t)):>o0 is strongly continuous in 0. Let f € C(X, E) and
€ > 0. Since X is a compact Hausdorff space the topology is induced by an uniformity.
Therefore the mapping f o 0~! is uniformly continuous on X x [-1,+1]. Thus there
exists 0 < 6; < 1 such that '

1f(z-t) = f@I =lf oo™ (z,t) -~ foo™'(z,0)] <€

forallz € X and all 0 <t < 6;. Since f(X) is compact there exist elements z,,...,z, €
X such that

f(X)c U B.(f(z:)) where B(f(z:)) = {v G_E o = flz)l < e}.

=1

Moreover, the mapping (z,t) — ®(z :t,t)f(x.-) is uniformly continuous on X x [0, 1] for
all : = 1,...,n. Thus there exists 0 < §; < 1 such that

|®(z - t,t)f(zi) — ®(z,0)f(zi)l| < e

forallz e X,0<t<é andi=1,...,n. Furthérmore, by the uniform-boundedness
principle we obtain that

sup ||®(z-t,t)|| < M < +o0
z€X,t€[0,1)

for some constant M. Let now z € X be arbitrary. Then there exists an index 1 €

{1,...,n} such that f(z) € B(f(zi)). We conclude
NT@Of () - f@) = 112(z - t,8)f(z - 1) — f(2)Il
<12z -t 1) f(z - 1) - (= -1, 1) f(z)l
+ 2z - t,8)f(z4) - f(2)l
<l -, (I1f(= - &) = £@) + 1f(z) - fzal)
+®(z - t,0)f(zi) = Szl + (i) - fF(2)]
<M2e+e+e¢
forall 0 <t <6 = min{é;,62} and all £ € X. Therefore T(t)f — fast —- 0N

Remark 4. Since (T(t))¢»o is a strongly continuous semigroup it is exponentially
bounded, i.e. there exist constants C > 1 and # > 0 such that

IT()] < Ce’t  (t>0).

Since ||T(t)|| = sup,ex ||®(z,t)|| we obtain that a strongly continuous semicocycle on a
compact space X is always uniformly exponentially bounded in z € X, i.e.

sup ||®(z,t)|| < CePt (t>0)
z€X
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for suitable constants C > 1 and § > 0.

In the sequel we call (T'(t))i>0 the evolution semigroup corresponding to the pair
(0,®). By G we denote its generator.

By C(X, L,(E)) we denote the vector space of all functions a = a(-) from X to
L(E) such that a(-)v : X 3 z — a(z)v € E is continuous for all v € E. By the
uniform-boundedness principle we obtain sup, ¢ x |la(z)|| < +oo foralla € C(X, £,(E)).
Thus we can endow C(X, L,(E)) with the supremum norm. Note that the canonical
imbedding ¥ : C(X,L,(E)) = L(C(X, E)) defined by (¥(A(-))f)(z) = A(z)f(z) is an
isometry. Thus we identify C(X, L,(E)) with its image in L(C(X, E)).

We now repeat or modify some basic definitions. By I' we denote the unit circle.
Definition 5 (see [9, 17}). -

(1) A Cp-semigroup (T'(t))i>0 on a Banach space E will be called hyperbolic if
o(T(t))NT = @ for all t > 0. A generator G of a Cy-semigroup will be called hyperbolic
if o(G)NiR = 0.

(2) A semicocycle & : X x Ry — L(E) over the flow o (resp. the corresponding
linear skew-product semiflow 7) on a Banach space E is called hyperbolic if there exists
a projection-valued function @ € C(X, £,(E)) such that

Qz - (-t)®(z,t) = &(z,t)Q(z)  (tE R4, z € X)
and there exist constants M > 1 and a > 0 such that

@(z,t)oll < Me™[lv] (v € Q(z)E)
@z, t)oll 2 M~ e*lol} (v e (I -Q))E)
forallz € X and t € R4. A cocycle ®: X xR — L(E) over o (resp. the corresponding

linear skew-product flow 7) on a Banach space E is called hyperbolic if the restriction
of ® to X x Ry is hyperbolic as a semicocycle.

