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Abstract. We investigate large time behaviour of solutions for a class of nonlinear Neumann 
parabolic problems of indefinite type, possibly degenerate. Depending on the features of the 
problem, several parameters play a role to establish global boundedness or finite time blow-
up of solutions. The occurrence of either situation is related with the existence of stationary 
solutions. Proofs make extensive use of monotonicity methods. 
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1. Introduction 
In this paper we study large time behaviour of non-negative solutions of the parabolic 
problem

ôu = u m + h(x)u m + a(x)u"	in (0,T) x 
aum in(0,T)x0Q	 (1.1) 

an u=u0	 in{0}xIl 

where rn > 1, p > 1, 0 < T +oo and Q c R'' (N 2 1) is a bounded connected 
domain with smooth boundary aci. The functions a and h are Holder continuous and 
a is non-identically zero in ft The initial value u 0 is continuous and non-negative in Q. 

In the case h =0 problem (1.1) was suggested as a mathematical model for the 
evolution of a population which lives in an inhomogeneous habitat (see [17, 191 and 
references therein). This is the reason why we are interested only in non-negative 
solutions, which we will call solutions for simplicity.	.	S 

For p = in or, equivalently, a = 0, the behaviour of solutions can.be easily described; 
we omit here this case. In the general case we consider three classes of. problems, 
depending on h, a and ft For two of them a complete picture of the behaviour of 
solutions is given - namely, we obtain necessary and sufficient conditions for finite time 
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blow-up of solutions with positive initial values. Moreover, we prove that the opposite 
conditions are necessary and sufficient for existence of stationary solutions positive on 
a suitable set. Such conditions were first given for the stationary case in [6] if p < m 
and h = 0, and more recently in [8, 91 if rn <p. Related problems were studied in [1, 4, 
5, 20], yet no finite time blow-up was obtained. As a special case we improve a result 
given in [4]. In fact, in [4] the unboundedness of solutions was proved under suitable 
assumptions; under the same assumptions we prove here that such solutions blow-up in 
finite time. 

The case rn = 1, as well as the case of Dirichlet homogeneous boundary conditions, 
can be investigated with the same methods; we do not consider them for brevity. How-
ever, we use a result in [14] where finite time blow-up was proved for Dirichlet boundary 
conditions in the case m = 1, h = 0 and a = c > 0, c a constant (see also [18]). 

The results concerning blow-up, as well as the existence of non-trivial stationary 
solutions, depend both on the assumption 

= {x E Q: a(x) > o} 54 0	 (1.2) 

and on the sign of the quantities po and A which are now to be defined. Indeed, denote 
by po the first eigenvalue of the problem 

-	- h(x)ço = /1	in Q 
aw	 (1.3) 

	

—=0	onOl 

	

and by po the associated eigenfunction (IIoII	1, o > 0 in Il). Define also 

Afa(x
) L1 =	'	(x)dx.	 (1.4) 

First consider the case p < rn. Then the predominant behaviour for large values of 
u is given by the diffusion term; hence we expect boundedness of u if Po > 0, and 
unboundedness if p < 0. If P0 = 0, the behaviour should depend on the function a; 
actually, we prove that the dependence is through the sign of A. Moreover, finite time 
blow-up proves to occur when we expect unboundedness. 

If we exclude that p = 0 = A, one of the following three cases will occur, which 
characterize the behaviour of solutions both for p < in and in <p: 
(B) Either yo > 0, or A < 0 and Po = 0. 
(U) IL O 0, A>0 and p--A 2 >0. 
(I) /20 <0 and A <0. 

In cases (B) and (U) we expect boundedness and unboundedness, respectively, while 
the case (I) is of indeterminacy. 

The following theorem holds.
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Theoreni 1.1. Let p < in, + 0 and p + A 2 > 0. Assume that condition (I) 
does not hold. Then the following statements are equivalent: 

(I) Condition (B) holds. 

(ii) There exist non-trivial stationary solutions of problem (1.1) positive on 

(iii) For any initial value uo the solution of problem (1.1) is global and uniformly 
bounded in [0,+). 

Moreover, the following statements are equivalent: 

(j) Condition (U) holds. 

(jj) There does not exist any stationary solution of problem (1.1) positive on 

(jjj) For any initial value u 0 > 0 in n the solution of problem (1.1) blows up in 
finite time. 

