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Optimal Stable Solution of Cauchy Problems

for Elliptic Equations 

U. Tautenhahn 

Abstract. We consider ill-posed Cauchy problems for elliptic partial differential equations 
uc t - Lu = 0 (0 < t < T, x E ci C R") with linear densely defined self-adjoint and positive 
definite operators L : D(L) C H - H where H denotes a Hilbert space with norm and 
inner product (.,.). We assume that instead of exact data y = u(x,0) or y = ut(x,0) noisy 
data y 6 = u 6 (x,0) or = u(x,0) are available, respectively, with liv - Y6 11 < 8. Furthermore 
we assume certain smoothness conditions u(x,t) E M with appropriate sets M and answer the 
question concerning the best possible accuracy for identifying u(x,t) from the noisy data. For 
special sets M the best possible accuracy depends either in a Holder continuous way or in a 
logarithmic way on the noise level 8. Furthermore, we discuss special regularization methods 
which realize this best possible accuracy. 

Keywords: Ill-posed problems, elliptic partial differential equations, Cauchy problems, optimal 
regularization methods, optimal error bounds 
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1. Introduction 

We consider the elliptic equation 

u 11 —Lu=0	for O<t<TandxEQcR n	
(1.1) 

where L D(L) c H - H denotes a linear densely defined self-adjoint and positive 

definite operator with cigenvalues l (i > 1) such that 

0<1 1 12	...	and	12—+cx for i—*oo 

and eigenelements u, that form an orthonormal basis in a real Hilbert space H with 
norm and inner product (, ). A first example for (1.1) is the Laplace equation in 

two dimensions

	

Ujj + u 1 = 0	for t E (0, T) and x E (0, 7r))	
(1.2) 

	

u(0,t)=u(ir,t)0	for te [0 , T]	 J 
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in which the eigenvalues 1 i and eigenelements u i of L: Hol 	fl H 2 (0, 7r) C H —* H

with H = L'(0, 7r) are given by 

z 2	and	u = ^2_ sin(ix) 

(i ^! 1). A second example for (1.1) is the Laplace equation in three dimensions 

	

uu+u2,,+u 22 = O	for tE(O,T)andxEcl=(O,c)x(o,d))
(1.3)


	

u(x,t) = 0	for t E [O,T] arid xE Q	
J 

in which the eigenvalues lij and eigenelements u ij of L : H(Q) fl H2 (Q) C H —i H 
with H = L 2 (Q) are given by 

j 
2	 2 

	

(zir\	/ir\	2	. i7TX1	31rX2 

=	
+ 1.d)	

and u =	sin— 
C 

sin —a-- 

(i, )' > 1) (see, e.g., [4]). Connected with equation (1.1) we formulate the two following 
problems. 

Problem (P1) (Identification of u(x,t) from u(x,O)). Given u(x,0) = 0 and 
noisy data u 6 (x,0) E H = L2 (Q) to u(x,O), find (for some fixed t E (0,T]) the solution 
u(x,t) of problem (1.1) for x EQ. 

Problem (P2) (Identification of u(x,t) from uj(x,0)). Given u(x,0) = 0 and 
noisy data u(x, 0) e H = L2 (Q) to u t (x, 0), find (for some fixed t E (0, T]) the solution 
u(x,t) of problem (1.1) for x E Q. 

Problems (P1) and (P2) for the Laplace equation (1.2) are the classical ill-posed 
problems of Hadamard (cf. [5]) for which there do not exist any solutions in general. 

If for problem (P1) the noisy data are given by u 6 (x,0) = U, then we have 
a solution u 6 (x, t) = Sfl kzkcosh ki however though u 6 (x, 0) and its first and second 
derivative tend to zero for k - c, the corresponding solutions u 6 (x, t) tend to infinity 
for any t E (0,T] and x  (0, 7r). 

If for problem (P2) the noisy data are given by u(x,O) = 
9, then we have 

a solution u 6 (x,t) = sin kz,nhk however though u(x,0) and its first and second 
derivative tend to zero for k - the corresponding solutions u 6 (x,t) tend to infinity 
for any t E (0, T] and x  (0,7r). 

Our formulated problems (P1) and (P2) are ill-posed: their solutions (if they exist) 
do not depend continuously on the data. Since the data y = u(x, 0) for problem (P1) and 
Y = u i (x, 0) for problem (P2), respectively, are based on (physical) observations and not 
known with complete accuracy (the known noisy data are y 6 = U 6 (x, 0) for problem (P1) 
and y6 = u(x, 0) for problem (P2), respectively), for a stable numerical approximation 
of the solution u = u(x, t) of problems (P1) and (P2) some regularization technique has 
to be applied, which provides a sequence of approximations u(x, t) Ra(t)y 6 with 
property u(x,t) - u(x,t) as S := Ily - YII - 0 where the regularization parameter
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= a(5) has to be chosen properly. Hence, regularized solutions u, = U 6 (x, t) depend 
continuously on the data. However, the convergence of u 6 to u can be arbitrarily slow 
without assuming additional quantitative a priori restrictions on the unknown solution 
u, which is typical for ill-posed problems. Quantitative a priori restrictions that will 
work in many ill-posed problems (and enable us to estimate the convergence rate) consist 
in imposing a bound E on the (unknown) solution and a finite number of it's derivatives. 

Let us describe our quantitative a priori information concerning u(x, t) in more 
detail. We introduce a Hilbert scale (Hr)rE+ (cf. [101) according to H0 = H = L2(9) 
and Hr = D(L) where

II hu IIr = IILu II	(r E R)	 (1.4) 

is the norm in Hr and require for both problems (P1) and (P2) the a priori smoothness 
condition concerning the unknown solution u according to 

u(x,t) E M,E = {u(x,t) E H II u ( x , T)IIp E for some p2 o}.	(1.5) 

For example, assumption (1.5) means for problem (1.3) that IIu(x,T)11L2(cI)	E in case 
p = 0 or Iu1 11 (x,T) + u 1 2 z 2 (x , T )11L 2 (n)	E in case p = 2. The larger p, the more

restrictive is assumption (1.5). 