(3) A cocycle ® : X x R — L(E) over g (resp. the corresponding linear skew-
product flow 7) on a Banach space E is called ezponentially dichotomic if there exist
constants M > 1 and « > 0 and a projection-valued function P € C(X,L,(E)) such
that

| ®(z,)P(z)® " (z,5)|| € Me™®(")  (t>5,s€R, z€X)
| ®(z,t)(I — ()@ (z,5)]| < Me™C™) (s>t s €R, z€X).

We derive the following proposition concerning the uniqueness of a projection cor-
responding to an exponentially dichotomic cocycle.

Proposition 6. Let ® : X x R — L(E) be an ezponentially dichotomic cocycle on
@ Banach space E with projection-valued function P € C(X,L,(E)). Then

ImP(z) = Es(z) = {v € E: lim_||®(z,t)vl| = o}

Im(I - P(z)) = Eu(e) := {v € B+ Jim_|®(z,1)ol] = 0}.
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Moreover, the projection corresponding to a hyperbolic cocycle is uniquely determined.

Proof. We only prove the first equality, while the second one can be obtained in a
similar way. For z € X the inclusion Im P(z) C Eg(z) is obvious. On the other hand
let v € Es(z). Then v = v; + va, where v; = P(z)v and v = (I — P(z))v. Since
|®(z,t)v|| — 0 as ¢t — +oo and

[8(z, hvzll < |[@(z, t)or || + (| B(z, t)]]

we derive that sup,s, [|®(z, t)v2|| < M < 400 for some constant M > 0. Smce vy =
(I — P(z))® ! (z,t)®(z,t)v; it follows

llozll < (I = P(2))®7 (z,8)|| |B(z, t)ve|f < Me™*'M

for all £ > 0. Thus v = 0 and v = v; € Im P(z). The uniqueness of the projection P
follows from the characterization of its range and its Kernel il

In the sequel we ldentlfy the Banach algebra C(X,C) with its canomcal image in
L(C(X, E)).

. First we obtam special properties of a spectral projection corresponding to a hyper-
bolic evolution semigroup.

Lemma 7. Let the evolution semigroup (T(t)).>0 be hyperbolic and let Q be the
spectral projection of T = T(1) on the spectral set o(T)N{z € C : |z| < 1}. Then
mQ = Qm for allm € C(X,C) and Q € C(X, L,(E)).

Proof. Set F1 = QC(X,E) and F; = (I — Q)C(X,E). Since T(¢)Q = QT(t) for
all t > 0 we conclude that (T(t)):>0 induces semigroups (T3(t)):>0 and (T2(t))¢>0) on
Fy and F, with generators G; and G, respectively. For a Cy-semigroup (T(t))t»0 one
has r(T(t)) = e™ for all t > 0, where w denotes the growth bound of (T'(t))¢»o. Since
r(T1(1)) < 1 weobtain w(G) < 0, where w(G)) denotes the growth bound of (T} (¢))i0.
Since T3(1) is invertible we.derive by [13: Chapter 1/Theorem 6.5] that (T3(t))¢>0 can
be extended to a group (T%(t))ier. Since r(T(—1)) < 1 we obtain w(—~G;) < 0, where

w(—G2) denotes the growth bound of (T2(—t)):>0. Thus there exist constants M > 1
and a > 0 such that

| ITi)ll < Me™ (¢ 20) (2)
and . ,
ITo(=0)ll < Me™* (£ > 0). (3)

Since [IT(1)(I ~ Q)f]l < IT(WSIl + IT(®)QSI we obtain lim,—4 0 |T(#)f]| = 0 if and
only if f € Fy. Let f € Fy and m € C(X,C). Then ||T(t)mf|| < ||m|||T(¢)f]| and thus
limi—4 o |T(t)mf]| = 0. Therefore mf € Fy.

On the other hand let f, € Fy and m € C(X C). By m, we denote the multiplier
my: z — m(z -t). Then

1Qmefa|l = {|@mT($)T2(—t) fa|
= [IT(t)QmTy(-t)f|
SNT@QmINT2(~t) f2 |l _
S IO Il T (=)l I 211
< M2 Q| limlll| £
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and we obtain

IQmfall < M2e™224Ql lIm—cll 1 f2)| = M?e~2|| Q| mll || f2|

for all ¢ > 0. Therefore we conclude that @m f; = 0. But this implies Qmf = QmQf +
Qm(I — Q)f =mQf for all f € C(X,FE). Hence mQ = Qm.