Remark 1.1. The requirement of positivity in ft+ for non-trivial stationary solu-
tions of problem (1.1) is needed, since for p < in such solutions may vanish in some 
subset of Q. In fact, in some examples no solution of problem (1.1) positive on 
exists, although solutions vanishing on some connected component of Q+ do (see [6) 
and [2, 7, 10, 15, 21]). On the other hand, if m < p, stationary solutions are strictly 
positive in 1I by the maximum principle. 

	

Remark 1.2. The case	= 0 is not considered in Theorem 1.1. In this case, if

moreover yo > 0, the diffusion and the reaction terms have the same effect. Hence only 
the trivial stationary solution u = 0 of problem (1.1) exists; moreover, it is globally 
asymptotically stable, namely

II u ( t)IIoo - 0 as t -4 +oo 

for any initial value u0. 

Some partial results relative to the case of condition (I) are given in the following 
theorem and in the subsequent remark. 

Theorem 1.2. Let Q. 0 and condition (I) hold. Then in both cases p < in and 
in < p the solution of problem (1.1) blows up in finite time for suitable initial values. 

Remark 1.3. Proposition 3.6 and Example 3.1 show that a stationary solution 
positive in ft may exist or not for problem (1.1) satisfying condition (I). 

Next we consider the case in < p. If N 2 3, the following restriction on p will be 
used: 

(C)p<mZ	ifN23. 

We have the following result.
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Theorem 1.3. Let m < p and ci+ 54 0. Then for solutions of problem (1.1) finite 
time blow-up occurs for suitable initial values u O . Moreover, let condition (C) hold, 
PO + A 2 > 0 and condition (I) not hold. Then the following statements are equivalent: 

(i) Condition (B) holds. 

(ii) There exist non-trivial stationary solutions of problem (1.1). 

(iii) There exist globally bounded solutions of problem (1.1) for suitable initial values 
U0 $0. 

Moreover, the following statements are equivalent: 

(j) Condition (U) holds. 

(jj) Non-trivial stationary solutions of problem (1.1) do not exist. 

(jjj) For any initial value u 0 $ 0 the solution of problem (1.1) blows up in finite 
time.

Remark 1.4. As before, the case = 0 is not considered in Theorem 1.3; the 
results in Remark 1.2 hold also for no <p, if po ^! 0. For yo < 0, see Propositions 3.4 
and 3.5. 

Conditions on initial data, which imply blow-up, are given in Lemma 4.4. 

In Section 2 we state some definitions and some known existence and comparison 
results of problem (1.1). In Section 3 we give iesults, which describe existence or non-
existence of stationary solutions and blow-up phenomena of problem (1.1), depending 
on the data of the problem. Theorems 1.1 - 1.3 are consequences of such results. Proofs 
are given in Section 4. 

Acknowledgement. The authors wish to thank Professor Catherine Bandle for 
useful suggestions. 

2. Mathematical framework 

For any r > 0 let us define Q,. = (0,T1 x Q and Er = (0,r] x ÔQ. We also set 
= .	Let u O E L°°(). By a solution of problem (1.1) in [0,T] we mean 


a function u E C([0, r]; L'()) fl L°°(Q) such that 

j u(t)X(t) - JJ {u + umix} 
= j u(0) + fJ {hum + au}	(2.1) 

for all 0	x E C 2() with	= 0 on F t and any t E [0,r]. A global solution of an 
problem (1.1) is a solution in [0, 7] for any r >0. The notation u = u(t;uo) (t 2 0) will 
be used to stress the dependence on the initial value u 0 . Moreover, supersolutions of 
problem (1.1) are defined replacing the symbol "=" by ">" in equality (2.1); similarly 
for subsolutions. 

Concerning existence, uniqueness and non-negativity of solutions of problem (1.1) 
the following holds (see [2, 12]).
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Lemma 2.1. For any u 0 e L(c), uo 2 0 a.e. in Q, there is a r > 0 (depending 
only on II uoII) such that there exists a unique non-negative solution of problem (1.1) 
on [0, r] which is continuous in (0, TI x n. Either the solution is global, or there is a 
maximal existence interval [0,T) (0 < T < oo) such that II u IIL(q,) -9 +oo as r - T. 

If the maximal time of existence T is finite, it is referred to as the blow-up time of 
the solution. By the above lemma we can assume without loss of generality that the 
initial value u 0 is continuous. Observe that the statement of non-negativity in Lemma 
2.1 follows by the following more general statement (see 12, 11]). 

