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Heat Semi-Group and Function Spaces
on Symmetric Spaces of Non-Compact Type

L. Skrzypczak

Abstract. Besov-Triebel scales of function spaces defined on symmetric spaces of non-compact
type are investigated. We prove an atomic decomposition theorem for the function spaces
and give their characterization in terms of heat semigroup. In consequence we can describe
the spectrum of the Laplace-Beltrami operator in these spaces and improve the generalized
Riemann-Lebesgue lemma for the spherical Fourier transform.
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1. Preliminaries

We use standard notation and refer to [10, 12] for more details. Let X = G/K be a
Riemannian symmetric space of non-compact type. For convenience we will use the
name Riemannian symmetric manifold instead of Riemannian symmetric space and
reserve the word “space” for function spaces. The basis of harmonic analysis on X was

" settled around the sixties, mainly by Harish-Chandra and S. Helgason. The basic facts
are the followings ones: .

e One has a Fourier transform (or Helgason-Fourier transform)
HIORM) = [ f(g)e(TIRAHGT gy -(1)
G .

o One knows its behaviour on L%(X) (Plancherel theorem) and on Cg°(X) (Paley-
Wiener theorem).

e One has an inversion formule

f(g) = const / HFOL, kM)elY"TA=AHET D ¢(3)|~2dAdk M. (2)
a* xK/M

The Laplacian A on X transforms under H as

HAFAEM) = =(IM? + 1o YH(£)(A, kM). (3)
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e For bi-K-invariant functions on G formulas (1) - (2) reduce to

CHAO) = /X f(2)p_r(z) dz (4)

f(z) = const /. HE(A)ea(z)|c(A)|~2dA (5)

involving the elementary spherical function
(oK) = [ TG (e a) (6)
K

One knows also the behaviour of the Helgason-Fourier transform on more complxcated
objects, like Lp-Schwartz spaces Cp(X) (0 < p < 2). The last are defined as

‘D19D2 € U(g1r Z 0)
—2 * .
sup (H)03* (eM)|f(Ds : ka(eM Yk : Dy)]| < o0
ki, k€K

HE€a

Co(X) = ¢ f € C=(X)

where f(D; : ky(ef )k, : D;) denotes the natural action of Dy, D, € U(g) (the universal

enveloping algebra of g) on f € C®(G) and (H) = (1 + |H|?)%. For the description

of the Fourier image Z,(a* x B) of Cp(X) we refer to [2 7]. For convenience we put
GX)=C(X)ifp>2.

The best general references for Besov-Triebel scales on R™ are Triebel’s books (24, -
25]. In the second of them one can also find the definition of scales on complete Rieman-
nian manifolds with bounded geometry via the uniform localization principle. Proper-
ties of the spaces as well as further references can be found there. In {17, 19] we
have defined Besov-Triebel scales on symmetric spaces of non-compact type X for the
Helgason-Fourier transform. In contrast to the Triebel method our approach is global
(cf. also {15]). The definition is based on the construction of a continuous resolution of
unity on a* ‘ .

Hko N + /(Hk”f(u)% =1 (7)

where k, v and k are bi-K-invariant test functions in X supported in the unit ball
centered at the origin o = eK of X and where k¥ = (—=A — |p|)Vk (N € N). We refer
to [17, 18] for deta.lls Using this resolution of unity we get the formula of Calderon
type
1 A
f=f*k,,,N+/f;elc,N*k,N? (feC(X),1<p<2) (8)
0

in which the convergence of the integral is understood in weak C,(X)-sense (cf.y [19]).
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Definition 1. Let s € R, N € Nsuch that 2N > |s], 1< p<ooand 1< ¢ < o0
(1<p<ooandl < g< oo for Besov spaces). Then

IF172 , (ONE™Y =

([ oo errondt)’
0 P

I1£185 (XI5 = 4
B;,q(X)= fGCi ! —s N dt 3
I f * ko, wlip + (/ £\ k| ILP(X)”‘IT) < oo
A

with usual modification if ¢ =00

Fi(X)={fec
P NS * kol +

< o0

and

Remark 1. Definition 1 is independent of the given resolution of unity. By H.
Triebel [23], the spaces F ,(X) coincide with the spaces F; ,(X) defined on Riemannian
manifolds with bounded geomet.ry via uniform loca.llzatlon (cf. also [16, 17]). In [15,
19] the atomic decompositions of the above spaces is given.

