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Heat Semi-Group and Function Spaces 
on Symmetric Spaces of Non-Compact Type 

L. Skrzypczak 

Abstract. Besov-Triebel scales of function spaces defined on symmetric spaces of non-compact 
type are investigated. We prove an atomic decomposition theorem for the function spaces 
and give their characterization in terms of heat semigroup. In consequence we can describe 
the spectrum of the Laplace- Belt ram i operator in these spaces and improve the generalized 
Rieman n-Lebesgue lemma for the spherical Fourier transform. 
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1. Preliminaries 
We use standard notation and refer to [10, 121 for more details. Let X = C/K be a 
Riemannian symmetric space of non-compact type. For convenience we will use the 
name Riemannian symmetric manifold instead of Riemannian symmetric space and 
reserve the word "space" for function spaces. The basis of harmonic analysis on X was 
settled around the sixties, mainly by Harish-Chandra and S. Helgason. The basic facts 
are the followings ones:	- 

• One has a Fourier transform (or Helga3 on-Fourier transform) 

flf(A, kM) = fG 
f(g)e_ H (9 1 dg .	 (1) 

• One knows its behaviour on L2 (X) (Plancherel theorem) and on C000 (X) (Paley-
Wiener theorem). 

• One has an inversion formula 

f(g) = const[	flf(A,kM)e_(9Ic(A)I_2ddkM.	(2) 
Ja* xK/M 

• The Laplacian A on X transforms under fl as 

?-tLf(A,kM) = (I A I 2 + l p 1
2 )'h (f)( A , kM ) .	 (3) 

L. Skrzypczak: A. Mickiewicz Univ., Fac. Math. Comp. Sci., Matejki 48-49, 60-769 Pozriaii, 
Poland 

ISSN 0232-2064 1 S 2.50 © Heldermann Verlag Berlin



882	L. Skrzypczak 

. For bi-K-invariant functions on G formulas (1) - (2) reduce to 

Ix f (-)W —
	

(4) 

and
f(x) = constj flf( A)A(x )I c()I 2d	 (5) 

involving the elementary spherical function 

yA(gK) = f e	_p)H(gk) 	(A E a * ).	 (6) 
JK 

One knows also the behaviour of the Helgason-Fourier transform on more complicated 
objects, like LP -Schwartz spaces C(X) (0 <p 2). The last are defined as 

D i , D2EU(g,r>0) 
C(X) = I e C(X)	sup (H)	(CH )If(Di k1(eH)k2 D2 ) < 

k 1 k2E K

H E-

where f(D1 : k j (e'1 )k2 D2 ) denotes the natural action of D 1 , D2 E U(g) (the universal 
enveloping algebra of g) on f E C°°(G) and (H) = (1 + 1H1 2 )4. For the description 
of the Fourier image Zp(a* x B) of C(X) we refer to [2, 71. For convenience we put 
C(X) = C2 (X) if p>2. 

The best general references for Besov-Triebel scales on R' are Triebel's books [24, 
251. In the second of them one can also find the definition of scales on complete Rieman-
nian manifolds with bounded geometry via the uniform localization principle. Proper-
ties of the spaces as well as further references can be found there. In [17, 19] we 
have defined Besov-Triebel scales on symmetric spaces of non-compact type X for the 
Helgason- Fourier transform. In contrast to the Triebel method our approach is global 
(cf. also [15]). The definition is based on the construction of a continuous resolution of 
unity on

k0,N +1(kN)2(t) = 1	 (7) 

where k0 , N and k are bi- K -invariant test functions in X supported in the unit ball 
centered at the origin o = eK of X and where k" (_ - I p I)

N k (N E N). We refer 
to [17, 18] for details. Using this resolution of unity we get the formula of Calderon 
type

	

J = f * k0, + Jf k * k	(1 E C(X), 1 p 2)	(8) 

in which the convergence of the integral is understood in weak C,(X)-sense (cf. [19]).