Proposition 2.1 (Comparison result). 
(1) If u is a subsolution and v a supersolution of problem (1.1) and 0 u(0) <v(0) 

in ci, then u(t) < v(t) in the existence interval of v. In particular, this is true if u 
and/or u are solutions. 

(ii) If lEo is a stationary supersolution of problem (1. 1), then u(t; lEe) is non-increas-
ing in t, exists in [0, +) and u = lim t _+ u(t; ii) is a stationary solution of prob-
lem (1.1). If ! is a stationary subsolution of problem (1.1), then u(t;) is non- 
decreasing in t and, if it exists in [0, +oo) and is uniformly bounded from above, then 
u = lim t_+u(t;) is a stationary solution of problem (1.1). 

It is well known that the solution of problem (1.1) is classical in open regions where 
it is positive [16]. Moreover, for any continuous initial value u0 2 0 with u0 54 0 in ci 
the solution u(t; uo) is positive in any region of positivity of u 0 [15]. 

Let us also mention the following result. 
Lemma 2.2. Let in < p and u 0 > 0 with u 0 0 0. Then either the solution of 

problem (1.1) blows up in finite time, or there exists to 2 0 such that it is strictly 
positive in (to, +) x Q. In the first case u can vanish somewhere at the blow-up time. 

Proof. Observe that the solution of problem (1.1) lies above the solution of the 
corresponding initial-boundary value problem with homogeneous Dirichlet boundary 
conditions. For the latter there exists to 2 0 such that for any t 2 to the solution is 
positive in ci and lies above a smooth function with strictly negative outward derivative 
at the boundary (see [10]). Then by comparison with a suitable subsolution (see [3: 
Section 313]) the solution of problem (1.1) is positive in ci for any t > to, unless it blows 
up in finite time. This proves the claim U 

An explicit example where blow-up occurs before the solution becomes positive in 
the whole of ci is given in [13) in the case m = p. Finally, remark that a stationary 
solution u of problem (1.1) solves the stationary problem 

—Au' - h(x)u m = a(x)u"	in ci ) 

an 
—=0	inaci,J

	 (2.2) 

i.e., by (2.1), u E L°°(Q) and satisfies 

- j	= j {hum + au}	 (2.3) 

for any 0 x E C 2() with 2X = 0 on dci. In view of Holder continuity of the functions 
h and a, the function u is a classical solution of problem (2.2).
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3. Auxiliary results 

The proofs of Theorems 1.1 - 1.3 follow from the results of this section. We first consider 
the case p < in: then non-negative stationary solutions need not be positive in Q (see 
Remark 1.1). 

The following result concerning stationary solutions is stated without proof, since 
it is a simple extension of results in [6] (see also [8, 9J). 

Proposition 3.1. Assume p < m. 

(i) Let po > 0. Then non-trivial stationary solutions of problem (1.1) exist if and 
only if the set Q+ is non-empty. 

(ii) Let /Ao = 0. Then conditions	0 and A < 0 are sufficient for the existence 
of non-trivial stationary solutions of problem (1.1); moreover,	0 and 

11U>0 ) 
aço"	<0	 (3.1) 

are necessary conditions for the existence of a non-trivial stationary solution u of prob-
lem (1.1).

(iii) Let zo < 0. Then condition (3.1) is necessary for the existence of a non-trivial 
stationary solution u of problem (1.1). 

Remark 3.1. In Theorem 1.1 stationary solutions of problem (1.1) positive in 
are considered. For any such solution u the necessary condition (3.1) implies A < 0. 
Then Theorem 1.1 follows by Proposition 3.1 as for the stationary results. 

In the next section we prove the following result concerning the evolutionary problem 
(1.1). 

Proposition 3.2. Assume p < 

(i) Let po > 0. Then for any initial value u 0 the solution of problem (1.1) is global 
and uniformly bounded in [0, +oo). 

(ii) Let po = 0. If A < 0, the same conclusion as in case (i) holds true. If A > 0, 
the solution u(t; uo) blows up in finite time for any initial value u 0 > 0 in ci. 

(iii) Let po < 0. If A > 0, then for any initial value u 0 > 0 in the solution of 
problem (1.1) blows up in finite time. If A < 0, then the solution blows up in finite time 
for suitable initial values u0. 

