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On the
Uncertainty Principle for Positive Definite Densities

I. Dreier

Abstract. The products of variances of adjoint positive definite densities have a greatest lower
bound A. We improve the known estimates of A showing 0.527 < A <0.8609... .
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1. Introduction

Recall that a function p : R — C is called positive definite if

ZZP(:E]' —z;)ci¢; 20

1=1 j=1

forall z; € Rand ¢; € C ( = 1,...,n) and for each n € N. In the sequel, when writing
a positive definite density, we mean a density that is positive definite and continuous.
The density of the normal distribution with mean zero and variance o? is an example
of a positive definite density.

By Bochner’s Theorem (see [4: Theorem 1.9.6]) we know that a function fisa
characteristic function if and only if f is positive definite, continuous and f(0) = 1.
Now let p be a positive definite probability density. Then its characteristic function f
is integrable and non-negative (see [4: Theorem 1.9.8)). Therefore the function

o= ([ :° f(ax)dz ) T o) @eR)

is also a positive definite density. It is called the adjoint density of p. A density p is
said to be selfadjoint if f = v/27p. Note that p is selfadjoint if and only if p = p.

Denoting by o2 and ? the variances of p and p, respectively, the product 252

cannot be arbitrarily small. This fact is closely related to the uncertainty principles in-
vestigated in harmonic analysis and physics (see (1]). Roughly speaking, it is impossible
for a non-zero function and its Fourier transform to be simultaneously very small.
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We denote by A the greatest lower bound for all products of variances 0262 of
adjoint densities. It is known that 0.454 < A < 0.8907. The lower bound can be found
in [3: p. 365] and the upper bound in [2: Resultat 3.12]. From [2: Satz 3.7} it is
‘also known that there is a selfadjoint positive definite density such that its product of
variances is 0* = A. In this note we will improve the lower and upper estimates for A

showing 0.527 < A < 0.8609... .

2. The upper estimate for A

In this section we give an upper estimation for A by considering special selfadjoint
densities. These densities are of the form

1 2 (2k)
——e 7 ~ 7 H n>0
Vo ,;a" (ag) Har(z)  (n20)
where the Hy are Hermite polynomials defined by

2 k 2
Hi(@) = (-0t () (k2 0)

- Note that every selfadjoint density p satisfying fj;o |z|p(z) dz < oo has the form

1 _2 G (2k)
p(z) = \/T_n'e 7 kgoakm Hyi(z)

with pointwise convergence (see [2: Satz 1.13]). If the conditions

Zn: ar =1 ’ (1)
k=0
and .
n !
Zak% Hi(z) >0 (z €R) (2)
k=0

are satisfied, then
1 2~ (2K)
= —— >
pn(z) N e 2 k§=0 ax _(4k)! Hy(z) (n>0)

is a selfadjoint density. This can be proved using the equality

+ o0
1 itz = o
5 e-—:txe—T:Hk(z) dz = ike—THk(t) (t ER; k> 0)
m

8
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(see [5: Theorem 57]). The variance of this density is given by 1 + 83 ;_, k ai (see [2:
p. 49]). Hence the product of variances, denoted by Ay, is

n 2
/\n(al,...,an)=<l+82kak) (n>1).
k=1 .

We search for coefficents ay,...,an such that the conditions (1) and (2) are satisfied
and the product of variances is as low as possible. . Because the coefficient of z™ in
the Hermite polynomial H, is positive condition (2) implies that a, is non-negative.
If the product of variances is lower than 1, then at least one ax (k =1,...,n — 1) is
negative. Therefore we consider the case n > 2. Obviously the conditions (1) and (2)
are equivalent to the conditions

143 Gu@a20  (n22) (3)
k=1
where ok
&dﬂ—g%;Hﬂu) - (zeR;kE>1)
and

The product of variances is minimal if and only if the value ¢, = 3 ;_, k ax is minimal.
So we search for a point &4 € R" such that

Gar() i'z'
Zam mn(>m}
1
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(0<z<\/§)}

and

k=1
Note that the function G has its only zero in (0, +00) at v/3.
Now we consider the case n = 2.
Theorem 2.1. There are coeﬂi'cents dg,a; and @y such that the conditions (1) and

(2) are satisfied and

/\2(&1,&2) = min . /\2((11,(12) = 0.8609...
(a,,a,)EPgnP,

holds.
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Proof. First we minimize c; = a; + 2a; in the set P,. For each z € (V3, +00)