Heat Semi-Group and Function Spaces	883 

Definition 1. Let s E R, N E N such that 2N > IsI, 1 <p<oo and l < qoo 
(1 <p	and 1 <q oo for Besov spaces). Then 

I hi	,q(X)hi{'t} =
I F3


	

p,q(X) = { i e Cl'

( 

I	 q 

If *kO+ f 0
P 

and

11fI8;,q(x)1I	=
I B; g (X) = { f E C	 (1 '	dj 

if *k0,j+ 	
t_3iIf*kiL(X)II	

) <	J  
with usual modification if q = oo. 

Remark 1. Definition 1 is independent of the given resolution of unity. By H. 
Triebel [23], the spaces F q (X) coincide with the spaces F ,q (X) defined on Riernannian 
manifolds with bounded geometry via uniform localization (cf. also [16, 17]). In [15, 
19] the atomic decompositions of the above spaces is given. 

2. Heat kernel on symmetric manifolds 

The heat kernel on Riemannian manifolds was a subject of intensive study during the 
last decades (cf. [4, 6]). Let us recall basic facts. The heat semigroup H = e (t > 0) 
on X = G/K is a positive symmetric diffusion semigroup satisfying the conservation 
property. It is realized by convolution on the right with heat kernel h t being a positive 
bi-K-invariant Schwartz function on G with Fourier and Abel transforms 

=	i ( 2+ I p I 2)	and	Ah(H) = const t_e_I2te_, 

respectively, where a = dim a, with a the abelian subspace in the Iwasawa decomposition 
of the Lie algebra g of C. The function 'Hh 1 can be extended to an entire analytical 
function on a with polynomial growth in the tube Ti. Thus h E Ci (X) for every t> 0. 
We have good pointwise estimates for the heat kernel due to J.-Ph. Anker and others 
(cf. [31). In our paper we use mainly estimates for 0 < t < t,,, so we recall them here. 
For that we put

	

h(x) = () hi(x)	(m E No).	 (9) 

Lemma 1. Let 0 < t < to and H E ä. Then there is a constant C > 0 depending 
on t 0 such that the following assertions are true: 

1. The inequality
m 

h(e H )i <C e_21_p_t_2m(H)n_a	t'H 22'	(10) 
1=0
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holds for every rn EN0. 
2. The inequality 

V J h t (e H )I <Ct_j(H)3+n_ae_IpI2i_P(H)_ 4,	 (11) 

holds for any j E N. 

3. The inequality

Ihj(eH)I ^ Cte

	

4,	 (12)


holds. 

For the proof of inequality (10) we refer to [1, 31. Inequality (11) is classical for the 
heat kernel on Riemannian manifolds if J HJ is bounded (see, e.g. [3: Formula (3.10)]). 
For IHI large one can use the Flensted-Jensen reduction to the complex case (cf. [1]). 
The last inequality (12) follows from the Li-Yau-Harnack inequality [6]. 

We finish this section by proving a vector-valued local maximal inequality for the 
heat semigroup. We will denote by M0 f the local Hardy- Littlewood maximal function, 
i.e. with supremum restricted to the balls of radius 0 < r 1. The following lemma 
was proved in [19]. 

Lemma 2. Let 1 < p < oo, let {Sj}j>1 be a family of subadditive operators defined 
in the space of locally integrable functions, let h be a real-valued non-negative bi-K-
invarzant function such that h(y 1 . o) ' = h(y . o) for any y E C, and let the convolution 
operator T(f) = f * h defined by h be of weak 1-1 type and of strong p-p type. We 
assume that there is a constant C > 0 independent of j such that the inequality 

ISf(x)I	C((JIJ0 IID(x) + T(IfD( x ))	 (13)


holds for a. c. x E X. Then the inequality

	

I	 I 

Vol {xEX 
('sif

	

)I ) > A }

	

(	iiii ) M	(14) 
j=1 

holds for 1 < q < oo. Moreover, if 1 < q < co, then 

_	

4 

( 'sjj'q	-

1" 

C" 'q	iiii)	 (15) 
j=1	

)	< 

P	II	 lip 

provided there is a constant C > 0 independent of j such that 

II S fII	C IifII .	 (16) 

Proposition 1. Let I <p < oo, 1 < q C- and 

H(f)(x) = tm IhI * f(x)I	(in E N0 ).	 (17)
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Then the inequalities

t	'	 'I	 I 
'00	 q 	

}	

11/00 
Vol I E X	sup {H'f(x)}	> A <	Ii (	iiii)	(18) 

,,
 

lo<i< l	 -	A 

and

	

.1	 1 

(	

sup {Hf(.)} )
	 (	

j)	 (19) 

hold for any number m E No and any sequence {fj}j>1 of locally integrable functions 
on X. 