2. Heat kernel on symmetric manifolds

The heat kernel on Riemannian manifolds was a subject of intensive study during the
last decades (cf. [4, 6]). Let us recall basic facts. The heat semigroup H; = ¢! (¢t > 0)
on X = G/K is a positive symmetric diffusion semigroup satisfying the conservation
property. It is realized by convolution on the right with heat kernel h, being a positive
bi- K-invariant Schwartz function on G with Fourier and Abel transforms
2
Hho(N) = e A+ and Ak (H) = const - tFelel’te= ok

respectively, where a = dim a, with a the abelian subspace in the Iwasawa decomposition

of the Lie algebra g of G. The function Hh, can be extended to an entire analytical
function on a& with polynomial growth in the tube 7;. Thus h, € C,(X) for every t > 0.
We have good pointwise estimates for the heat kernel due to J.-Ph. Anker and others
(cf. [3])- In our paper we use mainly estimates for 0 < ¢ < t,, so we recall them here.
For that we put ’

= (2) e men (®)

Lemma 1. Let 0 <t < ¢, and H € a. Then there is a constant C > 0 depending
on t, such that the following assertions are true:

1. The inequality

|hm(eH)l<Ce—|p|71 p(H)— “ t7—2m H)n azt |H|2m -2 (10)
=0
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holds for every m € Ny.
2. The inequality

. " A 2
IVhd(e™)| < €133 (Hy+nmoeTleleat) -5 (11)

holds for any j € N.
3. The inequality
|he(e)| > C't'%e_ﬁ“li | (12)
holds.

For the proof of inequality (10) we refer to [1, 3]. Inequality (11) is classical for the
heat kernel on Riemannian manifolds if |H| is bounded (see, e.g. [3: Formula (3.10)]).
For |H| large one can use the Flensted-Jensen reduction to the complex case (cf. {1]).
The last inequality (12) follows from the Li-Yau-Harnack inequality [6]-

We finish this section by proving a vector-valued local maximal inequality for the
heat semigroup. We will denote by M, f the local Hardy-Littlewood maximal function,
i.e. with supremum restricted to the balls of radius 0 < » < 1. The following lemma
was proved in [19)]. '

Lemma 2. Let1 < p < oo, let {S;};>1 be a family of subadditive operators defined
in the space of locally integrable functions, let h be a real-valued non-negative bi-K-
invariant function such that h(y™! -0) = h(y - 0) for any y € G, and let the convolution
operator T(f) = f» h defined by h be of weak 1-1 type and of strong p-p type. We
assume that there is a constant C' > 0 independent of j such that the inequality

S f(2)] < C((Molf1)(2) + T(If1)(z)) (13)
holds for a.e. z € X. Then the inequality

1

vol{ z € X (lejfj(a:)l") > A s% (Zlfﬂ") (14)

=1
1

holds for 1 < ¢ < co. Moreover, if 1 < g < 0o, then

(Z|s,~f,~|") < Cpq (Zw) (15)

p p

provided there is a constant C > 0 independent of j such that

1S5 flloo < C I fllco- - (16)
Proposition 1. Let1 <p< oo, 1< ¢g< oo and

HP(f)(z) = t"| |7+ f(2)]  (m € No). (17)
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Then the inequalities

13 1

) > (i |ij"> 18)

1

) < p,g,m (Z |fJ|q) (19)

14 P

sup {H" f;(z)}

vol{z e X (i

j=1

and

sup {H["fi(:

1=1

Bl

hold for any number m € Ny and any sequence {f;};>1 of locally integrable functions
on X.