_ Gs(&:) v— 1
T T Giz) T Gu(w)

Is a straight line in the Cartesian coordinate system (v,u). In the sequel we exchange
the coordinates writing (u,v). A point (a;,a;) is in the set P, if it is above all lines of

the form Ga(2) .
8\T
= — v— ——— > V3). 4
G4(z) G4(z) (I \/_) ( )
In the line a; = —2a3 + ¢, the value ¢; is to minimize. We shift this line downwards
within the set P,. So the line a; = —2a; + ¢, is one of the lines which limit the set P,

that is there is an z, € (v/3, 400) such that the corresponding line (4) has the slope —2.
We denote the obtained point by (@1, az). First we calculate the product of variances
A2(@1,a2). Then we prove that the point (a;,4az) is in the sets P; and P,. Last we show
that the obtained product of variances is minimal.

The equation

Gg(z,)

—2= " Galzs)

(z, > V3) - (5)

holds. We obtain

Ty =\7-V14  and 1,5, =17+ V14

Moreover,
! 0.890981 d ! 0.00901895
_— = (. an - —-— = —(.
G4(13,1) G4(:1:,,2)

Because of the definition of the set P,, Zs2 = V T+ V14 is a solution of equation (5).

Therefore )

T Ga(zan)

For the product of variances we obtain

&y = —0.00901895. .. .
A2(@y,82) = (1 + 8&;)% = 0.860903. ..
and for the point a

_Ga(wsa) ;1
, G4(Ia,2) G4(Zs,2).

a) = —2a3 + & =

In view of the above consideration we can suppose that @ < 0 and @ > 0. Since

—g‘ > —2 and —Gl‘ > 0 on (0,/3), we see that

Gs(z)& _ 1
Gy(z) * Ga(z)

(.’l‘ € (0, \/5))
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and therefore a € P,.
Now we prove that a € P,. We show that '
a; = max (_Gg(z) as; — ! )
>vi \ Ga(z) Ga(z)

First the functions —GL‘ and —gf are considered on the intervall (\/§,+oo) They
have the following properties: —GL‘ < 0, —(GL‘)' > 0, —(GL‘)” < 0, —(gf)' is strictly
decreasing, and there is an z¢ € (2,3) with —(%:—3)' = 0. Up to now it was sufficient
.to.know that a; = —2ay + ¢,. Next we show that the coordinate @, has the value

o=~ (amm) / ((6E)
a3 = - | ~——— ——r )
G4(Is,2) . Gé(zs,Z
Obviously z,2 = 3.2774... > zg. Therefore G; > 0 and the function —gf as — G%'ha‘s a

local maximum at z,2. Now we suppose that there is another extremum at z., # z,2-

So . . , ,
w=-(-amm) / (-&63)

follows. It is clear that also z,, must be greater than zo. Furthermore the derivative _of
the function —(—GL‘)’/(—%)' must have a zero z4 between z,, and z, ;. Hence

1 \" [ Gs(za)\ _ 1 \'[ Gsza)\"
(_ Ga(l‘d)) (_ G4(1'd)) B (_ G4(Id)) (_ G4($d))
but this is not possible because the left side is positive and the right side is negative on
the interval (z¢,+00). Applying .
lim (— Golz) ay — — ) = lim (- Go(z) iy — — ) = -
, 2va\ Gu(z) © Ga(z)) ==\ Ga(z) Ga(z)
it follows that

a =

_Ma __1_=ma_x(_G8(z)a_ 1 )
Ga(zs2) " Galzs2)  :>va\ Gu(@) ~ Ga(®)
and also a € P;. U Obviously the point a is in the boundary 9P, of the set P,. So the
product of variances is minimal. ’
Now we have found a point a € 3P, N Py, that is, a satisfies condition (3). Hence

2
1 ) (2k)!
)= —e 7 ar—— Hy(z
)= 7T ey ) ..
with coeffients ap = 1 — @, — @2, @1 = &, and a; = @ is a selfadjoint positive definite
density with product of variances

/\2(&1,62) = min _ /\2(01,(12) = 08609 .
(ay,02)EPNP,

Thus the assertion is proved B
Collorary 2.2. The inequality A < 0.8609. .. holds.

1) ‘We note that @ = —0.0123976... and &, = 0.0016893:.. .
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3. The lower estimate for A

In this section we give a lower estimation for A. First we prove that the set of all
products of variances is an interval.