Proof. According to Lemma 1 it is sufficient to prove that there is an integrable 
function h on X such that the inequality 

IHf(x)I <C((Mo Ifl)(x) + h * (If 1)(x))	 (20) 

holds for a.e. x E X. We divide H tm f into the sum of two integrals 

(Hf)(x) 
= J	tmlhrn(y)If(ylx)dy + J	tmIh(y)If(ylx)dy. 

O(o,1)	 X\O(o,1) 

To estimate the first integral it is sufficient to use inequality (10) which in case I HI 
gives

	

Itmhrn(eH)I <Ct.	 (21) 

If	IHI <1, then inequality (10) gives 

Mt\2m 
l t m h rn (e H )I <Ct	 <Ct.	 (22) 

The last two estimates give 

J
tmh(y)f(ylx)dy 

1(o,i) 

On the other hand, for I HI ^! 1 inequality (10) implies 

- t m he h I <Ce_ 1I ( tt )e	8 

and the expression on the right defines in usual way a bi-K-invariant integrable function 
on X. This proves the proposition U
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Corollary 1. Let 1 <p < oo and 1 < q co. Then the inequalities 

'CX) 

vol{x E X	
d)m }) i>

\j=1 I<i<idt

(23)


	

<Cqm 00	\flI 

- -—(2I 

and

	

11/00	( d  sup Itm 

	

j=1 1	

* f(x)} 
q)

P

	 (24) 

Cp,q,m (	ii 
00

"p 
hold for any number in E No and any sequence ffj j j > i of locally integrable functions 
on X. 

3. Heat-extension norms and atomic decomposition 

We start with the following standard observation, which is crucial for the paper. Let 
f E C2 (X). The operator norm of H : L2 '— L00 satisfies the estimate 

Ht112,00 'S.' teHht 

for every t E [1,00) where ii is a positive constant (cf. [51). Using this estimate we get 
easily that	

1 

i'
 ()

h * 1(x) = t I Ht m f(x) . 0 
dt 

for every x E X if t - oo. Moreover, if I E C(X) and t —* 0, then 

(dt)
(25) 

in C(X) (this may be checked for the Fourier image by direct calculations in Zp (a* x B) 
and then the convergence follows by Eguchi's result [71). Integrating by parts we get 

00	 00 

ft
k (cHtf)	(k_i)f t2 ( dk-2  

_Htf) dt -- = ... =cf(x). 
0	 0
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Thus

	

1(x) C (hmo*f+ItHif)	
(26) 

if I E C(X) where hm,o 	h. Generalizing (25) we get for I - t 0 E (0,1] the

convergence

I	h1*f	/ 

in C(X). As a consequence (26) is true for every f e C,(X) if the integral convergence 
is understood in weak sense. 

It will be convenient to introduce the following function spaces. 

Definition 2. Let .s E R, m a non-negative integer with m > , 1 < p < oc and 
1 <q oc. Then

If I F3 II = IIf*ho,mIIp+	 1 
I..


	

= { e C(X)	j(m—)q	
) lip <00 ) 

and
if IB3 Ii	ill *homiip+ 

t3'"(X) = I e C,(X)	I	 dm	q di 

	

(10	Hif -i-) 
with usual 'modification if q = 00. 

The above spaces are normed spaces. It will be proved that their definition is 
independent of m up to norm equivalence. Moreover, if s > 0, then the first term of the 
norms can be replaced by 11111. 

For convenience we recall the definition and basic properties of atoms that we shall 
use.