We have to show that Q € C(X, L,(E)). To see this let z € X and set P(z)f(z) =
Qf(z) for all f € C(X, E). Without loss of generality we assume Q # 0. We claim that
P(z) defines a linear operator on E. To see that P(z) is well defined let f € C(X, E)
such that f(z) = 0. By the linearity of Q it suffices to show that P(z)f(z) = 0. Let us
assume that this is not true, i.e. § := ||Qf(z)]] > 0. Since f is continuous there exists
an open neighborhood U of x such that || f(y)|| < é||Q||~! for all y € U. By Urysohn’s
lemma there exists a continuous function my : X — [0, 1] such that

_J1 fory==x
mu(y) = {0 forye X\U.
Hence |myf|| < 6]|Q||~. As shown before we have myQf = Qmuf and therefore
lmu@fll < |Q)lllmuf]l < 6. But this is a contradiction to myQf(z) = Qf(z) = 6.
Therefore P(z) is a well defined linear operator on E. Moreover P(z) is a bounded
projection since @ has the same properties.
Let P: X 5z — P(z) € L(E). Then Qf = Pf for all f € C(X,E). Since

Q is a bounded operator on C(X, E) we obtain (considering constant functions) P €

C(X,L,(E)NN

The counterexample [15: Example 7] was based on the fact that for an operator
S € L(E) the condition
ISvlf = 7llvll (v € E)

for some v > 0 does in general not imply the invertibility of S. This observation leads
us immediately to the following example, which shows that the implication (b) = (a)
in Theorem 3.2 of [9] does not hold in general.

Example 8. Let X = {z} consists of a single point, o = idx and u the probability
measure on X, i.e. u({z}) = 1. Further, let H = L?(R4,C), S the operator on H given
by '

¢ ePf(t—1) fort>1
Sf(8) = { for0<t<«<1
for some § > 0anda: X 3z — S € L(H). Then the linear Extension & of the
homeomorphism a (see [9: p. 124] for the definition) can be identified with S. Moreover,
we can identify the operator T, on L%(X, u, H) given by

Taf(z) = a(a™ (2))f(a™'(z))

with the operator S. Then T, and & satisfy the assumptions of {9: Theorem 3.2]. But
ISl = €?|lv| for all v € H and o(T,) = 0(S) = {z € C: |z| < €P}.

This example and some obvious modifications show that without additional assump-
tions on the semicocycle ® over o we will not be able to characterize the hyperbolicity
of the semicocycle by spectral properties of the corresponding evolution semigroup.

Similar to [15: Definition 8] we make the following definitions.
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Definition 9. We call a semicocycle ® over o eventually dense if there exists r > 0
such that ®(z,r) has dense range for all z € X. Then a linear skew-product semiflow
is eventually dense if the corresponding semicocycle is eventually dense.

We call a semicocycle @ over o eventually compact if for all z € X there exists r > 0

such that ®(z,t) is compact for all t > . A linear skew-product semiflow is eventually
compact if the corresponding semicocycle is eventually compact.

We now state the main result of this section.

Theorem 10. Let @ be an eventually dense or eventually compact semicocycle over
o and (T(t))i>o0 the corresponding evolution semigroup on C(X,E) given by equation
(1). Then the statements

(1) the evolution semigroup (T(t))i>0 is hyperbolic
(2) the semicocycle ® is hyperbolic
are equivalent.

Proof. Part (1) = (2): Let @ be the spectral projection on the spectral set
a(T(1))Nn{z € C: |2| < 1}. Thus Lemma 7 yields the inclusion Q@ € C(X, L,(E)), i.e.
Q : = — Q(z) where Q(z) are projections on E. From inequality (2) we conclude

IR = ITHQSfI < Me™*"||Qf (20, fe C"(X,E))

Let U be an open neighborhood of z € X. By Urysohn’s lemma there exists a continuous
function a : X — [0, 1] such that a(y) =0 for ally € X \ U and a(z) = 1. Then

IT®)QSf(z - (=)l £ sup IT(t)Qaf(y - (~t)l
= sup [|T(t)Qaf(y)ll
yeX
< Me™®" sup [|Qaf(y)|l
yeX
= Me™* sup ||Qaf(y)]
yeU