Proof. According to Lemma 1 it is sufficient to prove that there is an integrable
function h on X such that the inequality

|H f(2)] < C((Molf1)(z) + hx (If])(2)) (20)

holds for a.e. z € X. We divide H™ f into the sum of two integrals

(Hl"f)(z)=/ t'"lhi"(y)lf(y"‘z)dy+/ t™ R (y)If (v~ z) dy.
2(0,1) . X\Q(0,1) _

To estimate the first integral it is sufficient to use inequality (10) which in case |H| < v/t
gives .
[tmhm (e < Ct™F. (21)
If /t < |H| < 1, then inequality (10) gives
' « (1H\*™ _y n
AP < Ct (%) H D <ot (22)

The last two estimates give

< C(M,|f])(=).

/ ™R () (™ ) dy
(o,1)

On the other hand, for |H| > 1 inequality (10) implies
|tmhm HI < Ce—p(H) - (H)2m+n-a

and the expression on the right defines in usual way a bi-K-invariant integrable function
on X. This proves the proposition i
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Corollary 1. Let 1 <p < oo and 1 < ¢ < co0. Then the inequalities

1

, . | ) N
vol{z € X (Z oiugl {t"‘ (dit) ht*f(:c)} S A
j=1 t<
| o L (23)
C m o0 q
s i\ (z |fj|")
i=1 1
and l
S m d m g\ ¢
(Jz:; OS<1:21 {t (d_t) ht*f(z)} ) | |
p 1 (24)

Cp.g,m (ZILI")

hold for any number m € Ny and any‘sequence {fi}i>1 of locally integrable functions
on X.

p

3. Heat-extension norms and atomic decomposition

We start with the following standard observation, which is crucial for the paper. Let
f € C2(X). The operator norm of Hy : Ly — Lo s_atisﬁes the estimate

- — 2
| Hell2,00 ~ t~7e1PI"

for every t € [1,00) where v is a positive constant (cf [5]). Using this estimate we get
easily that

d
t! (dt) he * f(z) = ' H,A™ f(z) — 0

for every z € X if t — oco. Moreover, if f € Cp(X) and t — 0, then

{
t‘(%> hex f— f ‘ : (25)

in C,(X) (this may be checked for the Founer image by direct calculations in Z,(a* x B)
and then the convergence follows by Eguchi’s result [7]). Integrating by parts we get

oo

7 (s ¢ =en e (Gmme) § = o)
0

0
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k
f(z)=0( ,..o*f+/ o H‘fdt) (26)

0

Thus

if f € Cp(X) where by o = Z,m:;l h}. Generalizing (25) we get for t — t, € (0, 1] the

convergence
d d\'
tI (dt) h(*f—)tl (E) hl,*f

in Cp(X). As a consequence (26) is true for every f € C}',(X) if the integral convergence
is understood in weak sense.

It will be convenient to introduce the following function spaces.

Definition 2. Let s € R, m a non-negative integer with m > 3,1 < p < co and
1 < ¢ £ 0. Then

W 1EZG I = 11f * Ro,mllp+

Fem(X) =4 feciX ¢
170911600 [( | £ o )] <
. 0 dem
and
I£1Bg 3’ Il = |If * ho,mllp+
Bym™(X) = f € Ch(X) ma 19 g b
? (/ gm=pa | Ly ﬂ) <o
o dtm t

with usual modification if ¢ = co

The above spaces are normed spaces. It will be proved that their definition is
independent of m up to norm equivalence. Moreover, if s > 0, then the first term of the
norms can be replaced by || f]|.

For convenience we recall the definition and basic properties of atoms that we shall
use.

Definition 3. Let Q = Q(z,r) with 0 < r <1 be a geodesic ball in X, s € R,1 <
p < 00, and let L and M be integers with

L>(s]+1)+ and M > max([-s],—1) (27)
where (t); = max{0,t}. A smooth function a is called an
a) s-atom centered in  if
suppa C (z,2r) (28)

sup{[(T'a)(z)|]} <1forany I< L. . o (29)
z€X
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b) (s,p)-atom centered in Q if

supp a C.Q(z, 2r) . (30)
sup{|(Ta)(z)|} < 7°~%"% for any | < L. (31)
ze€X
DP?(Ma)(0,5) = 0 for any |8| < M and b€ B = K/M. (32)
If M = —1, then (32) means that no moment conditions are reqﬁired.