Any operator R(t) H - H can be considered as a special method for identifying 
the solution u(x,t) of problems (P1) or (P2) from noisy data y6 = u t (x,0) E H or 

= u(x, 0) e H, respectively; the approximate solution to problem (P1) or (P2) 
is then given by R(t)y 6 . We introduce the worst case error L(5,R(t)) for identifying 
u(x,t) from y 6 E H under the conditions II - y < b and u(x,t) E M,E by 

R(t)) = sup { II R ( t ) y6 - u(x, t )II I u(x, t) e M,E, Y 6 E H, Ily - y6 :5 &}:	(1.6) 

This worst case error characterizes the maximal error of an arbitrary method R(t) if the, 
solution u(x, t) varies in the set M,E given in (1.5). Now we ask the question concerning 
the magnitude of the worst case error A(, R(t)) for 'optimal' methods R(t) : H - H 
that minimize the worst case error (1.6) over all methods R(t) H -* H. In Section 2 
we review a general formula for the best possible worst case error 

w(5, t) = inf i(t5, R(t))	 (1.7) 
R( t) 

which shows us in which kind this best possible worst case error depends on the noise 
level 5. In Sections 3 and 4 we apply this general optimality result to the above two 
problems (P1) and (P2). We prove that (8, t) = c 1 6' f [In 1_P4. for problem (P1) and 
W(6, t) = c25 [In ]' for problem (P2) with certain constants c 1 and c2 . In 
Sections 5 and 6 we discuss special regularization methods for problems (P1) and (P2). 
We construct regularized approximations u,(x, t) = R0 y 6 to their unknown solutions 
u(x, t) (with y6 = u 6 (x, 0) or y6 = u(x, 0), respectively) that guarantee 'optimal' error 
bounds II u ( x , i)— u(x, )II	(5, t), hence, the constructed approximations u,(x, t) are 
as accurate as possible in terms of the given information Ily - y S and (1.5). These 
constructed approximations require the knowledge of the smoothness parameter p, the 
a priori bound E and the noise level S.
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2. Optimal error bounds and regularization methods 

In this section we consider arbitrary ill-posed inverse problems 

Ax=y	 (2.1) 

where A E £(X, Y) is a linear injective bounded operator between infinite-dimensional 
Hilbert spaces X and Y with non-closed range R(A). Throughout this section we assume 
that y 6 E Y are the available noisy data with ii y - y6 6. Any operator R: Y - X can 
be considered as a special method for solving equation (2.1); the approximate solution 
to equation (2.1) is then given by Ry6. 

Let M C X a bounded set: We introduce the worst case error (6, R) for identifying 
x from y 6 E Y under the assumptións]]y -	:5 6 and x E M according to 

A(6, R) = sup {IIRY 6 - x ii x EM, y6 E Y, il Ax - y ii 5 o}.	(2.2) 

This worst case error characterizes the maximal error of the method R if the solution x 
of problem (2.1) varies in the set M. Parameter dependent methods R = R6 are called 

(i) optimal on the set M if (8, R6 ) = iflfR Y—.x (6, R) 

(ii) order optimal on the set M if (6,R5 ) cinfR (ö,R) with c > 1 
For a general discussion of optimality of parameter-dependent regularization methods 
R6 in the special case that the set M is given by 

M = { E X I x = (A*A)v, li v il <E, p > o} 

we refer to [12, 14, 16, 191; concerning order optimality we refer to [1, 2, 12, 20].

In this section we review some optimality results if the set M is given by 

M,E = { X E X x = [(AA)] v, jjvjj E}	 (2.3)


where the operator function p(AA) is well defined via spectral representation (AA) = fa 
f0 (pA)dE where A * A =	) dE,, is the spectral decomposition of A * A, {E,,} denotes 
the spectral family of the operator AA and a is a constant with 11A*A11	a. In the

case of compact operators A E £(X, Y) the operator function ça(AA) attains the form 

(AA)x = 

for all x E X, where A. (i > 1) are the (positive) eigenvalues with A l 5 A 2 < 
and A - 0 for z - oc, and u i are the eigenelements of the compact operator A*A E 
£(X, X). 

Let us motivate the practical relevance of restricting attention to the general source 
set (2.3). In different ill-posed differential equation problems (2.1) additional quantita-
tive a priori restriction is given by a certain smoothness of the unknown solution x E X.
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Such smoothness conditions can be reformulated into equivalent conditions x E M,E 
with certain functions = () which generally are not of the form cp(.X) = ). Hence, 
the set M,E does not coincide with the above set M in general, and the general opti-
mality results known for the above set M cannot be applied. Let us discuss this fact 
for the heat equation problem backward in time (cf., e.g., [17]) in which the tempera-
ture u(x,t), 0 < t < T, has to be determined (for any fixed t E [0,T)), while (noisy) 
temperature data for u(x,T) are given and u = u(x,t) satisfies the evolution equation 

uj+Lu=0	(O<t<T) 

with operators L as in Section 1. If we formulate this backward heat equation problem 
as an operator equation Au(x,t) = u(x,T), A : H = L 2 (l) -* L2 (), and if the 
smoothness condition 

u(z,t) E M = {u(x,t) E H IU(X,O)IIp <E, p ^! o} 

is assumed, then this condition can be reformulated into an equivalent condition u(x, t) E 
M, E with given by

ink]. 

Now Theorem 2.2 (cf. below) can be applied and one obtains that the temperature 
u(x,i) depends in a Holder continuous way on the final data u(x,T) for any i E (0,T), 
and in a logarithmic way in the case t = 0, p > 0. For the special case i E (0,T) and 
p = 0 this result can also be obtained by applying the 'method of logarithmic convexity' 
(cf., e.g., 

For our formulated problems (P1) and (P2) in Section 1 we will see in Sections 3 and 
4 that the specific a priori restriction (1.5) on the unknown solution can be reformulated 
into equivalent conditions (2.3) with special functions p = (A) that can be given in 
parameter representation. This reformulation enables us to apply optimality results 
known for 'general' source sets (2.3). 

In order to derive explicit (best possible) error bounds for the worst case error 
R) defined in (2.2) and in order to obtain optimality results for special regulariza-

tion methods we assume in this section the following. 

Assumption 2.1. The function W : (0, a] -* (O,) in (2.3) (where a is a constant 
with II AA II <a) is continuous and satisfies 

(i) lim—o p(A) = 0 

(ii) (A) is strong monotonically increasing on (0,a] 

(iii) p(.X) = p'()) (0,(a)1 -* (O,a(a)] is convex. 

The following theorem gives a formula for the best possible worst case error inf H (6, R). 
The proof of this formula can be found in [17] and follows some ideas given in [19] (where 
the case p(A) = A" (p > 0) is treated) and some ideas given in [13: Theorem 2.10].
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Theorem 2.2. Let M,,E be given by (2.3), let Assumption 2.1 be satisfied and let 
E a(A*A(A*A)) where o(AA) denotes the spectrum of the operator A*A. Then 

/ 52 \ 
inf (5, R) = E p_1	

(2.4) R 

Note that the condition .j E or(A'Aço(AA)) can only hold (for sufficiently small 
5) provided problem (2.1) is ill-posed, which means in the compact case that the eigen-
values A i of the operator AA tend to zero. For well-posed problems (2.1) condition 

E a(AA(A'A)) can never hold for sufficiently small 5, hence this condition ex-
cludes the class of well-posed problems. 

