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On a Class of Nonlinear Neumann Problems
of ‘Parabolic Type: Blow—Up of Solutions

M. A. Pozio and A. Tesei

Abstract. We investigate large time behaviour of solutions for a class of nonlinear Neumann
parabolic problems of indefinite type, possibly degenerate. Depending on the features of the
problem, several parameters play a role to establish global boundedness or finite time blow-
up of solutions. The occurrence of either situation is related with the existence of stationary
solutions. Proofs make extensive use of monotonicity methods.
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1. Introduction

In this paper we study large time behaviour of non-negative solutions of the parabolic
problem
Su = Au™ + h(z)u™ + a(z)uP in (0,T) xQ
%" _o in (0,T) x 09 (1.1)
on
u = ug A in {0} x Q

wherem > 1,p> 1, 0< T <€ 400 and 2 C RM (N > 1) is a bounded connected
domain with smooth boundary dQ. The functions a and h are Holder continuous and
a is non-identically zero in Q. The initial value ug is continuous and non-negative in Q.

In the case h =0 problem (1.1) was suggested as a mathematical model for the
evolution of a population which lives in an inhomogeneous habitat (see [17, 19] and
references therein). This is the reason why we are interested only in non-negative
solutions; which we will call solutions for simplicity. -

For p = m or, equivalently, a = 0, the behaviour of solutions can be easily described,
we omit here this case. In the general case we consider three classes of. problems,
depending on h, a and Q. For two of them a complete picture of the behaviour of
solutions is given — namely, we obtain necessary and sufficient conditions for finite time
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blow-up of solutions with positive initial values. Moreover, we prove that the opposite
conditions are necessary and sufficient for existence of stationary solutions positive on
a suitable set. Such conditions were first given for the stationary case in 6]ifp<m
and h = 0, and more recently in (8, 9] if m < p. Related problems were studied in (1, 4,
5, 20, yet no finite time blow-up was obtained. As a special case we improve a result
given in [4]. In fact, in (4] the unboundedness of solutions was proved under suitable
assumptions; under the same assumptions we prove here that such solutions blow-up in
finite time.

The case m = 1, as well as the case of Dirichlet homogeneous boundary conditions,
can be investigated with the same methods; we do not consider them for brevity. How-
ever, we use a result in [14] where finite time blow-up was proved for Dirichlet boundary
conditions in the case m = 1, h =0 and a = ¢ > 0, ¢ a constant (see also (18)).

The results concerning blow-up, as well as the existence of non-trivial stationary
solutions, depend both on the assumption

Q={z€Q:a(z)>0}#0 (1.2)

and on the sign of the quantities ug and A which are now to be defined. Indeed, denote
by po the first eigenvalue of the problem

—Ap~h(z)p=pp inQ

1.3
ai = on I : (1.3)

and by o the associated eigenfunction (||¢o[jco = 1, o > 0in Q). Define also

= ax .'%+ll' I. . .
A—/Qm«»o (2)d (1.4)

First consider the case p < m. Then the predominant behaviour for large values of
u is given by the diffusion term; hence we expect boundedness of u if po > 0, and
unboundedness if pg < 0. If po = 0, the behaviour should depend on the function a;
actually, we prove that the dependence is through the sign of A. Moreover, finite time
blow-up proves to occur when we expect unboundedness.

If we exclude that ug =0= A, one of the following three cases will occur, which
characterize the behaviour of solutions both for p < m and m < p:
(B) Either g > 0, or A < 0 and pg = 0.
(U) 4o <0, A 20 and 3 + A2 > 0.
(I) #o <0 and A < 0.

In cases (B) and (U) we expect boundedness and unboundedness, respectively, while
the case (I} is of indeterminacy.

The following theorem holds.
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Theorem 1.1. Let p < m, Q4 # 0 and pd + A> > 0. Assume that condition (I)
does not hold. Then the following statements are equivalent:

(i) Condition (B) holds.
(ii) There ezist non-trivial stationary solutions of problem (1.1) positive on Q.

(iii) For any initial value ug the solution of problem (1.1) is global and uniformly
bounded in [0, +00).

Moreover, the following statements are equsvalent:
(3) Condition (U) holds.
(i)) There does not ezist any stationary solution of problem (1.1) positive on Q..

(1)) For any initial value up > 0 in Q the solution of problem (1.1) blows up in
finite time.