Definition 3. Let Q = (x, r) with 0 <r < 1 be a geodesic ball in X, s € R, I 
p oc, and let L and M be integers with 

	

L 2 ([s] + 1)	and	M 2 max([—s], —1)	 (27) 

where (t)+ = max{0,t}. A smooth function a is called an 

a) 3-atom centered in Q if

suppa C fZ(x,2r)	 (28) 

	

sup {I(r'a)(x)i}	1 for any 1	L.	 (29) 
rEX
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b) (.s,p)-atom centered in Q if 

	

suppa C f(x,2r)	 (30) 

sup {I( I"a) ( x )I}	for any 1	L.	 (31)

zEX 

	

D(fla)(0, b) = 0 for any B I <M and b E .8 = KIM.	(32)


If M = —1, then (32) means that no moment conditions are required. 
The next lemma is a simple consequence of Definition 3 and the formula 

A(g x,g(b)) = A(x, b) + A(g o, g(b))	(g E G, b E B, o eK)	(33)


(cf. [13]). 

Lemma 3 (cf. [151). Let a be an s-atom or (s,p)-atom centered at ul(x,r). Then 
the function a9 (g E C) defined by a9 (x) = a(g'x) is an s-atom or (s,p)-atom, respec-
tively, centered at fl(g . x, r). 

The atomic decomposition with p> 1 requires a rigid control of the location of the 
support of the atom, therefore we need some coverings of the manifold X. Let {rj}j>0 
be a sequence of positive numbers decreasing to zero and let Pi = { Il (x ,, r ) } 1 be 
a uniformly locally finite covering of X by balls of radius r. The sequence {S}>o 
of coverings is called uniformly locally finite if there is a constant C > 0 such that for 
every j E N any x E X is an element of at most C balls of the covering cii. 

Lemma 4 (cf. [15]). Let X be a symmetric manifold of non-compact type. There 
is a uniformly locally finite sequence {Q j 	of coverings of X by geodesic balls 
{l(x,,r)},>o of radiusrj . Moreover, ill E N and Qjj = {I(x,,,lrj)},>i, then the 
sequence {,'}>o is also uniformly locally finite. 

Let Xii denote the characteristic function of the ball	2—)) and	= 21T X,,; 
Then IIxII	C for any j,i > 0. 

Theorem 1. Let s E R, rn E N0 with m> f, 1 <p < = and 1 <q oo, L and 
M fixed integers satisfying (27). Let JQ j }90 0 with Qi = { cl( , ,,2)} be a uniformly 
locally finite sequence of coverings of X. 

a) Each f in	'1 (X) or 13'(X) can be decomposed as 

f =	sa +	sj,j a	(convergence in C(X))	 (34) 
tEN	i0 iEN 

where a, is an s-atom related to the ball l(x i ,, 1), ai,j is an (s,p)atom related to the 
ball 92(x,1,2'), s, and s , , are complex numbers with 

Ei s il p) + (	(isi,iixe))	<00	 (35)

(iEN i,t=0
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or
I	 I 

(EN 
isii 	+ (	

(	
<00,	 (36) 

 J 
respectively. 

b) Conversely, suppose that f E C(X) can be represented as in (34) or (35). Then 
f or in 13 :r(x ), respectively. Furthermore, the infimum of (35) with re- 
spect to all admissible representations (for fired sequences of coverings and fired integers 
L and M) is an equivalent norm in	'2 (X) or B-:-(X), respectively. 

We prove Theorem 1 in the last Section 5. The following corollary is an immediate 
consequence of Theorem 1 and the theorem in 19]. 

Corollary 2. Let s E IR, in E No with m> 1 , 1 <p < 00 and 1 < q 00. Then


.773(X) = F ,q (X)	and	8 3 (X) = 13'19 (X) 

in the sense of norm equivalence. 

We have also the following discrete version of the norms. 

Corollary 3. Let s E R, m E No with in> , 1 <p < 00 and 1 <q :5 oo. Then 

I" 
11100 

f * h 0 ,m p + 1 (
	

2)(m)Ihif(.)I)

p 

and
/00 

IIf* h
o,mlip + (2,(m)q"hf"q) i=0 

are equivalent norms in .1 ,q (X) and !3 ,q (X), respectively. 