The next lemma is a simple consequence of Definition 3 and the formula
(cf. [13]).
Lemma 3 (cf. [15]). Let a be an s-atom or (s,p)-atom centered at Q(zx,r). Then

the function ag (g € G) defined by ay(z) = a(g~'z) is an s-atom or (s,p)-atom, respec-
tively, centered at Q(g - z,7).

The atomic decomposition with p > 1 requires a rigid control of the location of the
support of the atom, therefore we need some coverings of the manifold X. Let {r;};>o0
be a sequence of positive numbers decreasing to zero and let Q; = {Q(z;,,r;)}L, be
a uniformly locally finite covering of X by balls of radius r;. The sequence {Q;};>0
of coverings is called uniformly locally finite if there is a constant C > 0 such that for
every j € Nany z € X is an element of at most C balls of the covering ;. '

Lemma 4 (cf. [15]). Let X be a symmetric manifold of non-compact type. There
is ¢ uniformly locally finite sequence {Q;};>0 of coverings of X by geodesic balls Q; =
{Qzj,i,7m5)}is0 of radius r;. Moreover, if l € N and Q;; = {Qzj,i,1r;)}i>1, then the
sequence {§2;,1},;>0 38 also uniformly locally finite.

Let x;,i denote the characteristic function of the ball Q(z; ;, 277) and XE‘?:') = o Xj,i-
Then ||x_(:')|| = C for any j,i > 0.
Theorem 1. Lets€ R, m e Ny withm > 5,1 <p< oo and 1< g < oo, L and

M fized integers satisfying (27). Let {Q;}52, with Q; = {Q(x,,:,277)} be a uniformly
locally finite sequence of coverings of X.

a) Each f in F(X) or By7H(X) can be decomposed as

f= Z sia; + Z Z S5,i @i (convergence in C;(X)) (34)
ieN j=0 ieN

where a; is an s-atom related to the ball Q(zy,4,1), aj; is an (s,p)-atom related to the
ball (z;,,277), si and sj; are complez numbers with

(2 |s.~|")%+ (i (|s,~,.~|x§~f?(-))") < oo (35)

iEN 7,4=0

al-
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or
1 2\
P oo o0 P
<le-'l”> + Z(Zlml") < oo, (36)
i€N j=0 \i=0
respectively.

b) Conversely, suppose that f € C,(X) can be represented as in (34) or (35). Then
fasan Fpt(X) orin By *(X), respectively. Furthermore, the infimum of (35) with re-
spect to aii admissible representatwn.s (for fized sequences of coverings and fized integers
L and M) is an equivalent norm in F:7(X) or By (X)), respectively.

We prove Theorem 1 in the last Section 5. The fol]owing corollary is an immediate
consequence of Theorem 1 and the theorem in {19].

Corollary 2. Let se R, meNp withm > 3,1 <p<ooand 1< qg< oo Then
Fot(X) = Fp o(X) and Bl (X) =By (X):
in the sense of norm equivalence.

We have also the following discrete version of the norms.

Corollary 3. Let s € R, m € Ny with m > 3, 1<p<ooandl<qg< oo Then

Py

oo

[If * ho,mllp + (Z 21(%—m)q|h;"_).f(.)|q)
Jj=0

p

and

|~

I * ho,mllp + (Z 2’(%"")"Ilh¥'—;fll")
j=0

are equivalent norms in F; (X) and B, (X), respectively.

The last corollary follows from Proposition 1 and (12) by standard calculations.