Furthermore, in [17] there has been proved that there are special regularization 
methods that realize the best possible worst case error given on the right-hand side 
of (2.4). In the following considerations we review two special methods: the method 
of generalized Tikhonov regularization and the method of generalized singular value 
decomposition. 

In the method of generalized Tikhonov regularization a regularized approximation 
X' is determined by solving the minimization problem 

minjQ (x),	.Ja(X) = lAx	6 ll 2 +all[cp(A*A)]xll 2	(2.5) zEX 

or, equivalently, by solving the Euler equation 

(A*A + a[o(A*A)]_l)x = A*yö.	 (2.6) 

This method appears to be optimal on the set M E given by (2.3) provided the reg-
ularization parameter a is chosen properly. For this method the following statement 
holds (cf. [17]). 

Theorem 2.3. Let M,E be given by (2.3), let Assumption 2.1 be satisfied, ço(A) 
(0, a] - R be two times differentiable, p(A) be strong convex on (0, p(a)] and 
ap(a). lithe regularization parameter a is chosen optimally by 

_____________
 

(E)

5/5
a 

=
	

with A = p	 (2.7) 

then for the Tikhonov regularized solution x 6 	R0 y 6 defined by (2.5) the optimal error 

estimate

A(6, R,,) <EP ()
	

.	 (2.8)


holds. 

Proof ideas. From [19: Lemma 2.2] we have 

l2	 2
(5,R)= inf _(I-RaA)p(A*A)(J_RQA)* + 

I 
E2 a2 ç(A)	52A2(A) 

o<<1 A>O 
= inf sup	

[A (A) + a]2 + (1 - )[ A ( A ) + aj2}
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Now we search for a stationary point (ao, eo, A0 ) of the expression { . . } as a function of 
a, and A and find a 0 as given in (2.7) and o = We substitute a 0 and o into 
the expression {...} and prove that this expression as a function of A > 0 is bounded by 
E/p()U 

Now let us review the method of generalized singular value decomposition. We 
describe this method for the important case of compact operators A (although this 
method can be adapted also to the non-compact case). In this method a regularized 
approximation x is determined by 

=	
(y6,vj)	

+	s1(y6, vi) u1 
Si

(2.9) 

= >1 (y6,v t)	i{A*5 
s i	a 

3 ^ v,& 

where {s,u,v1 } denotes the singular system of the (compact) operator A E £(X, Y) 
satisfying Au = s 1 v 1 and A'v = s 1 u. This method appears to be optimal on the set 
M,E given by (2.3) provided the regularization parameter a is chosen properly. For 
this method the following optimality result can be established (cf. [171), where the ideas 
of proof are similar to those of Theorem 2.3. 

Theorem 2.4. Let M,E be given by (2.3), let Assumption 2.1 be satisfied, '(A) 
(0, a) - R be two times differentiable, p(A) be strong convex on (0, p(a)) and .	<

a(a). If the regularization parameter a is chosen optimally by 

	

p(Ao)+Ao'(Ao)	
) 

with A0p(Ao)= 
(i	

(2.10) a =	ço'(Ao) 

then for the regularized solution x	Ry6 defined by (2.9) the optimal error estimate Ck 

(2.8) holds. 

3. Optimal error bounds for problem (P1) 

In this section we consider the elliptic problem 

uj—Lu=0	for 0<t<TandxEZCP..")
(3.1) 

u(x,0)=0	for xEcl	 J 

and treat the question concerning the best possibe worst case error for identifying u(x, t) 
(for some fixed t E (0, TJ) from noisy data u 6 (x, 0) provided II u (x , 0)— u 6 (x, 0)11 5 S and 
u(x,t) E M,E where ME is given by (1.5). Let us formulate the problem of identifying 
u(x,t) from (unperturbed) data u(x,0) as operator equation 

A(t)u(x,t) = u(x,0)	 (3.2)
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with linear operator A(t) E £(H, H). By the Fourier method one has the unique solution 
00 

u(x,t)	(u(x,0),u1) cosh (/it)u 
i= 1 

of problem (3.1), consequently,
- (u(x,t),uj) (u(x,0),u,)	

cosh(t) 
which shows us that the operator A(t) : H - H of problem (3.2) has the representation 

(t(xt)u)


	

A(t)u(x, t) =	
cosh (v'7t) u 

Hence A(t) E £(H, H) can be written in the form 

	

A(t) =	
1

(3.3) 
cosh(v'TEt) 

We realize that A(t): H -p H is a linear self-adjoint compact operator with eigenvalues 
Cos	t) and eigenelements u. Since s 1 decay exponentially fast we realize that 

problem (3.2) is severely ill-posed. The ill-posedness becomes worse as t increases. 
Now let us reformulate condition (1.5) into an equivalent one of form (2.3) with a 

special function p = 
Proposition 3.1. Consider the operator equation (3.2). Then the set M,E given 

in (1.5) is equivalent to the general source set M,E given in (2.3) provided ço = (.\) is 
given (in parameter representation) by 

1 

	

cosh 2(v'it)	I I	(l <1 < oc).	 (3.4) 
(1) -	cosh2(v"it) 

cosh 2('/T) 
Proof. From A(t)u(x,t) = u(x,0) for 0< t <T we have 

(u(r,O),u1) 
= (u(x,t),u) - (u(x,T),u1) 

cosh(/it) - cosh(/iT) 
which gives

u(x,T) - cosh( VET) 
cosh(V'Zt)

u(x, t). 
-  

Hence, the inequality lI u(x , T)IIp <E is equivalent to the inequality 

II n cosh( ./ET) 
u(x,t) < E L2 

cosh(VLt)	II 
which shows us that the operator function co(AA) in (2.3) has the representation 

cosh 2(/Et) p(AA) = ________ (3.5) 
cosh2(v'LT) 

Together with (3.3) we obtain that p is given by (3.4)1
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The function = (A) (A E (0, cosh 2 Vli) 1) which is defined in parameter represen- 
tation by (3.4) possesses the following properties. 

Proposition 3.2. The function W = p(A) defined by (3.4) is continuous and satis-
fies the properties: 

(i) lim \_ (A) = 0. 

(ii) v(A) is strong monotonically increasing. 