The last corollary follows from Proposition 1 and (12) by standard calculations. 

4. Some applications 

The spectrum of the Laplacian A in L(X) (1 p co) was described precisely by 
M. Taylor in [20]. The L-spectrum of A is the "parabolic neighbourhood" 

=	-	: 0^ Rez
I P-- 1 iIpI (zEC} 'Pp	

{z2	
p12	

2	I 

I 

of the half line (—co, — ] p ] 2 ] . This is a consequence of the formula 

= _ ((A' A) + IpI2)°A 

where (.,.) is the bilinear form induced on a by the scalar product in a. We prove that 
the spectrum of A in Y 9 (X) and 5 , (X) is exactly the same, so it is (s, q)-independent.
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Lemma 5. Let s E R, 1 < p < oo and 1 < q < 00. Then the following assertions 
are true: 

a) Wx E .F g (X) if and only if W A E L(X) and


	

p+I,q(X )II	C(q,m)(i + ((> - (v,u) + IpI2)) 

b) e B; ,q(X) if and only if	E L(X) and 

	

Ik+ivI8 q(X )II	C(q,rn) (i + ((j,iz) - (u, v) + p12) ) ii+iip 

Proof. Since h * CPA = e tft > + I P I 2 ) CPA we have 

( I j (m — ) q 
—h *OA()	

) 

q II /1

I0

- 

(0"0

gqdt
c((, ) - (v, v) + p12)	

(m- )

 

q-

	 ) 

IICPIIA. 

if A = y + iv. On the other hand 

73—
M-1 

	

* horn =
	CPA * h =	(-i)'((A, A) + IpI2)Ie,A>+2) 

	

1=0	 1=0 

and the proof is finished U 

Theorem 2. Let sER,1<p<oo and l<q<co. Then the spectrum of the 
Laplace operator L in and L3 ,q(X) is the same as in L(X), i.e. it coincides 
with the parabolic region P,. 

Proof. Let z E C be in the resolvent set of A in L(X). Then (zI - can be 
represented by the convolution kernel lc. It was proved by J. Ph. Anker [3] that the 
kernel is a C°°-function outside the origin and an integrable function at the origin if z 
is out of the L 2 -spectrum of A. Moreover, it is in L(X) away from the origin when 
Rez>a_1p. 

If z is out of the parabolic region 1',,, then there is an r E (1,2) such that Re  > 
- lIIpI > I - lilpi and r <p < r'. So k is in Lr(X) away from the origin. Now 

dividing k into two parts we get by the Minkowski inequality and the Kunze-Stein 
phenomenon that z is in the resolvent set of the Laplacian in 

If p > 2, then it follows from the above lemma that the interior of the parabolic 
region is the point spectrum of A in 

Let 1 <p < 2. Using the Calderon formula it is easy to see that the space .F7, (X) is 
contained in the dual space .F ,q (X)'. So caA defines a continuous functional on	q(X)


if s = -((A, A) + 1 p 1 2 ) is in the interior of 2,. We assume that s,I - ix is invertible in
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.Fp,q (X). Let be a smooth function belonging to F q(X). Then (s A l - i) -' is a 
smooth element of J ,q (X) and 

(go) = (SOA,(SAI - 1)(sAI -	= ((s k i - / oA,(sA I -	= 0. 

Thus	defines the zero functional which is impossible. So, sA is an element of the

spectrum. 

If p = 2, then it follows immediately from the lift property that the spectrum of 
the Laplacian in .I ,q (X) is independent on s. If z is an element of the L2-spectrum, 
then one can find by the inversion -formula a function 0 e C(X) such that is not an 
element of the domain of (zI - Lx)'. If z was in the resolvent of A in F ,q (X) for some 
negative s, then (zI - )—' would be in L2 (X), which is impossible. This proves the 
theorem I 

Now we improve the generalized Riemann-Lebesgue lemma for the spherical Fourier 
transform. To formulate the statement we need the following notation. 