Observe that a typical feature of the case p < m is the existence of free boundary 
stationary solutions (see [6, 20, 21]). Hence, if uo = 0 in some connected component 
of the set ci+, the corresponding solution of problem (1.1) can converge to some steady 
state solution, which identically vanishes in the same component [7, 21]. This shows 
that the condition u0 > 0 in n in Proposition 3.21(u) cannot in general be omitted. 
However, the following holds.
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Proposition 3.3. Assume h = 0 and A > 0. Then for any initial value uo 0 0 
on each connected component of cZ+, the solution u(t;uo) of problem (1.1) blows up in 
finite time. 

Remark 3.2. Under the assumptions of Proposition 3.3 we have yo 0 and A > 0. 
Thus by Proposition 3.2/(ii) we get finite time blow-up only for solutions with strictly 
positive initial values. Hence Proposition 3.3 improves Proposition 3.21(u), at least if 
h 0. We conjecture that the condition It = 0 can be removed if Po = 0. 

The stationary problem for m < p was considered in [8, 91, where the following 
results were proved. 

Proposition 3.4. Let m <p. 

(i) If 10 > 0, then condition ci	0 is necessary for the existence of non-trivial 
stationary solutions of problem (1.1). It is also sufficient if condition (C) is satisfied. 

(ii) If po = 0, then conditions 1+ 54 0 and A < 0 are necessary and, if condition 
(C) holds, also sufficient for the existence of non-trivial stationary solutions of problem 
(1.1).

(iii) If /o < 0, then condition A < 0 is necessary for the existence of positive 
solutions of problem (1.1). Moreover, if a < 0 in 1, then there exists a positive solution 
of problem (1.1). 

Concerning the evolutionary problem we have the following result (see the next 
section). 

Proposition 3.5. Let m <p. Then if	0, for solutions of problem(l.l) finite 

time blow-up occurs for suitable initial values u 0 . Moreover, the following holds: 

(i) Let yo > 0. If the set 1+ is non-empty and condition (C) holds, then the 
solution u(t; uo) of problem (1.1) is global for suitable initial values uo. 

(ii) Let po = 0. If Q 56 0, A < 0 and condition (C) holds, then the solution of 
problem (1.1) is global for suitable initial values u 0 . If A > 0, then for any initial value 

0 the solution of problem (1.1) blows up in finite time. 

(iii) Let yo <0. If A > 0, then for any initial value u 0 0 0 the solution of problem 
(1.1) blows up in finite time. If a <0 in n, then the solution of problem (1.1) is global 
for suitable initial values u0. 

The proofs of Theorems 1.1 - 1.3 follow from the propositions above. To complete 
the description of case (I) given in Remark 1.3, we need the following additional. result 
(see [9: Theorems 3 and 6]). 

Proposition 3.6. Let m < p, 0 and A < 0. Assume h = h defined by 
hr() = q(x) + r is such that for r = 0 we have po = 0, hence P0 = — r for any r. 
Then there exists a r > 0 such that problem (1.1) has a non-trivial stationary solution 
for any r < r, while no such solution exists if r > T*. 

Proposition 3.6 is concerned only with the case m < p. However, the non-existence 
result in Proposition 3.6 was proved in [ 9] without using this condition; hence it is 
true also for p < m. Concerning existence for p < m, when condition (I) holds, let us 
mention the following example.
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Example 3.1. Take Q, a = a0 and h = h0 such that yo = 0,	$ 0 and

A = A0 < 0. Then there exists a non-trivial stationary solution u of problem (1.1) 
(Proposition 3.1). Take y > 0 so small to have ao(x) - 7u(x) > 0 for some x E l. 
Then u is a non-trivial stationary solution of problem (17) with 

	

a(x) = ao(x) - 7u' -P (x)	and	h(x) = ho(x) +,y.


Indeed,

u' + hu" + au = -ao(x)u + yu' + (ao(x) - 7u'')u = 0. 

Moreover, the new problem satisfies condition (I) since /10 = --y < 0 and A <A0 <0. 
Observe that in this example it is not relevant whether p <rn or m < p Indeed, by 
Proposition 3.4 u exists also for in <p and a is well defined since u > 0 in Il, by the 
maximum principle. 

4. Proofs 

We first prove a lemma, which is the parabolic counterpart of an identity proved in [9] 
for the stationary case. 