(iii) p(A) = AV — '(A) is strong monotonically increasing and possesses the parameter 
representation	 . 

cosh2(v"it) 
A(l) =

cosh 2(T) 

J	
(11	i <	).	 (3.6) 

P( l) = i"
cosh 2 

1 

(01 T) 

(iv) p(A) is strong monotonically increasing and possesses the parameter repre-
sentation

	

A(l)	1—P	 1 

- cosh 2(/iT) I 

	

P _ (i) = 1	
cosh2 (	t)

	

(l	1 <no).	 (3.7) 

cosh 2 (v"iT) J 

(v) For the inverse function p

	

	of p there holds for any fixed t e (0, T] 

—2p4 i 

	

P_ (A) = ()
A	

[ in =]	
(1+0(1))	for A - 0.	(3.8) 

Proof. Consider A(l) given by (3.4). From 

t sinh(v"it)

	

<0	 (3.9) 
cosh (t)  

we realize that A(l) is strong monotonically decreasing with lim_ A(i) = 0. Conse-
quently,

= 

	

urn (A) = urn i" 
cosh 2 (V' t)	0 

A—.O	 cosh 2 (VII T) 

hence assertion (i) is proved. From 

	

- - cosh2(V't) {p_vtth(Vit)+ViTth(ViT)} <0	(3.10) o(l) - 
lP' cosh 2(V'iT) 

(note that 1(t) = ttanh t is strong monotonically increasing) we obtain together with 
p'(A) =	and A(1) < 0 that assertion (ii) holds. From assertions (i) and (ii) it 
follows that	'(A) is strong monotonically increasing, consequently, p(A) is strong
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monotonically increasing, where (3.6) follows from the parameter representation of 
which is given by

cosh 2(vt) (1) 
= 

	

cosh 2(T)	
(l	1 < oc). 1 

cosh 2(t) 

Now assertion (iv) is a direct consequence of assertion (iii). In order to prove assertion 
(v) we show that lim—o F(A) = 1 where F(A) is given by 

4	 2 1p4
In F(A)=_'(A)() 	] 

We use (3.7), note that .X(l) is strong monotonically decreasing with lim j... )(l) = 0 
and obtain together with 

tim (4 cosh 2(v"iT)1'H 
cosh 2 ('/ t)= 1 

	

I-00	 cosh 2(V'iT) 

that

cosh 2 (	t) __________	 '4ri	 2p4 
lim F(A) = lim l 

'	cosh 	
I4i cosh2 (	T)J	

L 
in { 12 cosh(	T) 

urn 1 1	£	 2p 
=

1— LT 
in {1 2 cosh(T)}] 

=1 

and the assertion is proved I 

Remark 3.3. Note that in case p = 0 the function p can be given explicitly. In 
this case we obtain from (3.7) that 

P- 1 (A) = [cosh (arcoshzzr)] 2 .	 (3.11) 

In our next proposition we formulate conditions under which the function p is strong 
convex. 

Proposition 3.4. The function p defined by (3.6) is strong convex if and only if 

	

p2	 >0	 (3.12) 

holds where the functions 01 and 02 with T =are given by 

= 2xtarihx - rxcoth(2rx) -	 (3.13) 

2 (x) =xtanhx [xcoth(2x) - rxcoth(2rx)J.	 (3.14)
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Proof. From p" =	and A < 0 we obtain that p" > 0 is equivalent to 
<p.\. Note that A(l) = p(l)r(l) with r(l) = cosh 2 (v"it), hence the inequality p" > 0 

is equivalent to the inequality

p-22 <p/5.	 (3.15) 

We substitute x = ../1T, introduce the constant r	 1= and obtain by. elementary

calculations that (3.15) is equivalent to the inequality 

p2 +,bi(x)p+,b2(x) >0. (3.16) 

Consequently, p is strong convex if and only if (3.16) holds for all x E [/iT,c). Now 
it can be shown that both functions 'i and 02 are monotonically increasing on R+ for 
any fixed T E (0, 11. Consequently, p is strong convex if and only if (3.12) holds I 

Remark 3.5. Since the function g(x) = x coth(2x) is strong monotonically increas-
ing on we find that 02( x ) > 0 for x > 0 and 0 < 7- < 1, consequently, in the special 
case p = 0 we have the following result: 

(i) Let p = 0 and t < T. Then the function p defined by (3.6) is strong convex. 

Furthermore, in the special case t = T (i.e. r = 1) we have 5 2 (x) = 0, consequently, 
from Proposition 3.4 we conclude in this case the following result: 

(ii) Let p > 0 and t = T (i.e. T = 1). Then the function p defined by (16) is strong 
convex provided

1 + v'1Tcoth(2/iT) - 271Ttanh(7iT).	 (3.17) 

Since the function h with T = 1 is strong monotonically increasing with lim...+o ,bi(z) 
= —1 and 0 1 (x 0 ) = 0 for x 0 E (1.00955,1.00956) we obtain: 

(iii) Inequality (3.17) is satisfied for all /iT > 0 provided p ^! 1 holds. 

(iv) Inequality (3.17) is satisfied for all p> 0 provided ./i7T > 1.01 holds. 

Finally, let us discuss the case p> 0 and t < T (i.e. 0 r < 1). In this case we conclude 
from the valid inequality xcoth(2x) -,:^ Txcoth(2Tx) for x > 0 that (3.16) is satisfied 
provided p2 + p[2x tanh x - x coth(2x) - 0.51 > 0 holds, consequently there holds the 
following result: 

(v) Let p > 0 and t < T. Then the function p defined by (3.6) is strong convex 
provided (3.17) holds. 

Now we are in a position to formulate our main result of this section concerning the 
best possible worst case error w(6, t) defined in (1.7) for identifying the solution u(x, t) 
of problem (3.1) from noisy data u 6 (x,0) under the conditions II u (x , 0) - u6 (x,0)II S 
and u(x,t) E M,E where the set ME is given by (1.5). We apply Theorems 2.2 and 
2.3, use Propositions 3.2 and 3.4 as well as Remarks 3.3 and 3.5, and obtain
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Theorem 3.6. Let fr be an eigenvalue of the operator --	Then: 
cosh2(v'iT) 

(i) In case p = 0 and 0 < t <T there holds 

w(8, t) = Scosh Garcoshç) = E+	(1 +o(i)) for 6 0	(3.18)


(Hälder stability). 