Let Wi be the interior of the convex hull in a of the images of p under the Weyl 
group W. For 6 E (0, 1), we denote by W6 the dilate of W1 by 6. For 1 < p < 2, let 
7,, denote the tube 7, = a + /iW6 over the polygon W6 with 6 = 1 -1. Let 4 be 
the set of indivisible positive roots and let d0 = dim &, + dim 92a where g0 is the root 
space corresponding to a E 4 .	 - 

Theorem 3. Let 1 <p < 2, 7(X) = min	d0 and 7 = a + /iW a closed

subtube of 7,,. Then the following assertions are true. 

1. The spherical transform is a continuous mapping from 8,, ,	(X) into L(T) 
— 

and flf(A) is for any f E B,, ,	(X) a holomorphic function inside T. 

2. Ifs > then in addition lim 1 , 1 ., if(p + iv)I = 0 for any f E t3,,,(X) 
and v E W. 

Proof. Let ['(A) = flaEE(1 + I (a, A)I). Then for every closed subtube 7 of 7,, 

there is a constant C > 0 such that ço <Cr(A) (cf. [5)). So the above inequality 
and Lemma 5 gives

	

^ C (1 + ((,i,p) - (v,v) + IpI2))r(p 
+ iv)	(37) 

if p + iv € T. But the last assumption implies 
(/,, P) - (V, V) + p 1 2	1 + ( A, A)	 (38) 

1 + l(a,p + /:iv)I	1 + I(a,p)I.	 (39) 

Moreover,-E is a reduced root system (cf. [11: Lemma 3.2]). So we can define a 
W-invariant positive defined inner product (.,) such that (A,7) =	(A, a) (a, 
for A, 7 E a (cf. [11: Chapter X/B7]). Thus 

1 + (p , p )	1 +	(a,p)2 <C •fl (1 + I(a, p)I)2	(40)
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and

	

II+i8,1(X)II	C [J (1 + ( , 1 I) 11 .	 (41) 

Now the simple estimate 

flf(p +	 If It3(X)II II+IB;1(X)II 
ends the proof of the assertions.I 

Remark. It follows from elementary embeddings that Theorem 3 is true for every 
f3p3 q (X) and every	,(X). In particular it is true for Sobolev spaces H(X) with 
s >	with improves the result of M. Eguchi and K. Kumahara [8). Theorem 3 is 
also strictly connected with [5: Theorem 2.1/Part 2]. 

The next corollary is an immediate consequence of Theorem 3 and [5: Theorem 
2.1/Part 1]. 

Corollary 4. Let 1 <p < 2 and r > p'. Then there is a constant C > 0 such that 

(L If( + v)I r Ic()I 2d)	C f B(x) 

for f € B (X) and any u E W. 

5. Proof of Theorem 1 
We prove Theorem 1 for the .T,-scale. For Besov spaces its proof is similar. We divide 
our proof into several steps. First we prove the theorem for s > 0. The case .s 0 will 
be regarded in the last step of the proof. 

Step 1. Let

f = sa + E E sa 

	

iEN	j=OREN 

with
/	\	100	 \ 

	

(\>I: I s I") .- (	
(Isj,Ix?(.))? )

	< 
iEN	 \j,i=O	 )

p 
Then

J I p,q
1 

	

II / 1	 '	II 

	

dt\	II s i a i *ho ,m M + (I t( m_	s1h *a(.) _) 
IIiEN	 II P	0	

Iq 

'p 
Il/i	I 

+	sj,i horn *aj, J + (J t — u	h *	

) P	 lIp
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We estimate every summand separately. The inequality 

	

sa * hom <C (1: sii)	 (42) 

iEN	 iEN 

is obvious since the covering is uniformly locally finite and the functions aj are uniformly 
bounded (cf. (28) and (29)). Let r > 0, kj ,i the characteristic function of the ball 

(xj,g ,r2) and	'l? =	It should be clear that putting	instead of x in

(35) we get equivalent norms. This observation and the definition of the atoms give us 

00	 /00	 \ 
horn *aji	

( >	)	.	(43)


J
P 

Let J min( L,m}. Then J> and
I 

(

) q
1	00	 dt) 

ft(m_>sih*aj(x) 
-i-	

(44)

00 rn-i	rn-i * iai(x)L 

	

C sup t	s1h 
O<t<l	

^ i=O 

So £ 'I II / 1 \ 'II 
II It(M-og 

.-
s1h * aj(.)l dt\ 

\O	 Ii0	I

P

00	 III 
<CM SUP i rn_il hrn_ J I * 

O(i<1	 I

	

i=o	III p 
I 

<C	 <C ( i=O 
IsIP 

I	 ii	 / 
It remains to estimate the last summand which we divide into two parts. We have 

1. 