Lemma 4.1. Let  > 1. If uo >0 in a and T +00 is. the maximal existence 
time of the solution of problem (1. 1), then for any r E (0, T) the identity 

	

if 	£jF.!! rn..E.1	 n.x	2 

 
2 Vu - m u 2 VWO M

11	L1.1	 I	.E+i 

	

-/10	 u	r / aptç	 (4.1) 

1 I

	

 p	

.Lj	(pa)	1
" U0 
—i 

holds. 

Proof. By [15] the solution u(t; uo) of problem (1.1) is strictly positive in for any 
t e [0, T); hence problem (1.1) is satisfied pointwise, not only in weak sense. Also (1.3) 
for p = /10 and W = o is satisfied pointwise. Then for any (t, x) E [0, T) x Q we can 

	

multiply the first equations in (1.3) and (1.1) by	and	respectively,

and integrate in Q,., for any given r E (0, T). Integrating by parts in space we obtain 

f
u),Vo)

Q r	 JIQ 
11	 +1 1	

_ Jf (,O" U

+11
(V'u ' Vu') 

hfumP + IL a(,o'^^+',

and
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respectively. From the above equalities we obtain easily 

	

11 .L..1	( P-)	1	1	.z+i _(p- —j-Jcao"' t2	
----jj	

u	')(T) 

	

=prn JJCQ
	

+IU_(p+1)+m_1IVUI2 

	

-(in +P) 	M_ IN u'(Vo,VU) 

+(m _P)JJ Zurn1(Vu,Vo) 

+ Jf _IUrn..pIVI2 M
11 L rn-p	

i

i+i —o 	Qi"U +ra
 

Hence equality (4.1) follows I 
Proof of Proposition 3.2. Assertion (i): There exists a k0 > 0 such that kw6l is 

a stationary supersolution of problem (1.1) for any k > k0 . Hence the first claim follows 
by the comparison results in Proposition 2.1. 

Assertion (ii): Let A < 0. Arbitrarily large stationary supersolutions of problem 
(1.1) can be constructed in this case following the same path as in [6]. Hence the first 
claim follows by Proposition 2.11(u). Now let A > 0 and uo > 0 in l. Then Lemma 
4.1 applies and equality (4.1) with io = 0 holds. This implies 

1 
J

1 +1 -(p-i)	

fo 
U 0	 =rA.


p—i ci  

It follows that
T.<	

1
	(in 

 
U0 

This proves the claim. 
Assertion (iii): If A > 0, the proof follows as in (ii) since —Po >0. Let A = 0. 

Then the initial assumption a 0 implies + 0 0. Since uo > 0 in, there exists a 
non-trivial stationary subsolution of problem (1.1) such that u 0 u in l (see [21: 
Lemma 3]) . By the comparison results in Proposition 2.1 we obtain 

	

u (t;uo) 2 u	for any t E [0,T).	 (4.2) 

Moreover, Lemma 4.1 applies. Hence, by equality (4.1) and inequality (4.2), for any 
T- E (0, T) we obtain 

	

1 J - U0 
+i -(p-i) 

>	ff	+im_p ^ ioiri
n 
c+i urn_P 

P 	 JJQ 
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This implies 

T <	
1	/ ( 1+1 

(P- 1)) .f+	 —I 

U "	(fo 	im_)

 

Then the claim in the case A = 0 follows. 
Now let A < 0. We can prove the result by constructing subsolutions of problem 

(1.1) which blow-up in finite time. In fact, let us define 

u(t) = p(t)	(t E [0,T0 ))	 (4.3) 

where -I 
P(t)=Po(1_-)	 (4.4) 

TO

rn-i rn-p 
P0 > ( 	IoI'(min	o) - )	 (4.5) 

and
To= ((p - 1 )II a II p - ')'.	 (4.6)


Since p < m, for any (t, x) E [0, To) x 1 we have 

- ( + h)u m - a&'
rn-I 

=	+ PP (PM—P;;;_.o - ao0m )] 

< 
1
p, + PP ( - 

pm—P (min	IoI + iiaii)] 

k	- IaII"] 

=0. 

Then by the comparison results in Proposition 2.1 the solution u(t; uo) of problem (1.1) 
blows up in finite time for any initial value u 0 2 u(0) in 1 I 

In the proof of Proposition 3.3 the following results will be used. 
Lemma 4.2 Let p < m. If the initial value u 0 54 0 on each connected component of 

0, then there exists a non-trivial stationary subsolution	of problem (1.1) such

that y. <u 0 and yo 0 0 on each connected component of ftp. 