Remark 1.1. The requirement of positivity in {4 for non-trivial stationary solu-
tions of problem (1.1) is needed, since for p < m such solutions may vanish in some
subset of 2. In fact, in some examples no solution of problem (1.1) positive on 4
exists, although solutions vanishing on some connected component of 4 do (see [6]
and (2, 7, 10, 15, 21]). On the other hand, if m < p, stationary solutions are strictly
positive in Q by the maximum principle.

Remark 1.2. The case 2, = 0 is not considered in Theorem 1.1. In this case, if
moreover po > 0, the diffusion and the reaction terms have the same effect. Hence only
the trivial stationary solution u = 0 of problem (1.1) exists; moreover, it is globally
asymptotically stable, namely

[u(®)|loo — 0 ast— +oo

for any initial value up.

Some partial results relative to the case of condition (I) are given in the following
theorem and in the subsequent remark.

Theorem 1.2. Let Q4 # 0 and condition (I) hold. Then in both cases p < m and
m < p the solution of problem (1.1) blows up in finite time for suitable initial values.

Remark 1.3. Proposition 3.6 and Example 3.1 show that a stationary solution
positive in §2; may exist or not for problem (1.1) satisfying condition (I).

Next we consider the case m < p. If N > 3, the following restriction on p will be
used:

N+2 |
—_— > 3.
(C)p<mN_2 fN >3

We have the following result.
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Theorem 1.3. Letm < p and Q4 # 8. Then for solutions of problem (1.1) finite
time blow-up occurs for suitable initial values ug. Moreover, let condition (C) hold,
;to + A? > 0 end condition (1) not hold. Then the following statements are equivalent:

(i) Condition (B) holds.
(i) There ezist non-trivial stationary solutions of problem (1.1).

A(iii) There eztst globally bounded solutions of problem (1.1) for suitable initial values
Uo :,é 0.

Moreover, the following statements are equivalent:
(j) Condition (U) holds.
(3j) Non-trivial stationary solutions of problem (1.1) do not ezist.

(Jij) For any initial value ug # 0 the solution of problem (1.1) blows up in finite
time.

Remark 1.4. As before, the case 4 = 0 is not considered in Theorem 1.3; the
results in Remark 1.2 hold-also for m < p, if g > 0. For ug < 0, see Propositions 3.4
and 3.5.

Conditions on initial da.ta. which imply blow-up, are given in Lemma 4.4.

In Section 2 we state some definitions and some known existence and compa.rlson
results of problem (1.1). In Section 3 we give results, which describe existence or non-
existence of stationary solutions and blow-up phenomena of problem (1.1}, depending
on the data of the problem. Theorems 1.1 - 1.3 are consequences of such results. Proofs
are given in Section 4.

Acknowledgement. The authors wish to thank Professor Catherine Bandle for
useful suggestions.

2. Mathematical framework

For any 7 > 0 let us define @, = (0,7] x Q and T, = (0,7] x 8Q. We also set
- lNloo = Il - llzoo(@)- Let ug € L®(2). By a solution of problem (1.1) in [0,7] we mean
a function u € C([0, 7]; L*(R2)) N L*=(Q.) such that ‘

/Qu(t)x(t)—//Q'{ux'g-Fu"'Ax} = /ﬂvuox(0)+//;2‘{hum+au”}x_ (2.1).

for all 0 < x € C%(Q,) with gl;l = O0on £ and any t € [0,7]. A global solution of
problem (1.1) is a solution in [0, 7] for any 7 > 0. The notation u = u(¢;up) (¢ > 0) will
be used to stress the dependence on the initial value ug. Moreover, supersolutions of
problem (1.1) are defined replacing the symbol “=” by “>” in equality (2.1); similarly
for subsolutions.

Concerning existence, uniqueness and non-negativity of solutions of problem (1. 1)
the following holds (see [2 12}).
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Lemma 2.1. For any ug € L®(Q), ug > 0 a.e. in Q, there is a 7 >0 (depending
only on ||uolleo) such that there ezists a unigue non-negative solution of problem (1.1)
in [0, 7] which is continuous in (0,7] x Q. Either the solution is global, or there is a
mazimal ezistence interval [0,T) (0 < T < 00) such that ||uf|Le(g,) — +00 as 7 — T .