4. Some applications

The spectrum of the Laplacian A in Ly(X) (1 £ p < oo0) was described precisely by
M. Taylor in [20]. The L,-spectrum of A is the “parabolic neighbourhood”

) 2
'Pp={z2—|p|2:OSReZSL—)—l‘lM (zGC}

of the half line (—oo, —|p|?]. This is a consequence of the formula
Bpa = —=({(A ) +lpl*) ¢a

where (-, ) is the bilinear form induced on ag by the scalar product in a*. We prove that
the spectrum of A in F3 (X) and B; ,(X) is exactly the same, soit is (s, ¢)-independent.
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Lemma 5. Lets € R, 1 <p< oo and 1 < g < 0o. Then the following assertions
are true:

a) pa € F, (X) if and only if o5 € Ly(X) and
lpuin 75, g (N ~ Cla,m) (14 (1) = (v,9) +10P) F) llpusanll
b) va € By (X) if and only if oy € L,(X) and

lwrin B O ~ Clam) (14 () = (040) +107)F) llpusinly

Proof. Since h, * o) = e X+l we have

dam 9 dt
dt_"‘ht *oa()| +

1
/t(m—%)q

Y

oo

~ Ot = ) +1p)F [ [atmopiageadl

0

dt

= el

if A = g+ iv. On the other hand

m-—1
[
Paxhom =Y @axhi = (=1)'((AA) + |p|?) e AN+,

and the proof is finished B

Theorem 2. Let s € R, 1 < p < oo and1 < q < co. Then the spectrum of the
Laplace operator A in F; (X) and B} (X) is the same as in Ly(X), i.e. it coincides
with the parabolic region P,.

Proof. Let z € C be in the resolvent set of A in Ly(X). Then (2] — A)~! can be
represented by the convolution kernel k.. It was proved by J. Ph. Anker [3] that the
kernel is a C°°-function outside the origin and an integrable function at the origin if z
is out of the L?-spectrum of A. Moreover, it is in L p(X) away from the origin when -
Rez > |2 —1]|p|.

If z is out of the parabolic region 'Pp, then there is an r € (1,2) such that Rez >
12 —1}]o| > |g —1|]pl and r < p <r'. So k. is in L,(X) away from the origin. Now
dividing &, 1nto two parts we get by the Minkowski inequality and the Kunze-Stein
phenomenon that z is in the resolvent set of the Laplacian in Fj o(X).

If p > 2, then it follows from the above lemma that the mterlor of the pa.rabohc
region is the point spectrum of A in Fpa(X).

Let 1 < p < 2. Using the Calderon formula it is easy to see that the space .7-' (X) is
contained in the dual space F; (X)'. So @x defines a continuous functional on .7:’ «X)
if sy =—((AA) +|p|?) is in the interior of P,. We assume that sxJ — A is 1nvert1ble in



Heat Semi-Group and Function Spaces 891

F; o(X). Let ¢ be a smooth function belonging to F ((X). Then (sal — A)™'¢ is a
smooth element of 77 (X) and

(o2, ) = (w, (sxl — A)(sal — A)‘lz/J) = ((s,\I - A')w, (sal — A)-‘¢) =0.

Thus ¢, defines the zero functional which is impossible. So, s is an element of the
spectrum.

If p = 2, then it follows immediately from the lift property that the spectrum of
the Laplacian in F3 (X) is independent on s. If z is an element of the Lz-spectrum,
then one can find by the inversion formula a function ¥ € C(X) such that ¥ is not an
element of the domain of (21 — A)™'. If z was in the resolvent of A in F3 (X) for some
negative s, then (zI — A)~!¢ would be in L,(X), which is impossible. This proves the
theorem B

Now we improve the generalized Riemann-Lebesgue lemma for the spherical Fourier
transform. To formulate the statement we need the following notation.

Let W, be the interior of the convex hull in a* of the images of p under the Weyl
group W. For § € (0,1), we denote by Ws the dilate of Wy by 6. For 1 < p < 2, let
7, denote the tube 7, = a* + V/—1W; over the polygon Ws with § = % — 1. Let 3 be
the set of indivisible positive roots and let d, = dimg, + dlm @20 Where g4 is the root
space corresponding to a € L.

Theorem 3. Letl < p <2, y(X) = Mingexrs de and T = a* + vV—1W a closed
subtube of T,. Then the following assertions are true.