Proof. If h = 0, the proof follows by [21: Lemma 3]. However, the same proof 
applies to the case h 0. 

Lemma 4.3. Let p < m and l i c i+ be a set with a finite number of connected 
components and smooth boundary. If the initial value uo 0 on each connected compo-
nent of f1 1 , then either finite time blow-up occurs or there exists a i 2 0 and a stationary 
subsolution u. of problem (1.1) such that 

>0 in ci 1	and	u(,uo) 2	.	 (4.7)
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Proof. If finite time blow-up occurs the lemma is proved. Hence we assume that 
u(t; uo) is global. By Lemma 4.2 (with ft replaced by ci j ), there exists a stationary 
subsolution u o of problem (1.1) such that lio !^ u 0 and Ro 0 0 on each connected 
component of ci i . Consider the problem 

a1 v=Lv m +hv m	in(0,+oo)xI?1 
V = 0	 in(O,+oo) x aSI,	 (4.8) 
v= U0	 in{O}xcii. 

Then u( . ;) is a supersolution of problem (4.8); by the comparison results in Propo-
sition 2.1 we have

	

v(t;u0) < u(t;u)	 (4.9) 

for any t > 0. By flOj the existence of a i > 0 with v(i;) > 0 in ci follows, which in 
turn implies u(;) > 0 in ci 1 . On the other hand, u(t; ) is a stationary subsolution 
of problem (1.1) for any t > 0. Thus (4.7) follows setting u = u(;). Indeed, by the 
comparison results in Proposition 2.1 we have u(t; ) u(t; u 0 ) for all t > 01 

Proof of Proposition 3.3. The idea underlying this proof is similar to that of 
Proposition 3.21(u) for A > 0. However, in this case the integral which bounds T is 
not finite if the initial value u0 vanishes somewhere, hence the proof becomes more 
technical. 

Since h = 0, we have yo = 1. Hence .A = fo a(x) dx. Take an open subset f2 l c cl+, 
with a finite number of connected components and smooth boundary, such that 

a(x)d	
A 

ku l	8 

	

x < --	 (4.10) 

(here and in the following we set r ± = 1!11 for r E R). Since u 0 0 on each connected 
component of ci.., we may choose c1 1 such that u 0 54 0 on each connected component of 

as well. By Lemma 4.3 and the comparison results in Proposition 2.1, we only have 
to prove finite time blow-up taking the stationary subsolution of problem (1.1) (see 
Lemma 4.3) as initial value. Thus without loss of generality we assume that u 0 = L is 
a stationary subsolution of problem (1.1) and uo > 0 on cii. 

Let 5 > 0 such that for any measurable set E ç ci 

E l< 5	 Ia(x)Idx< 
A 

is	8 

and define

	

E 
= 

{x E ci i 0 < u(x) 
<n	

(n EN). 

It is easily seen.that IEI -* 0 as n - 03. Let 71 E N such that IEI <5 for any Ti > 
define

A+ 	I a(x)dx	and	A- 	I a(x)dx,	 (4.11) 
ui	 Jci
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fix e such that
r E (0, [2(A++A-)))	 (4.12)


and define
Uk(t) = u(t; u0+ )	( kEN). 

Then Uk is strictly positive in	for any tin the maximal existence interval of [0,Tk); 

moreover,

Uk(t) 2 u(t) for any t E [01 Tk) 

by comparison results. Since Uk is a classical solution, from the first equation in (1.1) 
we obtain easily for any r E (0,Tk) 

U  (r, z)
ds 

dx did	 k f s + = ff	x +	a(x) U dtdx.	(4.13) fn	 Q up 	Jfq	U+E 
uo(z)+f 

By definition Uk solves the initial-boundary value problem (1.1) (with initial value 
u k(0) = uo +). Hence	= 0 in (0, r) x c9. We obtainan

r 

ff 1U 
didx = nip dt f Uk	

VUk12 >0	(4.14) 
JJQUk+E	 I  

0 

for all r E [0,Tk). 
As for the second term in the right-hand side of (4.13), observe that for any I E 10, r} 

a(x) u(i,x)
dX U(t,x+e

a a(x) u(t,x) dx -	(x) 
u(t,x) 

dx	(4.15) =  
u(i,x)+e	fn	up (t, X) + 6 

2 f	a(x) 
_u(t,x) 

dx - A. 
u(t,x) + C 

Since u 0 is a stationary subsolution of problem (1.1), by the comparison results in 