If the maximal time of existence T is finite, it is referred to as the blow-up time of
the solution. By the above lemma we can assume without loss of generality that the
initial value ug is continuous. Observe that the statement of non-negativity in Lemma
2.1 follows by the following more general statement (see (2, 11]).

Proposition 2.1 (Comparison result).

(1) If u is a subsolution and v a supersolution of problem (1.1) end 0 < u(0) < v(0)
in Q, then u(t) < v(t) in the ezistence interval of v. In particular, this is true if u
and/or v are solutions.

(ii) If @y is a stationary supersolution of problem (1.1), then u(t;%o) is non-increas-
ing in t, exists in [0,+00) and u* = lime—4o0o u(t;Uo) ts a stationary solution of prob-
lem (1.1). If uy is o stationary subsolution of problem (1.1), then u(t;uy) is non-
decreasing in t and, if it ezists in [0,4+00) and is uniformly bounded from above, then
u, = limy— 4o u(t;uy) 18 @ stationary solution of problem (1.1).

It is well known that the solution of problem (1.1) is classical in open regions where
it is positive [16]. Moreover, for any continuous initial value ug > 0 with ug # 0 in Q
the solution u(;uo) is positive in any region of positivity of uq [15}.

Let us also mention the following result.

Lemma 2.2. Let m < p and uo > 0 with ug # 0. Then either the solution of
problem (1.1) blows up in finite time, or there exzisis to > 0 such that it is strictly
positive in (to, +00) x Q. In the first case u can vanish somewhere at the blow-up time.

Proof. Observe that the solution of problem (1.1) lies above the solution of the
corresponding initial-boundary value problem with homogeneous Dirichlet boundary
conditions. For the latter there exists {¢ > 0 such that for any ¢t > to the solution is
positive in £ and lies above a smooth function with strictly negative outward derivative
at the boundary (see [10]). Then by comparison with a suitable subsolution (see [3:
Section 3B]) the solution of problem (1.1) is positive in Q for any t > to, unless it blows
up in finite time. This proves the claim B

An explicit example where blow-up occurs before the solution becomes positive in
the whole of Q is given in [13] in the case m = p. Finally, remark that a stationary
solution u of problem (1.1) solves the stationary problem

—Au™ — h(z)u™ = a(z)u? in ,
2.2
ou™ —0 in 99, . (2.2)
on

i.e., by (2.1), u € L*°(f2) and satisfies :
' —/ u"‘Ax=/{hu’"+au”}x (2:3)
Q Q _

for any 0 < x € C*(Q) with gff = 0 on 9N. In view of Hélder continuity of the functions
h and a, the function u is a classical solution of problem (2.2).
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3. Auxiliary results

The proofs of Theorems 1.1 - 1.3 follow from the results of this section. We first consider
the case p < n: then non-negative stationary solutions need not be positive in Q (see

Remark 1.1).

The following result concerning stationary solutions is stated without proof, since
it is a simple extension of results in [6] (see also [8, 9)).

Proposition 3.1. Assume p < m.

(i) Let po > 0. Then non-trivial stationary solutions of problem (1.1) ezist if and
only if the set Q4 13 non-empty.

(ii) Let po = 0. Then conditions Q4 # 0 and A < 0 are sufficient for the ezistence
of non-trivial stationary solutions of problem (1.1); moreover, 4 # 0 and

/ ac,o(',’%-H <0 (3.1)
{uv>0}

are necessary conditions for the ezistence of a non-trivial stationary solution u of prob-
lem (1.1). .

(iii) Let po < 0. Then condition (3.1) 1s necessary for the ezistence of a non-trivial
stationary solution u of problem (1.1).

Remark 3.1. In Theorem 1.1 stationary solutions of probiem (1.1) positive in 4
are considered. For any such solution u the necessary condition (3.1) implies A < 0.
Then Theorem 1.1 follows by Proposition 3.1 as for the stationary results.

In the next section we prove the following result concerning the evolutionary problem
(1.1).

Proposition 3.2. 'Assume p < m.

(i) Let po > 0. Then for any initial value up the solution of problem (1.1) is global
and uniformly bounded in [0, +o0).

(ii) Let po = 0. If A <0, the same conclusion as in case (i) holds true. If A > 0,
the solution u(t;ug) blows up in finite time for any initial value up > 0 in §.