< Me™* sup |Qf(v)||-
yeu

Since U can be taken arbitrary and Q is continuous we obtain
IT()Qf(z - (=)l < Me™*||Qf (=)l (4)
forallt 2 0,2 € X and f € C(X, E). Therefore
12(z, )Q(z)vll < Me™*||Q(z)vll  (z € X,t20,v € E)
and we obtain

18z, O)oll < Me™lofl (¢ 20,v € QE)E, « € X).
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Moreover, QT (t) = T(t)Q for all t € R, and thus Q(z - (-t))®(z,t) = &(z,t)Q(z) for
alte Ry and z € X.

On the other hand inequality (3) implies
1T - @I = ITEYT - Q)| > M~ et (I = Q)|
forallt > 0 and f € C(X, E). As above we obtain
I2(z, 0)oll = Mol (£20,v€ (I - Q)E, = € X).

Part (2) = (1): Let r > 0 such that ®(z,r) has dense range for all z € X (resp.
®(z,r) is compact for all z € X and all t > 7). For z € X let y, = o(z,7). By the
definition of a hyperbolic semicocycle there exists a projection-valued function Q@ : X —

L(FE) satisfying
Qlyz)®(z,7) = &(z,7)Q()

for all z € X. Note that this function defines a (bounded) projection on C(X,E).
Let E; := (I — Q(z))E and Ey, := (I — Q(y:))E. Then &(z,r) induces a mapping
®,y(z,7) : E; — E,,. For each z € X consider the trajectory {o(z,t) : t € R}.
Then U(s + t,5) = ®(o(z,s),t) with s € R and ¢ > 0 defines an evolution family (see
[15] for the definition). Since this evolution family is eventually dense (resp. eventually
compact) (cf. [15]) we obtain as in the proof of 15: Theorem 9] that ®,(z,r) is invertible
for all z € X.

Note that T(t)Q = QT(t) for all ¢ > 0 and thus (T(t))>0 induces a semigroup
(T1(%))e>0 on the range of Q and a semigroup (T(t)):>0 on the kernel of Q. We derive
that T3(t) is invertible for all ¢ > 0:(see the proof of [15: Theorem 9] for details). Then

Il = sup  JITE)SI
FEFIIfI<1

= -sup sup || T(t)f(z)|
FEFIIfIS1 z€X

= sup  sup ||z t,0)f(z 1)
JEFIIfIIL1 z€X

< Me™®"  sup sup | f(z-t)|
FEF|IflIL1 z€X

=Me™®! for all t >0

and
IT2(=t)]l < Me™®* (£t 20).

Therefore we obtain that
lim ||T1(¢)"|| = lim ||Ti(nt)|]| =0
n—oo n—oo
and
lim ||T2(=t)"|| = lim || T2(—nt)l| =0
n—oo n—0o00

for all t > 0. This implies for the spectral radii r(T1(t)) < 1 and r(T2(—t)) < 1 for all
t > 0. Since p(T(t)) = p(T1(t)) N p(T2(t)) we derive ' Na(T(t)) = 0 for all ¢ > 0. Thus
we have completed the proof i
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An example of an eventually compact semicocyle can be obtained from solutions of
the linearized Navier-Stokes equation (for detailes we refer to [18: 4.1]).

Since the additional condition on the semicocycle ® - was not necessary to obtain the
implication (1) = (2) of Theorem 10 we obtain the following corollary.

Corollary 11. Let & be a semicocycle over o and (T(t))i>0 the corresponding
evolution semigroup on C(X,E). If (T(t))i>0 is hyperbolic, then the semicocycle ® is
hyperbolic.

In the invertible situation exponential dichotomy can be characterized by the spec-
trum of the evolution semigroup. We call the group hyperbohc if the corresponding
semigroup is hyperbolic.

Theorem 12. Let (T(t))i>0 be the evolution semigroup given by equation (1) on
C(X, E) with corresponding cocycle $. Then (T(t)),>0 can be eztended to a group and
the statements

A (1) the evolution group (T(t))ier s hyperbolic
(2) the cocycle ® is hyperbolic
(8) the cocycle ® is ezponentially dichotomic
are equivalent. .