Proposition 2.1 we have Uk > it > u 0 in Q, for any k E N. Since by definition u > in


.\ E, from inequality (4.15), from (4.10), (4.12) and the choice of Ti we obtain easily 

I a(x) u(t,x)
dx 

u (t,x)+e 
>	1	f	a(x)dx -	 (0 t T <Tk ).	(4.16) - 1+CflJn1\ 

2(A+A ) 
> 3A+A (A+_)_A-=
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The above inequality gives immediately 

A
a(x) 

u pk dtdx> -T	(T E [O,Tk )).	 (4.17)

 U k+ E	 2


On the other hand, it is immediately seen that 

Uk(,X) I dx	[ ds 
< ii I ds

(4.18) 
Si'+  

	

u 0 (z)+f	 0 

From equality (4.13) and inequalities (4.14), (4.17) and (4.18) we obtain 

f ds 

	

T 
-i-	si' +e	

(r e [0, Tk)), 
0 

hence
cc 

Tk 2II f ds 

	

A 	Si'+E 
=T	(keN).	 (4.19) 

0 

Let T > 0 as defined in the right-hand side of (4.19). Assume by contradiction that 
the solution u of problem (1.1) is global. Then, for any T' > T, luIILoo(Qr,) < +00. 
We prove below the continuous dependence of the solution on the initial data; then 
there exists kT' e N such that, for any integer k > kT', the solution Uk exists in [0,T']. 
This is in contradiction with inequality (4.19), hence the conclusion follows. Indeed, 
let [0, rI be the interval of local existence mentioned in Lemma 2.1 for any initial value 
u 0 C L°°(1) such that

II uoIIoo !^ M = 11 u 11L 00 ( Qr ,) + 1. 

By the results in [12] the sequence {uk}k> i is equicontinuous and uniformly bounded 
in [0,7]. Moreover,

	

Uk+I:5Uk in[0,r]x	(kEN) 

by comparison results. Hence Uk - u as k - oo, uniformly in [0, ,r). Then there exists


	

a k 1 C N such that II u k( t ) - u(i)II	:^ 1 for any i E [O,r] and any integer k > k 1 . If 
T < T', this entails IIUk(t)IIoo < M for any t C [0,r) and any k > k 1 . Since problem 
(1.1) is time independent, taking uk(T) as initial datum, we have that the solution iLk 
exists in [0,2r] for any integer k > k1. 

Iterating the above argument proves that the solution Uk of problem (1.1) exists in 
[0,rnr], where in = {] + 1, for any k > km_ i . Since mr > T' the conclusion follows I 

The general blow-up result in Proposition 3.5 is a consequence of the following 
lemma, which can be proved using some ideas in [14, 18].
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Lemma 4.4. Assume m <p and	0. Let B be a connected open set such that 

C ci+ and ÔB is regular. Further, let A0 > 0 and 7 o E C(B) fl C2 (B) be such that 

—/.710 = A 0 71 0	in B 

on 49B 

710>0	in B 

f3 770dx = 1. 

If -t= min-{—Ao + h(x)} 2 0, then the solution u(t; uo) of problem (1.1) blows up in 
finite time for any initial value uo 54 0. If y < 0, then finite time blow-up occurs if 
u > 0 in ci and

JB 71ouodx> 
(_

1 	 (4.20)
 min--a 
- Proof. By Lemma 2.2, without loss of generality we can assume that uo > 0 in 
ci. Hence problem (1.1) is satisfied in classical sense for any t E [0,T), where T +oo 
is the maximal existence time. Let us multiply the first equation in (1.1) by 71 0 and 
integrate on B. Integrating by parts and setting a = mina(x), we get 

fB	
dx = - J umô710 ds + JB 

(umz710 + hu tm 710 + a(x)u"71o)dx 
 B 	 421 

'B u
- ( - A 0 + h + ,P-- -) ,7,, dx. 