(iii) Let po < 0. If A > 0, then for any initial value up > 0 in Q the solution of
problem (1.1) blows up in finite time. If A < 0, then the solution blows up in ﬁmte time
for suitable initial values ug.

Observe that a typical feature of the case p < m is the existence of free boundary
stationary solutions (see (6, 20, 21]). Hence, if up = 0 in some connected component
of the set 24, the corresponding solution of problem (1.1) can converge to some steady
state solution, which identically vanishes in the same component {7, 21]. This shows
that the condition ug > 0 in Q in Proposition 3.2/(ii) cannot in genera.l be omitted.
However, the following holds.
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Proposition 3.3. Assume h = 0 and A > 0. Then for any initial value ug # 0
on each connected component of 0y, the solution u(t;ug) of problem (1.1) blows up in
finite time.

Remark 3.2. Under the assumptions of Proposition 3.3 we have yg = 0and A > 0.
Thus by Proposition 3.2/(ii) we get finite time blow-up only for solutions with strictly
positive initial values. Hence Proposition 3.3 improves Proposition 3.2/(ii), at least if
h = 0. We conjecture that the condition h = 0 can be removed if g = 0.

The stationary problem for m < p was considered in [8, 9], where the following
results were proved.

Proposition 3.4. Let m < p.

(1) If uo > 0, then condition Q4 # D is necessary for the existence of non-trivial
stationary solutions of problem (1.1). It is also sufficient if condition (C) is satisfied.

(i1) If uo = 0, then conditions Q+ # 0 and A < 0 are necessary and, if condition
(C) holds, also sufficient for the ezistence of non-trivial stationary solutions of problem

(1.1).
(iii) If po < 0, then condition A < 0 is necessary for the ezistence of positive

solutions of problem (1.1). Moreover, if a < 0 in §Q, then there ezists a positive solution
of problem (1.1).

Concerning the evolutionary problem we have the following result (see the next
section).

Proposition 3.5. Let m < p. Then if Q4 # 0, for solutions of problem(1.1) finite
time blow-up occurs for suitable initial values ug. Moreover, the followsng holds:

(i) Let po > 0. If the set Qi is non-empty and condition (C) holds, then the
solution u(t;ug) of problem (1.1) is global for suitable initial values uo.

(ii) Let po = 0. If Q4 # 0, A < 0 and condition (C) holds, then the solution of
problem (1.1) is global for suitable initial values ug. If A > 0, then for any initsal value
ug # 0 the solution of problem (1.1) blows up in finite time.

(iii) Let po < 0. If A >0, then for any initial value uo # 0 the solution of problem
(1.1) blows up in finite time. If a < 0 in Q, then the solution of problem (1.1) is global
for suitable initial values ug. '

The proofs of Theorems 1.1 - 1.3 follow from the propositions above. To complete
the description of case (I) given in Remark 1.3, we need the following additional result
(see [9: Theorems 3 and 6]).

Proposition 3.6. Let m < p, Q4 # 0 and A < 0. Assume h = h, defined by
h.(z) = q(z) + 7 is such that for 7 = 0 we have po = 0, hence po = —7 for any 7.
Then there exists a 7* > 0 such that problem (1.1) has a non-trivial stationary solution
for any T < r*, while no such solution ezists if T > 7°.

Proposition 3.6 is concerned only with the case m < p. However, the non-existence
result in Proposition 3.6 was proved in [9] without using this condition; hence it is
true also for p < m. Concerning existence for p < m, when condition (I) holds, let us
mention the following example.
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Example 3.1. Take 2, a = ao and A = hg such that gy = 0, Q4 # 0 and
A = Ao < 0. Then there exists a non-trivial stationary solution u, of problem (1.1)
(Proposition 3.1). Take ¥ > 0 so small to have ao(z) — yu7*"P(z) > 0 for some z € Q.
Then u, is a non-trivial stationary solution of problem (1.1) with

a(z) = ap(z) — yul* 7?(z) and  h(z) = ho(z) + 7.
Indeed,
Aul + hul + aud = —ap(z)ul + yul* + (ao(z) — yu™ PP = 0.