(X

: : . . -un .
1. The spherical transform is a continuous mapping from By & (X) into Loo(T)

(X

and Hf(A) is for any fe Bp,_L’J(X) a holomorphic function inside T .

2. If s> ——@, then in addition lim)y) oo |Hf(p + iv)| = 0 for any f € B, (X)
end vEW.

Proof. Let I'(A) = Haez" (1 + [{a, A)|)%=. Then for every closed subtube T of 7, )

there is a constant C > 0 such that |jps|| < C F(A)_ (cf. [5)). So the above inequality
and Lemma 5 gives

lourinl B (X < € (1 () = ) +10P) )T +i)™F (37)

if 4 +iv € T. But the last assumption implies
(o) = () + oI ~ 1+ () S (38)
1+ oy i+ VoIv) ~ 1+ (e (39)

Moreover,-Z5 is a reduced root system (cf. [11: Lemma 3.2]). So we can define a
W-invariant positive defined inner product (-,-) such that (A,v) = Zaézl(A,a) (a,7)

for A,y € a* (cf. [11: Chapter .X/B7]). Thus
L+ () ~ 14 Y (apP <C [ 0+ e (40)

a€L} a€L]
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and

”‘P;H-wlB',,](X)" <C H (1 +] a #)l)’_ (41)
a€LY .

Now the simple estimate

IR (1 + V=10) S NF1B} ol X)Il @t in B4 (X))

ends the proof of the assertions i

Remark. It follows from elementary embeddings that Theorem 3 is true for every
B; (X) and every F; (X). In particular it is true for Sobolev spaces H(X) with
s> L,) with improves the result of M. Eguchi and K. Kumahara [8]. Theorem 3 is
also stnctly connected with [5: Theorem 2.1/Part 2].

The next corollary is an immediate consequence of Theorem 3 and [5: Theorem
2.1/Part 1].

Corollary 4. Let1 <p <2 andr > p'. Then there is a constant C > 0 such that

MG+ VI e ) <
(Lr )

X)) (L-2)
B¢ s (X>H

I

X 1
for f € BZ'( i )(X) and any v € W.

5. Proof of Theorem 1

‘We prove Theorem 1 for the F; -scale. For Besov spaces its proof is similar. We divide
our proof into several steps. Flrst we prove the theorem for s > 0. The case s < 0 will
be regarded in the last step of the proof. '

Step 1. Let -

f= Zsiai + Z Z 85,15,

1EN J=0ieN
(z |s,~|»)
1EN

with

ol

11=0

(Z (Is5lx 7)) ) < 0.

Then
I F175:2 I

1
Tdt)’
t
4

oo 1 oo g dt
+ Z sjihom *ajill + /t(m_~ Z Sji Ay *aj,,'(~) Y
P

0 J,4=0

) ik xa,()

1 o0
+ /t(m—%)q
P =0

0

4
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We estimate every summand separately. The inequality

Z siaixhom|| <C <Z |3'|p> (42)

iIEN 1EN

is obvious since the covering is uniformly loca.lly finite and the functions a; are uniformly
bounded (cf. (28) and (29)) Let 7 > 0, x;,i the characteristic function of the ball
Q(z;,i,7277) and i(p) =25 Xj,i- 1t should be clear that putting x(p) instead of x(p)

(35) we get equlvalent norms. This observation and the definition of the atoms give us

q

") . ’
Z Sjihom *aj;i|l < Z ISJ.I"x(")( )9 . (43)

7,i=0 7,1=0
P

Let J = min{L,m}. Then J > ; and

1 oo q %
dt
: (m-%)g ™ xa: =
/t 2 Zs, R xai(z) ; ) , .
0 1=0 (44)

<C sup t™’

Zs h™ 7w AYay(2)).