Let = min{—A O + h(x)}. If 7 > 0, define '(s) = as
p

+	for any .s 2 0; if < 0,

define

OW	
J —(p_rn) (hI)"" (.)..n_	[o, (1).;;] 

asp - 1 7 18 m	 ifs > (Ii!! )
Pa 

In both cases
(s) <sm(_ A0 + h(x) + as p- ')	in B 

for any s >0 and is convex in [0, +oo). Hence, by (4.21), applying Gb.rding's inequality 
(since JB 71° = 1), we get 

(L71ou) , I	2 f (u)71odx >
 ( fB


The solution of the scalar problem 

z' ( t ) = (z(t)) (t > 0) 

Z(0) = zo 2 0 

blows up in finite time for any initial value z0 > 0 if 7 20, and for 
z0 > ()	

if

7 < 0. The blow-up of z implies the blow-up of JB 710 u(t) dx, hence of u(t, .). Thus if 

2 0, we get finite time blow-up for any initial value u 0 . If < 0, we get finite time 
blow-up for initial values satisfying (4.20). This completes the proof I
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Proof of Proposition 3.5. The first part follows by Lemma 4.4. Assertions (i) 
and (ii) for A <0: By Proposition 3.4/(i) and 3.41(u), respectively, there exists a non-
trivial stationary solution u of problem (1.1). Hence for any initial value uo such that 
0	u in n the solution of problem (1.1) is global. 

Assertions (ii) and (iii) for A > 0: By Lemma 2.2 we can assume u 0 > 0 in ci 
without loss of generality. Then the proof follows as in the proof of Proposition 3.21(u) 
and 3.2/(iii) for A > 0. 

Assertion (iii): Let A = 0. Since a 54 0, we have ci $ 0. Using the notation in 
Lemma 4.4, if B exists such that -y ^: 0, the solution blows up for any initial value 
u0 54 0. Thus we only need to prove the result if for any B we have y <0. 

Let us remark that for any k E (0,koI, k0 > 0 suitably chosen, u = kp1 is a 
stationary subsolution of problem (1.1). Indeed, 

(z + h)u m + a& > k"o(I,ioI - IIaIIIIoIIkP_m ) > 0 

provided that k	k0 = ( j	)IIoI	Hence, by Proposition 2.11(u), u(i;u) is

monotonically non-decreasing in time. 
- Since the constant k can be chosen arbitrarily small, for any initial value u 0 > U in 
ci there exists a k such that u <uo. Thus we only need to prove that u(t; u) blows up 
in finite time. We apply Lemma 4.1 to u(i;u) and get 

1	1 2-+I_(p_i) ? 
P01 11	+Im_p 

1P	U

p - i	 JJQ 

^: zoI(min o)	11 um-
JJQ 

for any r E (0, T), where T +00 is the maximal existence time of u(t;	Thus there

exists a constant C > 0 such that 

A
<	for all T E (0,T).	 (4.22) 

Assume by contradiction that T = +. Since m < p and u(t;) is non-decreasing, 
(4.22) implies that u is unbounded as i — +. Namely, we first prove that (4.22) 
implies the unboundedness of fn u(r) as r - + and that this in turn implies that the 
hypotheses of Lemma 4.4 are satisfied for u 0 = u(r; ), for sufficiently large r. Then 
finite time blow-up will follow, which contradicts the hypothesis T = +oo and the proof 
will be complete. 

Take B and y as in Lemma 4.4. As remarked above we only need to prove the case 
y < 0. Let 11 be an open set such that B ç B. Then by the Holder inequality and
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(4.22) we get

B. I r= ff	1 
B. x[O,r] 

=11 B. x[O,r]
p-rn	 - (JIB.	

p - rn+1 / 
	 -(pm) 

	

X(O,T) /	\JJB.XEO,TJ 

__L__ _L1!i.0	\TT 

	

< CP-"+' TP-rn+l	 u(r) 
. 

for all r E (0, +). Hence, for a constant C 1 > 0, 

1B. u(r) > C1 7- 

for all T E (0, T). Moreover, for some constant C2 > 0, 

fB
P--iu(r) ^ minB.11of u(r) 2 C2
T>(_171

 B.	 mina 

where the last inequality holds for sufficiently large r. Then for sufficiently large T 
condition (4.20) is satisfied and finite time blow-up follows by Lemma 4.4. 

Let a < 0 in ft Then, by Proposition 3.4/(iii), there exists a non-trivial stationary 
solution u of problem (1.1). Hence, for any initial value u 0 such that 0 < u 0 < u in 

, the solution of problem (1.1) is global. This completes the proof U 
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