Moreover, the new problem satisfies condition (I) since gy = —y < 0 and A < 44 < 0.
Observe that in this example it is not relevant whether p < 'm or m < p: Indeed, by
Proposition 3.4 u* exists also for m < p and a is well defined since u, > 0 in §, by the
maximum principle. ' ‘

4. Proofs

We first prove a lemma, which is the parabolic counterpart of an identity proved in (9]
for the stationary case.

Lemma 4.1. Letp > 1. Ifug > 0 in Q and T < +oo is.the mazimal ezistence
time of the solution of problem (1.1), then for any 7 € (0,T) the identity

etm o po p-m q_ 2
ﬂ// -‘m‘Pom u 2 zV"“/’om “_’ZV‘PO’
m
Qr

2 £
—#o// (p(;"+lum‘p+r/ apy (4.1)
QT n

1 E+1 —(p-1) 1 / E+1 —(p-1)
= — (p"' U — —— (pm u T
p—1/,%0 0 p—1Jg %0 (r)

holds.

Proof. By (15] the solution u(t; ug) of problem (1.1) is strictly positive in  for any
t € [0, T); hence problem (1.1) is satisfied pointwise, not only in weak sense. Also (1.3)
for u = po and ¢ = o is satisfied pointwise. Then for any (¢,z) € [0,T) x Q we can

2 2
multiply the first equations in (1.3) and (1.1) by g u™? and <p(;"+lu“’, respectively,
and integrate in @, for any given 7 € (0,T). Integrating by parts in space we obtain

£ 2 2
// (V(‘P(;" um_p),V<Po> _// h‘pé,.*-lum—p = po // ‘pé,,-f-lum—}’
Q" Qr Qr

2 £
// i ““_"“‘=‘// (Vi u?, Vum)
Q' Q'
£ £
+// h(p(;,,-Hum—p_*_// a(p6"+l’
Q' Q,'
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respectively. From the above equalities we obtain easily

1 B+l —(p-1) 1 241 _(p-
1:/% ug Tl $o U v V()

£

—(m +p) //Q eF u™ P (Vipg, Vu)
£ m—p—1

+(m - p) vo"‘u (Vu, Vo)

// Tlum P Vo ?
24l 24
_#0// ‘p(;n um P+T/0806"
Q- Q

Hence equality (4.1) follows i1

1

Proof of Proposition 3.2. Assertion (i): There exists a ko > 0 such that ke is
a stationary supersolution of problem (1.1) for any k > ko. Hence the first claim follows
by the comparison results in Proposition 2.1.

Assertion (ii): Let A < 0. Arbitrarily large stationary supersolutions of problem
(1.1) can be constructed in this case following the same path as in [6]. Hence the first
claim follows by Proposition 2.1/(ii). Now let A > 0 and uo > 0 in Q. Then Lemma
4.1 applies and equality (4.1) with o = 0 holds. This implies

1 2 - 2
— | o t (” D > r/ apgt t_raA
p—1Jg Q

1 L2411 —(p—
T'S—(p—l)A (/ncp(;" uo(P l)><+oo.

This proves the claim.

It follows that

Assertion (ii): If A > 0, the proof follows as in (u) since —ug > 0. Let 4 = 0.
Then the initial assumption a # 0 implies Q4 # 0. Since ug > 0 in §, there exists a
non-trivial stationary subsolution u of problem (1.1) such that ug > u in Q (see [21:
Lemma 3]). By the comparison results in Proposition 2.1 we obtain

u(tiug) 2 u for any t € [0,T). : (4.2)

Moreover, Lemma 4.1 applies. Hence;'by equality (4.1) and inequality (4.2), for any
T € (0,T) we obtain

pii Frlugt) > Inol// Frumr > I#olf/ o3t lume.
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This implies

1 241 —(p— PR
Tf(p:hmn<4¢“ ““p”)<4¢“ Emp) < oo

Then the claim in the case A = 0 follows.
Now let 4 < 0. We can prove the result by constructing subsolutions of problem
(1.1) which blow-up in finite time. In fact, let us define

Cut) =pt)ed  (t€[0,Tv) (4.3)
where ' _
p(t) = po (1 - Tio) o~ (4.4)
o 2 (el ol (ming o)) ™7 (45)
and .
To = ((p -~ Dllallew ™) ™", (4.6)

Since p < m, for any (t,z) € [0,Ty) x  we have
u — (A +hu™ ~ ay?
1 ey D=L B=t
= [p'+p” (p Poo™ no —apy™ )]
1 . ‘mot
<o [p' +p° ( = p™ P (ming o) ™ |pol + Iialloo)]
T
<5 [p' ~ llalleop”]
= 0.
Then by the comparison results in Proposition 2.1 the solution u(t; uo) of problem (1.1)
blows up in finite time for any initial value up > u(0) in Q B

In the proof of Proposition 3.3 the following results will be used.