Proof. We only have to show the equivalence (2) & (3). Part (2) = (3): Since
Qz - (—=t)®(z,t) = &(z,t)Q(z) for all t > 0 and ¢ € X we obtain Q(z(—t)) =
®(z,t)Q(z)®!(z,t) for all t € R. By the principle of uniform boundedness we de-
rive sup,¢x [|Q(z)|| < M for some constant M. Since by assumption the cocycle is
hyperbolic we derive

12(z,)Q(z)® 7" (z, s)Il = |®(2,1)®(z,0)Q(z)® " (2, s)l|
= |18(z,)®(z - (=), ~5)®(z,5)Q(z)@ 7 (=, s)|
= |1®(z - (=s),t - 5)®(z,5)Q(2)2 ™" (z,3)ll
= [[&(z - (=s),t = 5)Q(z - (=9))
< MMe—2(t—3)
for all t > s and all z € X. Moreover, we obtain for all v € E

(M + 1)l 2 (I - Q=))vll

=7 (z,t — 5)®(z,t — s)(I — Q(z))v|

= [|®(z - (s — t),s — )T = Q(z - (5 — 1)))¥(z,t — s)v]|

> M~'e?CmI|(I - Q(z - (s —t)))®(z,t — s)v|

= M9 8(z,t — s)(I - Q(z))vl|

and thus
1®(z,t)(I — Q(:z:))‘b Yz, s)v| = [|®(z - (—s),t — s)®(z, s)Q(ar:)(I> Yz, s)||

= ||®(z - (=)t — $)(I — Q(z(=s)))v]l
< M(M + 1)e=eC9)y)].
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Therefore
(2, 6)(I - Q)27 (z,5)l| < M(M +1)e™C™0 (s> 1),
Hence ® is exponentially dichotomic with corresponding projection Q.
Part (3) = (2): Let P = P(-) denote the projection-valued function corresponding
to the exponentially dichotomic cocycle ®. Then
[®(z, t)P(z)ll = II‘I’(I,t)P(x)‘I’;l(x,O)II < Me™*
for all ¢ > 0 and hence
18(z, t)oll = [|®(=z, ) P(z)v]} < Me™*[jv]]
for all v € P(z)E. On the other hand

l[oll = I = P())oll
= [|2(z,0)( - P(2))®7"(z,t)®(z, t)v|
< Me™||®(z, t)o]|

for all v € (I — P(J:))E.a.nd therefore ||®(z, t)v|| > M~1e*||v|| for all v € (I ~ P(z))E
andallt>010

We are now able to relate the spectrum of T(t) and G to the so-called dyrnamical
spectrum of a linear skew-product flow =. For A € R let

ma(v,z,t) = (Pa(z, t)v,0(x,t))

be the shifted flow, where ®5(z,t) = e"*'®(z,t). Then Sacker and Sell [17] called the
set of all A € R for which 7y fails to admit an exponential dichotomy the dyrnamical
spectrum dynX of w. : ' ' ‘

As shown in Theorem 12 a linear skew-product flow (resp. a cocycle) is hyperbolic
if and only if it is exponentially dichotomic. In [15] we generalize the notion of the
dynamical spectrum and denote by dynZ the set of all A € R such that the shifted
semicocycle @, is not hyperbolic.

We immediately derive the following corollary.

Corollary 13. Let 7 be a strongly continuous linear skew-product semiflow on E x
X. Let 7 be eventually dense or eventually compact and denote by G the generator of
the evolution semigroup (T(t))i>o0 corresponding to m on C(X,E). Then

dynZ = In|o(T(1)) \ {0}| 2 Rea(G).