0<t<1 prd
So
1 oo q
/t("‘__)q Zs;h;" *a;(-)
0 =0
P
<C| sup t™ 7R % Zs,A ai(*)
0<t<1 = »

<€ (i Isil”) P
1=0

[t remains to estimate the last summand which we divide into two parts. We have

|3 158700

=0

1
1 o th q
/t(”“%)" Z skt *aji(z) n
0 7,i=0
- H
o 2 (5 dt
< (m i
| [ e (S nrren)]) S
k=0, _ 1 j=0 |i=0
1
o0 2_. oo o0 th ‘
(m-$)g . pm . =
+ Z / LA Z Zs),lht * aj,i(z) 7
I:=02_k_1 )=[_§.] =0
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If j < [£), then (2j — k)(2J — s) is a non-positive number. Thus the first sum is less or
equal to

q

<=

oo

Z Z\/—(ZJ —k)(2J-3) Sugltm—.llh:nl*lej,ii;i(x)l

k=0 \ j=0 0<t< i=0
oo oo q %
SC LY | sup t"IRDIR D Isiixla(2)l) ] -
j=0 0<t<1 Pp

Now the maximal inequality implies

k
o 3 (%

> [y

k=02—k—l j=

ZSJ- ¢ *aji(*)

dt
= t

P

<C (Z sup t™~ J(Ihml*ZL%:X,,( )l) )

j= 00<t<1 i—0
P

<C (Z (Z |56 %5,4( )|) ) <C (Z |s,~,,~>2§_,.(~)|")

We estimate the second part. Now k£ — 25 < 0. We have

oo 2! oo oo ¢ %
E / (m=-%) Z Zs,',.'h;"*aj,~ . ﬂ
' k=0 J=[%] =0 t

P

(Z Vet sup t'"|h'"|*Z|s,,.x,.()|

-

Ma

<C

~
1]
=)

k
3]
1
q

o0 oo g
<C s tmhm * S"'~P..
B 2(02121 L Zzil ; x,,.()|>)

=0

<C|| . (Z ISj,iif,i(')I) ) |

<C (Z |Sj,i>??,.~(')|">

5,i=0

P

4

P
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Thus we proved the inequality

» 3 g
IfIFsrl < C (Z |s.~|*’) [ Issix?)e : (45)
0 It »

Step 2. Now we decompose any distribution from Fp: (X) into atoms. To do this
we take a uniformly locally finite sequence {Q;};>1 of coverings of X with r; = €277,
where € is a fixed number such that 0 < € < 1. To deal with the decomposition we
need some inequalities. The first one is the Harnack-Moser inequality for subsolutions
of parabolic equations. We use the formulation for uniformly elliptic operators on
Riemannian manifolds that is due to L. Saloff-Coste [14].

For the future use we need two constants b > 0 and § > 0. We choose these constants
/in such a way that the identities b— 62 = & and b—6 = % are satisfied. Such constants
exist and both b and § are greater than 1. Let Q;; = (477!, 5477) x (z;:,277).
Then [14: Theorem 5.5 implies

b4~
, dt
sp WP ef@l<scrn [ [ hres@) T (46)
s t
(I:Z)EQ).- . A
Qz;,i,62-7)b4-1-2
where C > 0 is a constant depending on n,b and § only.
For the reason that will be clear later on we assume that €b > 1. I_,et {#j,i} be
the smooth resolution of unity corresponding to the covering {Q(z;:,€277)}. We may
assume that for every m > 0 there is a constant b,, > 0 such that the inequality

ahl ‘ '
;i 0exp,. . < Om
‘am"”" ,,_(H)‘ < b2 47)

holds for every j and :, every H € Ty, . X and every multi-index v such that |y| < m.
[27: Theorem III.1.5] implies that there is a constant C > 0 such that, for every k < L
and every z € [, ¢eb] x Q(o,¢),

AVERE « f(z) < C b byxatont) |he" * f(y)l dy.
2.6y x0(o,

But G acts on X as a group of isometries, thus the above inequality is true for any unit
geodesic ball of radius 1 with the same constant C. Now using the scaling method (cf.
[26: Sections 7 and 8|) we can prove that the inequality

VAT« f@)] < C2* [ 7« f(0)ldy (48)
S
holds for any z € [eb4™77!, ebd 7] x Q(z;,,€277).