Lemma 4.2 Let p < m. If the initial value up # 0 on each connected component of
Q4 # 0, then there ezists a non-trivial stationary subsolution uy of problem (1.1) such
that uy < ug and uy # 0 on éach connected component of §1. '

Proof. If h = 0, the proof follows by [21: Lemma 3]. However, the same proof
applies to the case h # 0.

Lemma 4.3. Let p < m end Q; C Q4 be a set with a finite number of connected
components and smooth boundary. If the initial value ug # 0 on each connected compo-
nent of 0y, then either finite time blow-up occurs or there exzists a £ > 0 and a stationary
subsolution u, of problem (1.1) such that

u, >0 in and u(t,ug) > u,. (4.7
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Proof. If finite time blow-up occurs the lemma is proved. Hence we assume that
u(t;uo) is global. By Lemma 4.2 (with Q4 replaced by ), there exists a stationary
subsolution u, of problem (1.1) such that uy < ug and u; # 0 on each connected
component of ;. Consider the problem

ov=Av" + hv™ in (0, +00) x
v=_0 in (0, +o0) x 99, (4.8)

U= U in{O}le.

Then u(-;u,) is a supersolution of problem (4.8); by the comparison results in Propo-
sition 2.1 we have

vu(t;u) < u(t;up) (4.9)

for any ¢t > 0. By [10] the existence of a ¢t > 0 with v(%;u,) > 0 in Q; follows, which in
turn implies u(#;uy) > 0 in ;. On the other hand, u(t; uy) is a stationary subsolution
of problem (1.1) for any t > 0. Thus (4.7) follows setting u, = u(t;u,). Indeed, by the
comparison results in Proposition 2.1 we have u(t;uy) < u(t;ug) forallt > 01

Proof of Proposition 3.3. The idea underlying this proof is similar to that of
Proposition 3.2/(ii) for A > 0. However, in this case the integral which bounds T is
not finite if the initial value uo vanishes somewhere, hence the proof becomes more
technical. ‘

Since h = 0, we have ¢y = 1. Hence A = fQ a(z) dz. Take an open subset ; C Q7
with a finite number of connected components and smooth boundary, such that

/ a+(z)dz<é ' © (4.10)
o\e, 8

(here and in the following we set r* = 11% for r € R). Since up # 0 on each connected
component of 2., we may choose ; such that ug # 0 on each connected component of
Q, as well. By Lemma 4.3 and the comparison results in Proposition 2.1, we only have
to prove finite time blow-up taking the stationary subsolution u, of problem (1.1) (see
Lemma 4.3) as initial value. Thus without loss of generality we assume that up = u, is
a stationary subsolution of problem (1.1) and ug > 0 on ;.

Let § > 0 such that for any measurable set E C

‘ A
|E|<6=>/ la(z)|dz < =
e 8

and define
1
En={z€§21\0<u§(z)sr—l} (n € N).
It is easily seen.that |E,| » 0 as n — oo. Let @ € N such that |E, |<6fora.nyn>n
define
At = / at(z)dz and AT = / a”(z)dz, (4.11)
Q Q
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fix € such that
€€ (0, W/T',’A'F_A'—)I) (4.12)
and define
uk(t) = u(t,uo+3)  (keN).

Then u; is strictly positive in Q for any t in the maximal existence interval of (0,T%);
IMOreover,

uk(t) 2 u(t) for any t € [0, T)

by comparison results. Since ux is a classical solution, from the first equatlon in (1.1)
we obtain easily for any r € [0,7%)

ux(r,z)

Y ATy e

uo(z)+¢

didz. .
L dtdz (4.13)

By definition u; solves the initial- boundary value problem (1.1) (with initial value
uk(0) = uo + ). Hence "n =0in (0,7) x 3. We obtain