<( 2	
si i h	aJ 

k	 q 

/1	 I 

(f
t(rn_i)	sh' *a1(	

dt


\o	Ii'=°	
x) -


di'\ 00	

•C O ]100 
-	J j(rn-)q	I> *i(x)) .T) 

j= Ii=o 

2 00	 00 00 

+	

dt I	J j(rn-)q ( 

k=O '\i=[51 i=O
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If j[J, then (2j - k)(2J - .$) is a non-positive number. Thus the first sum is less or 
equal to 

(00/00

(2j—k)(2J—a)	
00 

2	sup	 *	Is(x)I) ) 
k=0 \j0	 i=0

00 

c (	( sup t3 I h I *	Is(x)l) ) . 
j=O \O<t<1 

Now the maximal inequality implies 

LJ I 00 di'	II 
( j k i	 9	\ ill 

(	
f (m—)q	sj h * aii(.)) 

_) j=0 Ii=0
'p 

/ 
00 -	 sup tm_j (jh^'J* 00 jsj,j^P	

1) q) Iq 

0<t<1
'p C O

<c

I
00 

-	(	ft Is)I) 
9)	

(	

Isii( . )I ) ' 

\j=0 \i=0 ij=0 

P

	 p 
We estimate the second part. Now k - 2j 0. We have 

/ 00	oo di\ 
II /	 q	

\ 
J t	(	lsiih*aii() T) 

'.i=[1
'p 

'00/00 00 

• c (
	(	1	

sup tm hI *	Is(.)I) 

9) 

0<t^ 1=0 \k0 \jf. P 
/00	 00 

(( 
sup t m IhI *	Is(.)I) 

\j=0 \0<t<1	1=0
	 q)

P 
0000	 9) 

C 1: ft Is)l) 
i 

\i=o \z=o
P 

II ^ ( 00	

(.)I9)

P
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Thus we proved the inequality 

100 p

F 
If Im ii :5 C	 + (	IsjX(.)I)	

).	

(45) p,q
\i=O	 'Si,' 

Step 2. Now we decompose any distribution from .F'(X) into atoms. To do this 
we take a uniformly locally finite sequence {cl}> 1 of coverings of X with r3 = 
where 6 is a fixed number such that 0 < e < 1. To deal with the decomposition we 
need some inequalities. The first one is the Harnack-Moser inequality for subsolutions 
of parabolic equations. We use the formulation for uniformly elliptic operators on 
Riemannian manifolds that is due to L. Saloff-Coste [14). 

For the future use we need two constants b> 0 and 8 > 0. We choose these constants 
in such a way that the identities b - 62 

= and b —6 = are satisfied. Such constants 
exist and both b and 8 are greater than 1. Let Q,,1 = (M i ',M 3 ) x 
Then [14: Theorem 5.5] implies

b4 _j 

sup Ih * f(x)I C23"	J	J Ih * f(x)Idx	(46) 
(t,z)EQ1,

	

	 t 
n(z,,,62-') b4-' 

where C > 0 is a constant depending on n, b and (5 only. 
For the reason that will be clear later on we assume that eb > 1. Let {t , ,} be 

the smooth resolution of unity corresponding to the covering e2')}. We may 
assume that for every m > 0 there is a constant bm > 0 such that the inequality 

aI	 I 

	

exp 1 .. (H)	b,,,2	 (47) 

holds for every j and i, every H E T11, X and every multi-index y such that 71 5 rn
-[27: Theorem 111.1.5] implies that there is a constant C> 0 such that, for every k < L 

and every x E [,eb] x 

V k h * f(x)I cJ	Ih * f(y)] dy. 
(4,b)xfl(o,I) 