Step 3. Still assuming s > 0 we prove the converse inequality. We start with
formula (26). Since C;(X) is dense in C,(X) formula (26) if true for any f € Cy(X)
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provided the convergence in (26) is understood in weak C,(X)-sense. For this part of
proof it is convenient to change formula (26) a bit and to rewrite it in the form

fe)=c (hm.o af+ 7# (;:;H:f) ?) (49)

1]

where b is the positive constant from Step 2. Let {1;;} be the smooth resolution of

unity described in the same step. Since A, = l";B] h!, and €b > 1 we can write
m—1 .
hmox f =Y hly_yxhy*f. (50)
1=0 :

Let {E;} be a decomposition of X into a’'sum of disjoint sets such that E; C Q(z,¢).
Let GE; = n~'(E;) with 7 : G — X the natural projection. Using the above resolutions
of unity and (49) - (50) we get the decomposition

. eb
d* dt
fz)y=C h,,,,o*f+/t" (—kH,f> —>
dt t
0
eb2™7
> mem o4l
=C | hmosft Y /.t by fS
=0 petin
=C ZS.’G,’ + z 85,iQj,
i=0 3,i=0
of .f where
eba™i d
. t
aji(z) = 275715 4(2) / th * f2) 5 (51)
zbd‘f“b :
m-1 .
ai(x)=87,‘/ f*M(g)(Z him(y"’z)) dg . . (52)
o ‘GE.' . 1=0 .
Sji = 2i(s=3-2m) Z sup |he* A™ f|(z) ' (53)
tel; Z€%
; .
si= ([ 1remite)as) | (54)
GE;
and

I = {1 eN: Qz;0,277) N Qz;i,277) # @}.
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It follows from Step 2 that after suitable normalization a;; are (s, p)-atoms (cf. (46) -

48)). The proof that after suitable normalization a; are p-atoms is the same as in {15
j p-
and therefore it 1s omitted here.

Step 4. It should be clear that the expression

(@) ]
P

is an equivalent norm in F,:*(X) if s > 0. We use that expression to estimates the
atomic norm from above. Usmg the Fefferman-Stein maximal inequality [19] we get

a\™ !
(&) 7om

1
ba—? 9 <

e}
o0

b
W+ || Y [ eemoe

J=lpe -2

: L
-; v
oo

> / f(m=2)g

I=lpg -2

P

> NIZ AN dt
m=-2) [{ == S P
>C Z t( <3t) frhe ()5
=1 ba—i—2 )
P
oo b4~ ( .)‘ a g
>C M/ m=3 (_) ohe &) (e
jgl < ba-i-2 8t f t ()
P
>C {221"'4 —imapp / ‘( ) fxh dt ()
= t
\J 1 bga-Ji-2
P
(& (" b} d };
2ol [Semepamu | [ |(5) ren| T O
\j=‘ \pa-i-2
b4

But there is a constant C > 0 independent of 7 and : such that the inequalities
" 0 dt
UWAOREHE
$4-3-2

ba=i
4 a\" dt
ceon( [ TN e

(zi,1,62-9) ba=i-2

>CY sup |hex A™f(z)

el z€EQR; 1

(=)
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hold for any ! € I;. Therefore

ba—7

5

1=l 552

P (55)

2C Z ls .17 ()2

<~

P

1
Since the inequality (3, [s:|?)? < C [l fllp is obvious Theorem 1 is proved for s > 0.

Step 5. Now we assume that s < 0. This case can be reduced to 1 < p < 2.
Moreover, A~! maps the space C,(X) into the space C,(X). Thus A~! can be extended
to C,(X). Let f € F%:%(X). It can be easily checked that if 2k > —s, then the operator
A"‘ defines an isomorphlsm of F; ’(X) onto .7"""”‘ #+2k( X') as well as an isomorphism
of F5 ,(X) onto F3+25(X). So f € F, (X) and by [19: Theorem 1] this function can
. be represented as a sum of atoms. The same argument works in the opposite direction.
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