/ AUP dz m/dt/ m+p2|vu >0 (4.14)
o uf+e TP gtk 2 |

for all 7 € [0, Ty).
As for the second term in the right-hand side of (4.13), observe that for any ¢ € [0, 7]

ul(t, )
/ afz )u (: :z:)+£ ‘
P(t,z) _ ub(t,z) ' .
/ *(z )Wdr—/na (:z:)uﬂ:’—w dz (4.15)

ot “k(tz) r— A-
2/91\6_ () )+d A~

Since ug is a stationary subsolution of problem (1.1), by the comparison results in

Proposition 2.1 we have ux > u > ug in Q, for any k € N. Since by definition ub > 1 l in
) \ Eg, from inequality (4:15), from (4.10), (4.12) and the choice of 7 we obtain ea51ly

ub(t,z)
/ () (:x)+

! / at(z)dz — A~ 0t <7< Ty). (4.16)
M\Ex

T 1l4en

24*+A7) (., A ,. A
3A* + A- (A "3) "4 =3
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The above inequality gives immediately

// o(z) 2k dtdzzgr (r € [0,T3)). (4.17)
Q. _

uf t+e
On the other hand, it is immediately seen that

ug(t,z)

/d: / ds 5|Q|/ 9 oo, (4.18)
Q
0

sP + ¢ sP +¢
uo(z)+1

From equality (4.13) and inequalities (4.14), (4.17) and (4.18) we obtain

e <]
200l T ds
< 2271
0
hence
20| T ds "
< —_— = . .
7 < 2 /su\€ T (keN) (4.19)
1]

Let T > 0 as defined in the right-hand side of (4.19). Assume by contradiction that
the solution u of problem (1.1) is global. Then, for any T' > T, ||u||z=(q,..) < +oo.
We prove below the continuous dependence of the solution on the initial data; then
there exists k7+ € N such that, for any integer k¥ > k1v, the solution u, exists in [0, T'].
This is in contradiction with inequality (4.19), hence the conclusion follows. Indeed,
let [0, 7] be the interval of local existence mentioned in Lemma 2.1 for any initial value

up € L®(Q) such that
l[uolloo < M = flullLe (@) + 1.

By the results in [12] the sequence {u}i>) is equicontinuous and uniformly bounded
in [0, 7]. Moreover,

uk1 Sux in[0,7)xQ  (k€N)

by comparison results. Hence ux — u as k — oo, uniformly in {0, 7]. Then there exists
a ky € N such that ||ux(t) — u(t)|lec < 1 for any t € [0,7] and any integer k > k,. If

T < T', this entails |Juk(t)|]loc £ M for any t € [0,7] and any k > k;. Since problem
(1.1) is time independent, taking ux(7) as initial datum, we have that the solution uj
exists in {0,27] for any integer k > k,. -

Iterating the above argument proves that the solution ux of problem (1.1) exists in

(0, 7], where m = [TT] +1, for any k > k1. Since mr > T' the conclusion follows il

The general blow-up result in Proposition 3.5 is a consequence of the following
lemma, which can be proved using some ideas in [14, 18]. .
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Lemma 4.4. Assume m <p and Q; # 0. Let B be a connected open set such that
C Q4 and 3B is regular. Further, let Ao > 0 and no € C(B)N C%(B) be such that

—A?’]o = /\07]0 in B

70 =0 on OB
70 >0 in B
fBﬁodI =1.

If v = ming{~XAo + h(z)} > 0, then the solution u(t;uy) of problem (1.1) blows up in
finite time for any instial value ug # 0. If v < 0, then finite time blow- up occurs if

ug > 0 in Q and 1
/ olo dz > L ”'_"‘. : (420)
: minEa

Proof. By Lemma 2.2, without loss of generality we can assume that ug > 0 in
Q. Hence problem (1.1) is satisfied in classical sense for any t € [0,7), where T < 400
is the maximal existence time. Let us multiply the first equation in (1.1) by no and
integrate on B. Integrating by parts and setting o = ming a(z), we get

g
/ nourdz = —/ m M s s+ / (u"‘Ar]o + hu™no + a(z)u"no)dx
B B on ]

. (4.21)
> / u"‘(— do+h+ au”T"‘)no dz.-
B

_Let v = ming{— /\o+h(z)} If v >0, deﬁne YP(s) = asP + ys™ for any s > 0; if y < 0,

deﬁne N : o
¥(s) = —(p -m) ( Z ) o (7'3)"_"' if‘s € [0, (le]arg) F=m ]
asP = |y|s™ . | T (%)m

In both cases ,

P(s) <s™(— Ao + A(z) + as?™™) in B
forany s > 0 and ¢ is convex in [0, +00). Hence, by (4.21), applymg Ga.rdmg s mequa.llty
(since [gno = 1), we get

(/ Uoud:z:)t=/ nou,dxz/Bz/;(u)nodzzzp(/Bm,udx).