(ii) In case p > 0 and t = T there holds under condition (3.17) 

I T

-
w(6,T) = El	= E	 lnj (1 +o(i)) for 6 - 0	(3.19) 

(logarithmic stability), where lo = lo(6) denotes the unique solution of the equation 
l F2 cosh(01T) = 

(iii) In case p> 0 and 0 <t < T there holds under condition (3.12) 
- cosh(/it) w(6, t) = E 1 2 

cosh(/iT)	
.  

-	
(3.20) 

Ef()i1	

11-'f
In -	 (1+o(1)) for 6-40. 

T 6 

4. Optimal error bounds for problem (P2) 
In this section we consider the elliptic problem 

u t j-Lu=0	for 0<t<TadxEçCR")
(4.1) 

u(x,0)=0	for xEl	 J 
and treat the question concerning the best possibe worst case error for identifying u(x, t) 
(for some fixed t e (0,T]) from noisy data r4(x,0) provided I Iug(x,0) - u(x,0)II 6 
and u(x,t) E M,E where M,E is given by (1.5). Let us formulate the problem of 
identifying u(x, t) from (unperturbed) data u t (x, 0) as operator equation 

A(t)u(x,t) = u(x,0). (4.2) 

Applying Fourier's method to problem (4.1) it can be shown (in analogy to Section 3) 
that A(t) E £(H, H) has the representation 

A(t) = VL
.	 (4.3)


sinh(-fEt) 
We realize that A(i) : H -i H is a linear self-adjoint compact operator with eigenvalues 
S1 = sinh(/T) and eigenelements u 1 . Since s i decay exponentially fast we realize that 
problem (4.2) is severely ill-posed. The ill-posedness becomes worse as t increases. 

In analogy to the proof of Proposition 3.1 we can reformulate condition (1.5) into 
an equivalent one of form (2.3) with a special function W =
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Proposition 4.1. Consider the operator equation (4.2). Then the set Mp,E given 
in (1.5) is equivalent to the general source set M,,E given in (2.3) provided = (A) is 
given (in parameter representation) by 

_______ I 
sinh2 (Vi0	I 1 < oo).	 (4.4) 

	

(l) -	
sinh2(t)	(li 

	

-	sinh2 (V1T) J 
In analogy to the proof of Proposition 3.2 it can be shown that the function = 

ç(A) (A E (0, •h4',',—)J) defined by (4.4) possesses the following properties. 

Proposition 4.2. The function = W(A) defined by (4.4) is continuous and satis-
fies the properties: 

(i) lim—o (p(A) = 0. 

(ii) p(A) is strong monotonically increasing. 

(iii) p(A) = A' (A) is strong monotonically increasing and possesses the parameter 
representation

	

A(l)1 -P 
-	sinh2 (V'iT) I 

1	II	(l < 1 < cc).	 (4.5) 

p(l) = l'2(T) 
J 

(iv) p'(A) is strong monotonically increasing and possesses the parameter repre-
sentation

1 
A(l) = l'"	

I sinh2(y'iT) 

	

P (l) =	
sinh2(t)	

(l	I < cc).	 (4.6) 

sinh2 (V'iT) J 
(v) For the inverse function p' of p there holds 

'11	1 12(1_)2._2 
pP_10) = ( 4

\ ) '	In	 (1 + o(i))	for A--+ 0.	(4.7) 

Remark 4.3. Note that in case p = 1 the function p-1 can be given explicitly. In 
this case we obtain from (4.6) that for any t E (0, T] there holds 

A[sinh (LT arsinh*)]
2

.	 (4.8) p'(A) =
	[+arsinh(*)12 

In our next proposition we formulate conditions under which the function p is strong 
convex. The proof of this result can be done in analogy to that of Proposition 3.4.
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Proposition 4.4 The function p = p(.\) defined by (4.5) is strong convex if and 
only if

p2+i (VII I T)p+b2(/i7T)>0	 (4.9) 

holds. In (4.9) the functions 0 1 and b2 are given by 

bi(x) = 2xcothx - 1 - g(rx)	 (4.10) 

= (xcothx - 1)[g(x) - g(7-x)]	 (4.11)


with r = + and
x	 x2 g(x)= cothx+ 2(h) .	 (4.12) 

Remark 4.5. Since 02 (x) > 0 for x > 0 and 0 < r < 1 we obtain for the special 
case p = 0 the following result: 

(i) Let p = 0 and t < T. Then the function p = p(A) defined by (4.5) is strong 
convex. 

Furthermore, in the special case t = T (i.e. T = 1) we have 2 (x) = 0, consequently, 
from Proposition 4.4 we conclude in this case the following result: 

(ii) Let p> 0 and t = T (i.e. T = 1). Then the function p = p ) defined by (4.5) 
is strong, convex provided

p> —0 1 (/1T).	 . (4.13) 

Since the function 01 with T = 1 is strong monotonically increasing with lim...+o iJi i (x) 
= —1 and 0 1 (xo) 0 for x 0 e (1. 74389, 1.74390) we obtain the following: 

(iii) Inequality (4.13) with r = 1 is satisfied for all /i7T> 0 provided p> 1 holds. 

(iv) Inequaliti,, (4.13) with r = 1 is satisfied for all p> 0 provided /iT> 1.744. 

Finally, let us discuss the case p> 0 and t < T (i.e. 0 T < 1). In this case we conclude 
from the valid inequality g(x) ? g(Tx) for x > 0 that (4.9) is satisfied provided (4.13) 
holds with r = 1, consequently there holds the following result: 

(v) Let p > 0 and t < T. Then the function p = p(A) defined by (4.5) is strong 
convex provided (4.13) holds with r = 1. 

Now we are in a position to formulate our main result of this section concerning the 
best possible worst case error w(, t) defined in (1.7) for identifying the solution u(x, t) 
of problem (4.1) from noisy data u(x, 0) under the conditions II u t( x , 0) - u(x, 0)115 6 
and u(x,t) E Mp,E where the set.M ,E is given by (1.5). We apply Theorems 2.2 and 
2.3, use Propositions 4.2 and 4.4 as well as Remark 4.5 and obtain 

Theorem 4.6. Let . be an eigenvalue of the operator 
sinh)T) 

Then: 

(i) In case p = 0 and 0 < t <T there holds

'-4. - sinh(t) = E
4.	 (1 +o(i)) for	:0	(4.14) w(ö,t)=El 2  

o sinh(/iT)	L2lnki
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____  where 1 is the (unique) solution of the equation	 = - 62 (Holder stability). 

(ii) In case p> 0 and t = T there holds under condition (4.13) 

P 

w(ö, T) = E l	= E	in ] _(1 + 0(1))	for b -40	(4.15) 

(logarithmic stability). 