Proof. The shifted flow 7 corresponds to the evolution group (Ta(t))¢>0, where
T\(t) = e"T(t). Note that 1 ¢ |o(T(1))| implies that (T'(t))e>0 is hyperbolic. From
the spectral inclusion theorem it follows that Reo(G) C In|o(T'(1))]. Using the same
arguments as in the proof of [14: Corollary 11] we obtain the assertion i
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3. Flows on finite measure spaces

Let X be a compact metric and H a separable Hilbert space. As in the previous section
we consider a strongly continuous linear skew-product semiflow 7 on H x X induced by
a flow ¢ on X and a semicocycle ® over 0 on H x Ry. Furthermore, let 4 be a regular
Borel probability measure on X invariant under the flow o and assume that u(0) > 0
for all non-empty open subsets O of X. We associate a family (T(t)):>0 of operators
on L*(X, u, H) defined by

Tt)f(z) = 2(z - t,t)f(z - 1) (5)

for all z € X and f € L¥(X,u,H). As in [14] standard arguments from the theory of
vector-valued integration yield that T(¢) is well defined and from the norm boundedness
of ® on X x {t} it follows that each T(t) is a bounded operator. Moreover, (T(t)):>0 is
a strongly continuous semigroup.'

Proposition 14. The operator family (T(t)):>0 given by equation (5) is a strongly
continuous one-parameter semigroup on LZ(X,p, H).

Proof. By Proposition 3 we obtain tflat, for all f € C(X,H), T(t)f(z) — f(z)
uniformly in z € X as ¢t — 0. Since g is a finite measure we derive that T(t)f — f in
the L?-norm as ¢t — 0 for all f € C(X, H). Since C(X, H) is dense in L%(X, u, H) the

assertion follows B

We call (T(t))i>0 the evolution semigroup on L*(X,u, H) corresponding to (o, )
and denote by G its generator. By L=°(X, L,(H)) we denote the space of all functions
a(:) : X — L(H) such that a(-}v : X 3 z — a(z)v € H is strongly measurable (see
‘[2: p. 41] for the definition) and bounded a.e. for all v € H. Since H is separable
we conclude from the uniform-boundedness principle that ||la(-)|| = esssup,¢x|la(z)l|
defines a norm on L*®(X, L,(H)). From [20: pp. 256] we obtain the following auxiliary
result.

Proposition 15. The normed vector space L°(X,L,(H)) is ¢ C*-algebra and the
canonical imbedding ¥ : L>°(X,L,(H)) — L(L*(X,u, H)) is an isometry.

In the sequel we identify L>°(X, L,(H)) with its canonical image in L(L*(X, u, H))
and denote it by A. By M we denote the C*-algebra L°°(X,C) acting in a canonical
way on L?(X, u, H). Since p is invariant under the flow o and by assumption u(0) > 0
for all non-empty open subsets O C X we obtain in addition that

IT(®)| = sup [|®(z - t,¢)|| = sup ||®(z, )]
zeX z€X

for all ¢t > 0.

Our next goal is to describe the structure of the spectral projection corresponding
to a hyperbolic evolution semigroup on L?(X, u, H). In analogy to the previous section
we will make use of the following property.
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Lemma 16. Let (T(t))i>0 be a hyperbolic evolution semigroup on L¥*(X,pu,H) and
Q the spectral projection of T = T(1) on the spectral set o(T)N{z € C: |z] < 1}. Then
mQ = Qm for allm € L>=(X,C) and Q € A, i.e. Q can be identified with a function
Q() € L=(X, L,(H)).

Proof. The commutation property can be obtained as in the proof of Lemma 7.
The assertion Q € A then follows from [20: SectionIV/ Theorem 7.10} B

In the setting of this section we have to modify slightly the definitions given in the
previous section (cf. Definition 5). So we call now a semicocycle ® u-hyperbolic if it
is hyperbolic in the sense of Definition 5 with projection-valued function Q satisfying
Q € L°°(X,u,L,(H)). Similarly we call a cocycle ezponentially u-dichotomic if the
corresponding projection @ satisfies @ € L°(X, u, L,(H)).

Under these modifications Lemma 16 yields our main characterization of hyperbol-
icity.

Theorem 17. Let & be an eventually dense semicocycle over o and (T(t))e>0 the
corresponding evolution semigroup on L*(X,p,H) given by equation (5). Then the
statements

(1) the evolution semigroup (T(t))e>o0 38 hyperbolic
(2) the semicocycle ® s p-hyperbolic
are equivalent. '

Proof. Without loss of generality we may assume that to = 1. Part (1) = (2):
Let Q be the spectral projection on the spectral set o(T(1)) N {z € C : |2| < 1}.
Thus Lemma 16 yields the inclusion Q € A, i.e. @ : z — Q(z), where each Q(z) is a
projection in H. From inequality (2) it follows '

IT(OQfI = ITOQSN < MRSl (20, f € LY(X,u, H)).