The solution of the scalar problem

Z(t) = 1/)(2(3)) (t>0) }
2(0) =20>0

blows up in finite time for any initial value zg > 0 if ¥ > 0, and for zo > (lgl)’_"‘ if
¥ < 0. The blow-up of z implies the blow-up of Jg nou(t) dz, hence of u(t,-). Thus if
7 2 0, we get finite time blow-up for any initial value ug. If v < 0, we get finite time
blow-up for initial values satisfying (4.20). This completes the proof @
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Proof of Proposition 3.5. The first part follows by Lemma 4.4. Assertions (i)
and (ii) for A < 0: By Proposition 3.4/(i) and 3.4/(ii), respectively, there exists a non-
trivial stationary solution u* of problem (1.1). Hence for any initial value ug such that
0 < up < u” in Q the solution of problem (1.1) is global.

Assertions (ii) and (iii) for A > 0: By Lemma 2.2 we can assume uo > 0 in Q
without loss of generality. Then the proof follows as in the proof of Proposition 3.2/(ii)
and 3.2/(iii) for A > 0.

Assertion (iii): Let A = 0. Since a # 0, we have Q4 # 0. Using the notation in
Lemma 4.4, if B exists such that v > 0, the solution blows up for any initial value
up # 0. Thus we only need to prove the result if for any B we have v < 0.

Let us remark that for any & € (0,ko], ko > O suitably chosen, u = kcpo# is a
stationary subsolution of problem (1.1). Indeed,

p-m
(A + h)u™ + au? > k™ o(lpol — lallesllpollos™ KP7™) 20

provided that k < ko = (Jﬂl.)?-";"(po";# Hence, by Proposition 2.1/(i1), u(t; u) is

llalloo
monotonically non-decreasing in time.

Since the constant k can be chosen arbitrarily small, for any initial value ug > 0in
Q there exists a k such that u < uo. Thus we only need to prove that u(t;u) blows up
in finite time. We apply Lemma 4.1 to u(¢;u) and get

1 B4l _(p— 241 gy
— [ ey ul ”Zluol//o gy umP

r—1Jq
) 2 m—
> ol (mingpo) 5! [[ =

for any 7 € (0,T), where T < +o0 is the maximal existence time of u(¢;u). Thus there
exists a constant C > 0 such that

// TP <L C for all 7 € (0,T). (4.22)

Assume by contradiction that T = +oco. Since m < p and u(t;u) is non-decreasing,
(4.22) implies that u is unbounded as t — +oo. Namely, we first prove that (4.22)
implies the unboundedness of Jqu(r) as 7 — +00 and that this in turn implies that the
hypotheses of Lemma 4.4 are satisfied for ug = u(7;u), for sufficiently large 7. Then
finite time blow-up will follow, which contradicts the hypothesis T = +00 and the proof
will be complete.

Take B and v as in Lemma 4.4. As remarked above we only need to prove the case
¥ < 0. Let B* be an open set such that B C B. Then by the Hélder inequality and
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(4.22) we get

|B.|T = // ol
«x[0,7]

=// . L .
B. x[0,7]

FEE T
Uon®) o™
B. x([0,7) . x[0,7]

1 -m ;%‘_l
R S O
B,

for all 7 € (0, +00). Hence, for a constant C;, > 0,

] u(r) > Ciri =

for all 7 € (0, T). Moreover, for some constant C; > 0,

/ nou(r) > ming. o / u(r) > Cyrit= > (l) s
i .

mmga

where the last inequality holds for sufficiently large 7. Then for sufficiently large 7
condition (4.20) is satisfied and finite time blow-up follows by Lemma 4.4.

Let @ < 0 in Q. Then, by Proposition 3.4/(iii), there exists a non-trivial stationary
solution u* of problem (1.1). Hence, for any initial value ug such that 0 <wup € u*in

§2, the solution of problem (1.1) is global. This completes the proof
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