(iii) In case p> 0 and 0 < t < T there holds under the condition (4.9) 

_ sinh(./it) 
w(6, t) = E 1 

2 _________ 

sinh(	T) 

S	i	( 1)11	 (4.16) 

=Ef()
In 	(1+0(1)) for 8-0. 

Note that in case p = 1 the best possible error bound w(S, t) can be given explicitly. 
In this case we obtain from (4.8) that 

STsinh (+arsinh()) 
(6, t) =

arsinh(f') 

Furthermore note that for t < T the best possible error bounds for problem (P2) given 
in Theorem 4.6 are 'smaller' than those for problem (P1) given in Theorem 3.6. 

5. Optimal regularization methods for problem (P1) 
In Section 3 we have proved that the best possible worst case error for identifying 
u(x,t) in (3.2) from noisy data u 6 (x,0) under the conditions Iu(x,0) - u6(x,0)II 

and u(x, i) E M,E (with M,E given by (1.5)) is given by (3.18)- (3.20) (in cases p = 0 
and 0 < t < T, p > 0 and t = T, and p > 0 and 0 < t < T, respectively). From


	

these results we realize that under the above conditions 1u(x,0) - u 5 (x,0)II	S and 
u(x,t) e M,E there do not exist any methods R(t): H - H which guarantee an error 
bound for II R( t )u6 (x , 0) - u(x, t )Il which is smaller than those given on the right-hand 

	

side of (3.18) - (3.20), respectively.	- 

In this section we consider the methods of generalized Tikhonov regularization and 
generalized singular value decomposition, apply both methods to problem (P1) and 
show how to choose the regularization parameter such that both methods guarantee the 
optimal error bounds given by (3.18) - (3.20), respectively. These optimality results will 
be obtained by applying Theorems 2.3 and 2.4, respectively. 

For problem (P1) we obtain together with (3.3) and (3.5) that the method of gen-
eralized Tikhonov regularization (2.5) consists in the determination of a regularized 
approximation u = U' (x, t) by solving the minimization problem 

	

z cosh( VT	11 
minJa(u), J. (u) = II	1	

_u6(x,O)ll 

2 

+aIIL2	
T) 

u 
2

I 

uEH	 Ilcosh(v't)	 II	cosh(v"Lt) II
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Hence u = U' (x, i) is the solution of the Euler equation 

(	1	 cosh 2 (JLT)	 _________ 
(VE +L 

cosh 2(t) 
)u(xt) 

= cosh(t) 
u 6 (x,O)	(5.2) 

of the functional Ja, or equivalently, u = u(x,i) is the solution of the symmetric, 
positive definite operator equation 

(A(t) +aB(i))u(x,t) = u6(x,0)	 (5.3) 

with A(t) given by (3.3) and B(t) given by 

B(t) = LP cosh 2 ('L T) 
cosh(JEt) 

Note that (5.3) is the generalized Lavrent3 ev method for solving equation (3.2). The 
'ordinary' Lavrentjev method (cf. [111) is characterized by (5.3) with cB(t) replaced 
by al; in our method (5.3) we have a generalization in such a way that 'optimal' error 
bounds can be guaranteed. A further equivalent representation of (5.2) is given by 

A(t) u 6 (x, t) =(I+  aC)' u 6 (x, 0)	 (5.4) 

with C = LP cosh 2 (VTT) which shows us that the regularized solution u(x, t) can be 
computed by the following steps:	 - 

(i) Given noisy data u(x, 0), compute 'smoothed' data u(x, 0) by solving the 
symmetric positive definite operator equation 

(I + cC)u(x, 0) = u 6 (x, 0). 

(ii) Given 'smoothed' data u(x, 0) from step (i), solve the unregularized problem 

A(t)u(x,t) = 

i.e. solve problem (3.1) with Cauchy data u(x,0) = u(x,0). 

A similar regularization idea has been used by Hao (cf. [7]), where the data smooth -
ing step (i) has been done by mollification techniques and where order optimal error 
bounds have been obtained. 

Note that for any fixed t = to E (0,T] the computation of u(x,to) by directly 
solving the (well-posed) regularized problems (5.2), (5.3) or (5.4), respectively, is quite 
expensive (especially in cases n 22) since the generation of the (discretized) operators 
A(t0 ), B(to) and C requires the multiple solution of the 'direct' problem (3.1) with 
different boundary conditions, and since the corresponding (discretized) operators are 
dense. From the computational amount of view it seems to be better to use gradient type 
methods for minimizing Tikhonov's functional J,,, e.g. the classical gradient method 

[cosh(v/L-to—UI(X,O)) 
Uk+1 Uk_7k Lcosh(vZto) {	

cosh2(T)	
] + Uk}
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(k = 0, 1, ..., uo = 0) with suitable steplength parameters 7k, or some conjugate gradient 
type methods which turned out to be quite effective also for (ill-posed) large scale 
problems (cf., e.g., [6]). For integer p-values one step of the above gradient iteration 
can effectively be realized by executing following well-posed computational steps: 

(a) Compute the element wi(z) [h(/'Ej)] Uk which can be obtained by w i (x) = 
v(x,0) where v(x,t) is the solution of the well-posed problem 

vg—Lv=O	for tE(O,to)andxEclCR') 
vj(x,O)=O	for x 	 (5.5) 

V(X, to) =uk	for xEcl.	 J 

rcosh(v'iiio)] [w i (x) - u 6 (x,0)] which can be (b) Compute the element w2(x)	lcosh(v'i.T) 
obtained by W2 (X) = v(x,to) where v(x,t) is the solution of the well-posed problem 

vjj—Lv=0	 for tE(0,T) and xElCRfl 

v j (x,0)=0	 for xEcl	 (5.6) 

v(x,T)=w1(x)—u6(x,O)	for xecl.	 J 

(c) Compute the element w3(x) = [h(,-T)] w2 (x) which can be obtained by 

W3 ( X) v(x,0) where v(x,t) is the solution of problem (5.6) with w 1 (x) - u6(x,0) 
replaced by w2(x). 

(d) Compute w4 (x) = LPw3 (x) by solving the problem LPw4 (x) = w3(x). 

(e) Compute U k+1 = Uk - 'yk{ w4( x ) + auk}—
In our following considerations we are going to apply Theorem 2.3 to problem (P1) 

and start our discussions with a proposition that shows us how to compute the optimal 
regularization parameter (2.7) provided the function cp = (A) is given in parameter 
representation. 