We consider functions xp ® v with characteristic functions xp € L™(X,C) of a mea-
surable set B C X and v € H. Since T(t)@x8 ® v = Xo(8,)T(t)Q1 ® v we derive

[ Ir@es@It du < e [ j@se)® du
o(B,t) B
for any meaéura.ble set B C X, where f = 1®v. Thus

[ 1m©Qst - (o)Fdn < are= [ j@ste)an
and we obtain the pointwise estimate

ITOQf(z - (~t)ll < Me=™Qf()|  (ae. z € X, ¢ >0).
Therefore_

|8(z,t)Q(z)vll < Me™[|Q(z)vll  (ae.z€X,t20,v€H)
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and

[®(z, vl < Me™jo]l (¢ >0, ve Q(z)H, ae. z € X).

Similar we obtain from inequality (3) the estimate .

I2(2,6)( - Q@) = M7 |(I = Q@)oll  (ae. € X, 10, v € H)

and hence
|®(z, t)v]] > M~ e ||v| (t>20,ve(I-Q(z)H, ae. z € X).

Part (2) = (1): Let r > 0 such that ®(z,r) has dense range for all z € X. For
'z.€ X set y; = o(z,r). By the definition of a hyperbolic semicocycle there exists a
projection-valued function @ : X — L(H) satisfying

Qu)2(z,) = (z,r)Q(z)

for a.e. z € X. Note that this function defines a (bounded) projection on L¥(X,p, H).
- Let H, := (I - Q(z))H and Hy, := (I -Q(y:))H for a.e. € X. Then &(z;r) induces
" a mapping ®2(z,r) : H: — Hy,. From the inequality ||®(z,t)v|| > M~'e®!||v| for all
v € H; we conclude that ®,(z,r) is invertible for a.e. z € X (cf. [18]).

Note that T(t)Q = QT(t) for all t > 0 and thus (T(t)):>o induces a semigroup
(T1(t))e>0 on the range of Q and a semigroup (T%(t)):>0 on the kernel of Q. We derive
that T3(t) is invertible for all ¢ > 0 and similar to the proof of Thecorem 10 we obtain
the assertion il , S Co

As in the previous section we obtain a characterization of exponentially dichotomic
cocycles. We omit the proof and refer to Theorem 12 and [14].

Theorem 18. Let (T(t))cr be the evolution group given by equation (5) on the
space L*(X,p,H). Then the statements )

(1) the evolution groﬁp (T(t)),e;R is hyperbolic

(2) the cocycle ® is hyperbolic

(3) the cocycle ® is ezponentially dichotomic
are equivalent.

For the next result we need additional assumptions on the flow ¢. In the sequel X
denotes a compact metric space. By Per, we denote the set

Per, = {I €X: o(z,t) = z for some t € IR}.

If p(Per,) = 0, we call the flow aperiodic. Let p(z) = inf{t > 0 : o(z,t) = z} be the
period of a point z € X. From [9: Theorems 1.10 and 1.11] we quote the following
theorem.
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Theorem 19. Let (T(t))i>0 be the semigroup given by equation (5) on L%(X, p,H)
with generator G. Then the following statements hold:

(1) If p(Per,) =0, then o(T(t)) = To(T(t)) for all t > 0 and o(G) = o(G) +R.

Moreover, the spectral mepping theorem holds, i.e.
o(TH)\ {0} =@ (t20).

(2) If the function p is essentially bounded away from zero, i.e. ess inf p(z) > 0
then the annular hull theorem holds, i.e.

o(T())\ {0} TP (t20).

With this result on the spectrum we can characterize p-hyperbolicity of the semi-
cocycle in terms of the generator G of the evolution semigroup.

Corollary 20. Let ® be an eventually dense semicocycle over o, G the generator of
the corresponding evolution semigroup (T(t))i>0 on L*(X,p, H) and let 0 be aperiodic
or the function p be essentially bounded away from zero. Then the statements

(1) the generator G is hyperbolic
(2) the semicocycle ® is p-hyperbolic

are equivalent.

As in the previous section this result can be used to characterize the dynamical
spectrum of the semicocycle .
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