But G acts on X as a group of isometries, thus the above inequality is true for any unit 
geodesic ball of radius 1 with the same constant C. Now using the scaling method (cf. 
[26: Sections 7 and 8]) we can prove that the inequality 

IVI k h * f(x)I	C 2jk
J 

Ih * 1(y )] dy	 (48) 

holds for any x E [cb4 i ,eb4'] x 

Step 3. Still assuming s > 0 we prove the converse inequality. We start with 
formula (26). Since C(X) is dense in C,(X) formula (26) if true for any f € CPI (X)
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provided the convergence in (26) is understood in weak C,(X)-sense. For this part of 
proof it is convenient to change formula (26) a bit and to rewrite it in the form 

cb 

1(x) = C (h m, o * I + J jk (Hif) )
	

(49)
 dtk

0 

where b is the positive constant from Step 2. Let {J.'} be the smooth resolution of 
unity described in the same step. Since hmo =	h and eb > 1 we can write 

hm,o*f h 61 *hi*f.	 (50) 

Let {E 1 } be a decomposition of X into a sum of disjoint sets such that E1 C ?(xI,E). 
Let GE1 = 7r 1 (E1 ) with ir : G X the natural projection. Using the above resolutions 
of unity and (49) - (50) we get the decomposition 

f(x) = C(izm * I + I, o tk (u'tf) dt

 ) 

dtk

/ 

=C (hmo * f:+I,j,j J t m h * f 

eb4 j-1 

=	

(i=O

siai+ :: silail
 j,i=O 

off where

a,(x) = 2_J(m+2)S,b,1(X) 
eM 

	

 f t m h *f(x)-	 (51) 

• •	a(x) = sT' 
JGEi 

f * h i (g) (
	

hi(g1x)) dg	•	(52) 

sj,i =2j(3__2m)	sup Ih * m fI(x)	•	(53) 

si 
= (f	

f*hlIP(g)dg)P	 ( 54) 

and
= {i E N:	 n cl( ,1 , 2- )	ø}.
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It follows from Step 2 that after suitable normalization ai,j are (s,p)-atoms (cf. (46) - 
(48)). The proof that after suitable normalization aj are p-atoms is the same as in [15] 
and therefore it is omitted here. 

Step 4. It should be clear that the expression 

b4'	 9 

Ill lip 
+ (	f (m-)q K)m f*ht (.)

P 

is an equivalent norm in F'(X) if .s > 0. We use that expression to estimates the 
atomic norm from above. Using the Fefferman-Stein maximal inequality [19] we get 

I 
b4

2	)m f * ht (-) 
— f 

C l ( i=j 4:z:
	

dt 

q) 

t 1m-12) 1( ) m f *h,j (.)— 

((f2 m- () f*hj ) (.)q) 

C(2i3Q4)mM (4—j-2
7'	mf*h) (.)) 

^ c (
 

00
 2'q(3- 2P)4 -jinq M (

	

() 
1 * h	

) 

(X) 
4L2

()) 

But there is a constant C > 0 independent of j and i such that the inequalities 

M(4 
f (a) 
-i-2

 

^ C( 62 )nj ( f	1 ()mf*ht ) (x) 

(z i.1 ,62 —j )  b4' -2 

> C>J sup lht*mfl(x) 
lEI XecJ,l
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hold for any 1 E I. Therefore

"ii 
/m	

q dt1 
(	b4

r 
i f (m—)q_	

*h (.))

'p

	

	 (55)

In 

^(
2=1	 1 M, 

Since the inequality (	s")	C IIf Il p is obvious Theorem 1 is proved for s > 0. 
Step 5. Now we assume that s	0. This case can be reduced to 1 < p	2. 

Moreover, z' maps the space C(X) into the space C(X). Thus	can be extended

to C, (X). Let I E F 3 (X). It can be easily checked that if 2k > — s, then the operator 
1—k defines an isomorphism of	3(X) onto	+2k(X) as well as an isomorphism 
Of .F ,q (X) onto	21(X). So I E	,q (X) and by [19: Theorem 1] this function can

be represented as a sum of atoms. The same argument works in the opposite direction. 
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