Proposition 5.1. Let the function = ( A) in Theorem 2.3 be given in parameter 
representation

AM = i. i (l) 1
(l < 1 < co).	 (5.7) 

(l) = b2 (l) j 

Then for the optimal regularization parameter (2.7) there holds 

1(1o)I'2(lo) (5)2 
1I(10)02(lo) 

where lo is the (unique) solution of the equation 0 I (1) 2 (1) = 

Proof. From (5.7) we have for the functions p ' =	'(A) and p = p(A) the 
parameter representations

(5.8) 

A(l) = 02 (l) ) 

= ,b1(l) J	
(l	1 <cc)	 (5.9)
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and
A(1) = 2(1)	

}
(l	1<	).	 (5.10)


P( l ) = 01 (l)& (1) 

Denote by Ao the (unique) solution of the equation p(A) = -. Due to (5.10). this 
solution can be found from the following two steps: 

(a) Determine lo from the equation 01 ( l ) &2( l ) = 

(b) Compute A 0 = 02(10). 

Now from (b) and (5.9) we have ço'(Ao) = 01 (1) and together with (5.7) we conclude 
that

'(Ao)) =	(la)) = 2(10)	
(5.11)


tii(lo) 

Consequently, the desired formula (5.8) follows from (2.7) together with (a) and (b), 
the equation	'(A 0 ) = b 1 (lo) and (5.11)1 

Theorem 5.2. Consider the operator equation (3.2) and suppose that its unknown 
solution u(x, t) belongs to the set M,E given by (1.5). 11(3.12) and cosh2,/7T) 
hold, then the method of generalized Tikhonov regularization (5.1) is optimal on the set 
M,E provided the regularization parameter a is chosen optimally by 

/it tanh( v/lo	 6 2 a0
p +	T tanh(T) —	t tanh(t) ()	

(5.12) 

where 10 is the (unique) solution of the equation 

12 cosh(VT) = E
(5.13) 

In the case t = T and p> 0 there holds 

11 El62a0 = - Iln	 (1+ 0(1)) fo6 —* 0	 (5.14)

L 6E 

and in the caseO < t < T and p > 0 there holds 

a0 = --- ()2(1 + 0(1))	for S — 0.	 (5.15) 

Furthermore, there holds the optimal error estimate II u 0 ( x , t ) - u (x , t )II	w(6,t) where

w(S, t) is given by (3.18) — (3.20), respectively. 

Proof. The result of Theorem 5.2 follows from Theorems 2.3 and 3.6 where it 
remains to show that (5.12) - (5.15) hold. The representations (5.12) and (5.13) follow
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from (2.7) and Proposition 5.1 by straight forward calculations and use of (3.9) and 
(3.10). In the case t = T and p > 0 we obtain

\ 

	

=	tanh(/i	
2

T) (-)	
(5.16) 

p 

where 10 is the solution of (5.13), or equivalently, A 0 is the solution of p(A) = where 
A0 and 1 0 are related by A0 = 10 P . Now we apply (3.8) and obtain 

	

Ao = 
p' () =	

in	+ 0(1))	for 6 - 0. 

Consequently,since 1 = A0 P, 

/-IT 	[ln](1+o(1))	for 6-0.	 (5.17) 

Furthermore, since 1 - -- for 6 -* 0 we have tanh('?T) - 1 for 6 - 0 which 
together with (5.16) and (5.17) yields (5.14). In the case 0 t < T and p ^ 0 we 
proceed as follows: for 6 --+ 0 there holds lo -* . Consequently, tanh('/ t) - 1 arid 

i	- tanh("T)	1 for 6 - 0 which together with (5.12) yields (5.15)1 

In the second part of this section we consider the method of generalized singular 
value decomposition, apply this method to problem (P1) and show by using Theorem 
2.4 how to choose the regularization parameter such that this method is optimal on the 
set M,E. 

For problem (P1) we obtain together with (3.3) and (3.5) that the method of gener-
alized singular value decomposition (2.9) consists in the determination of a regularized 
approximation u' (x, t) according to 

(u6(x,0),u)	1 

	

u(x, t) =	 u + -	s (U 6 (X, 0), u 2 ) u	 (5.18) 
Si01 	 a 

	

-	
(u6(x,0),u1) 

u + -{A(i)u6(x,o) -	Si(u6(x,0),u) 
Si	 a 

3 > V' 

with s = cosh(v'It) 
and A(i) = cosh( 

The element w(x) = A(to)u 6 (x,0) can be 

obtained by w(x) = v(x, 0) where v(x, t) is the solution of problem (5.5) with Uk replaced 
by u5 (x, 0). Method (5.18) appears to be very cheap concerning the computational 
amount of work provided the eigenvalues and eigenclements of the operator L are known 
analytically. Note that in the second representation of (5.18) only 'finite' sums occur. 

In our following considerations we are going to apply Theorem 2.4 to problem (P1) 
and start our discussions with a proposition that shows us how to compute the optimal 
regularization parameter (2.10) provided the function W = (A) possesses the parameter 
representation (5.7).	 .
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Proposition 5.3. Let the function p =	in Theorem 2.4 be given in parameter 

representation (5.7). Then for the optimal regularization parameter (2.10) there holds 

'I( 10)02( 10) +'1(lo)'2(lo) 0=

	

	 (5.19)

iL)2(10) 

where 10 is the (unique) solution of the equation '1(1)I'2(1) = 

Proof. The (unique) solution A 0 of equation Aço(A) = (f) 2 in (2.10) can be ob- 
tained by the following two steps: 

(a) Determine lo from .the equation 0 1 (l)7 2 (1) = 

(b) Compute A0 

From (5.7), (a) and (b) we conclude that 

= 72(10)	and	
'(Ao) - 2(10) (5.20) - 

Consequently, (5.19) follows from (2.10), (a), (b) and (5.20) I 
• Theorem 5.4. Consider the operator equation (3.2) and suppose that its unknown 
solution u(x, t) belongs o the set M E given by (1.5). If (3.12) and cosh2./T) 
hold, then the method of generalized singular value decomposition (5.18) is optimal on 
M, E provided the regularization parameter a is chosen optimally by 

•	p+ViTtanh(T) 
=	2	 (5.21)
cosh (/it){p+ /iT tanh(/iT)— .,/ii tanh(v't)} 

where lo is the (unique) solution of equation (5.13). In the case t = T and p > 0 there 
holds

	

fl

l E12' 2

00 =	 - ln 
.. j	) 

(1 + 0(1))	for S -*0	(5.22)
T 

and in the case 0 < t < T and p 2 0 there holds 

4T 11 E12P+) 2^( 
ceo =	In 

7]	
(1 + o(i))	for 5 —+ 0.	(5.23) 

Furthermore, there holds the optimal error estimate II u 0 (x ,t)-u(x,t)II	w(6, t) where

w(S, t) is given by (3.18) - (3.20), respectively. 

Proof. The result of Theorem 5.4 follows from Theorems 2.4 and 3.6 where it 
remains to show that (5.21) —(5.23) hold. The representation (5.21) follows from (2.10) 
and Proposition 5.3 together with (3.9) and (3.10). In the case t = T and p> 0 we use 
that 1 --+ oo and tanh(/iT) --+ - * 1 for S	0 and obtain from (5.21) that 

/i T 
00 =

p cosh 2(/iT) (1 + o(1))
	for S—,0.
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From (5.13) we have cosh2(J1T) = l 7' . y, consequently, 

	

= - 1P+ () (1 + 0(1))	for S - 0. 

Now we use (5.17) and obtain (5.22). Finally we consider the case 0 < t < T and p 2 0. 
For 6 —i 0 we have 10 —s c, tanh(/it) - 1 and tanh(v"iT) -. 1, consequently (5.21) 
attains the form

	

a0 = (T - t) cosh 2(\/10t) (1 + 0(1)).	 (5.24) 

From (5.13) we obtain e"1' = l()(1 + 0(1)) for S —i 0, consequently, 
1	- 4e_211 + 01 

cosh 2 (./it) -	"	" 

	

8 )2*(l	 (5.25) 
+o(1)) for 6-0. 0 2E 

Now we use (5.24), (5.25) and (5.17) and obtain (5.23) I 

6. Optimal regularization methods for problem (P2) 
For problem (P2) we obtain together with (4.3) and (4.4) that the method of generalized 
Tikhonov regularization (2.5) consists in the determination of a regularized approxima- 
tion u = U' (x, t) by solving the minimization problem 

VL	
2	sinh(/LT) 2 

minJa(u), J,(u)=	 u—u(x,0) +a L2	u ,	( 6.1) 
uEH	 sinh('Lt)	 sinh(V'Li) 

hence u = U 6 (x, t) is the solution of the Euler equation 

/	L	psinh2('/LT)'\	___ 	a +aL	 ju (x t) =	 uj(x 0)	(6.2) 
\sinh2 (fEt)	sinh2(v't)	a	sinh(/Lt) 

of the functional Ja, or equivalently, u = u(x,t) is the solution of the symmetric, 
positive definite operator equation 

	

(A(i) + aB(t)) u(x, t) = u(x, 0)	 (6.3) 

	

with A(t) given by (4.3) and B(t) given by B(t) =	sinh2(T) A further equivalent 

representation of (6.2) is given by 
A(t)i4(x,t) = (I+aC)u(x,0) 

with C = L' sinh2 (./T) which can be interpreted as a special data smoothing method 
(see (5.4) for a corresponding discussion for problem (P1)). 

The numerical computation of u(x, t) can effectively be done by using gradient type 
methods for minimizing Tikhonov's functional Ja (see Section 5 for a corresponding 
discussion concerning problem (P1)). 

In order to prove optimality results for method (6.1) we apply Theorems 2.3 and 3.6 
as well as Proposition 5.1, proceed according to the proof of Theorem 5.2 and obtain
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Theorem 6.1. Consider the operator equation (4.2) and suppose that its unknown 
solution u(x, t) belongs to the set M E given by (1.5). If (4.9) and	

sinh2(VTI 
hold, then the method of generalized Tikhonov regularization (6.1) is optimal on ME 
provided the regularization parameter c is chosen optimally by 

cro	 /itcoth(/it)—i = ____________________________________________________ 
p + /1T coth(/iT) - /it coth(/it) ()	 (6.4)


where lo is the (unique) solution of the equation 
11 — P 52 

sinh2(/iT)	 (6.5)


In the case t = T and p> 0 there holds 

io	[In 
i

	
El(S)2
—I	(1+o(1)

p 	S J	
)	for 6 - 0	 (6.6)


and in the case 0 < t < T and p > 0 there holds 

f5\ 
ao = f

- (-) (
1 + 0(1))	for 5 —* 0.	 (5.7) 

Furthermore, there holds the optimal error estimate II u 0 ( x , t) - u(x, t )II	w(S, t) where

i(5, t) is given by (4.14) —(4.16), respectively. 

In the second part of this section we search for optimality results of the method 
of generalized singular value decomposition applied to problem (P2). For this problem 
we obtain with (4.3) that the method of generalized singular value decomposition (2.9) 
consists in the determination of a regularized approximation u	u(x, t) according to 

u(x,t)	 0),	
u +	 Si((x,0),u) u	 (6.8) 

	

Si	
3,<sJ 

= (U'(x,O),u,) 
u j + {A(t)u(x,O) -	S i (4(x0)ui)ui} 

	

Si	
a3i>v 

with 
S, = sinh(/l7t) and A(t) 

= sinhity The element w(x) = A(to)-4(x,0) can be 
obtained by w(x) = Vj(X, 0) where v(x, t) is the solution of the problem 

	

vj—Lv=0	for tE(0, to) and xEQCR' 

	

v(x,0)=0	for XES1 
v(x,to)=u(x,0)	for XEft 

Method (6.8) appears to be very cheap concerning the computational amount of work 
provided the eigenvalues and eigenelements of the operator L are known analytically. 
Note that in the second representation of (6.8) only 'finite' sums occur. 

In order to prove optimality results for method (6.8) we apply Theorems 2.4 and 4.6 
as well as Proposition 5.3, proceed according to the proof of Theorem 5.4 and obtain
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Theorem 6.2. Consider the operator equation (4.2) and 5UO3C that its unknown 
solution u(x,t) belongs to the set Mp,E given by (1.5). 11(4.9) and	

sinhvTT) 
hold, then the method of generalized singular value decomposition (6.8) is optimal on 
Mp,E provided the regularization parameter a is chosen optimally by 

-	 lo{(p - 1) + /iT coth(/!T)} 

	

a0 - 
sinh2 (/t) {p + Vlo coth(Vlo 	- /!t coth(v"ii)} 

where 10 is the (unique) solution of equation (6.5). In the case t = T and p > 0 there 
holds

T 1	E 2P+'(8\2 

ao=—	in7	(-) (i+o(i))	for 6-0 

and in the case 0 < t < T and p> 0 there holds 

4T [ 1	E]2+2Q'—r(	
2 

CIO	

4 
0 =— in 

T—t	
(1+o)	for S-0. 

Furthermore, there holds the optimal error estimate IIu 0 (x, t) - u(x, t )II < w(ö, t) where 
w(, t) is given by (4.14) - (4.16), respectively. 
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