Lemma 3.1. The set of all products of variances o2a2 of adjoint positive definite
densities is the interval [A, +00). '

Proof. Let (p1,p1) and (p2,p:) be pairs of adjoint positive definite densities with
products of variances A; = 0612 and A\; = 02462, and for A € [0,1] let p be the positive

definite density given by

p(z) =Bpi(z)+ (1 - B)pa(z)  (z €R).

We denote the variance of p by 02, the characteristic function by f and the variance of
the adjoint positive definite density p by 5%. We have 0% = Bo? 4 (1 — 8) 02 and

ﬂ ~ 2 1-— ﬂ ~ 2
L L B O M TOM
o= [ f)dt — 1 :
»(0)
Hence - ( 5 -3 )
(Bot+(1=-Bod) >G50 + 55y 92
/\(ﬂ) = 0_202 — I;.( ) p2( ) .
p(0)

Since A is a continuous function of 8, and since A(0) = A, and A(1) = A; we see that
the set of products of variances is an interval I. By [2: Satz 3.7] A is the lower end
point of the interval I. i

To show that the product of variances can be arbitrarily large we give a simple
example. Let py be the density of the standard normal distribution. Then the charac-

2

teristic function fy is given by f4(t) = e~ T, and the variance is 0% = 1. We define for
y > 0 a new density by

Wz) = 3 pol@) + 3 (polz — y) + Pz +1).

The characteristic function is given by
1 2
f(t) = 5(1 + cosyt)e” 7.

Since f is integrable and non-negative the density p is positive definite. Recall that
the variance o2 of the density p is — f"(0), where f is the corresponding characteristic
function. Since the adjoint density p of p is (f f(=z) dz)-lf the variance 2 of § is given
by % = (fxzf(:c)dz)/(ff(.r) d:z:). We obtain for the product of variances A of the
adjoint densities p and p

_ =) fft)dt  (3¥° + 1)(e’éi —yi+1)
)= —Tiwa - 1 '

Since limy—oo A(y) = +00 the set of products of variances is the interval [A, +o00) 11
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Now let p be a selfadjoint density with characteristic function f. Then
f(z) = Var p(z). (5)
We will use the inequality
f(z) > cosoz +2J (%) (o < |zo] < g) (6)
where

+oo
J(z) = / (costz — cosox)?p(t)dt

(see [3: Satz 3/p. 348]).
Lemma 3.2. The inequality

w2

2
J(z) > ﬁ 0/ (cos%t — cos za) (2] (%) + cos t) dt (z € R)
holds.

Proof. Applying (5) and (6) we obtain

+o0
2
J(z) = — /(cos xt — cosox)? f(t) dt
V2rn J )
o owf20 L
> \/—22_; 0/ (cos zt — cosoz)? f(t)dt
n/20
> 2 / (cos zt — cos oz)? (2] (-t—) + costa) dt
V2er g 2

and the assertion is proved il

We define Jo = 0 and

2 " t z t

J,,(i) = / (cos z_ cos 01:) (2.],,_1 <——) + cos t) dt
2no I 20
: 0

for all z € R and n > 1. It is clear that J and J, (n > 1) are strictly positive and that
the inequalities

J > Ja (n>0) )
hold.
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Lemma 3.3. If 02 is the variance of a selfadjoint density, then

w2 -8
Fu(o):=0% - Worie Ka(o)>0

where
/2
4 T 2
Kn(0) = =3 / Jn (5) 2 dz (n>0).

0
Proof. Applying (5) - (7) we obtain

oo
ol = /Izp(:t)d:t
-0
n/2
2p (2
~ V2mo3 O/I f(a)dz
w2 n/2
2 2 4 T\ ,
>m0/:c cosxdm+mb/J(2—a)x dz
9 w/2 .
™ -8 4 T
= + J(—)=z%d
2V2ro3 \/2#030/ (20)1 T
w2 —8 . )
> —+ K, >0
s HKalo) (020)

and the assertion is proved §
Theorem 3.4. The inequality A > 0.5276. .. holds.

Proof. From [3: Satz 5/p. 364] we know that if p and p are adjoint densities with-
product of variances A, then there is a selfadjoint density with the same product of
variances. Therefore it is sufficient to consider only selfadjoint desities. By Lemma 3.3, )
the inequalities F,(¢) > 0 (n > 0) hold for o if o2 is the variance of a selfadjoint density.
Hence 0* cannot be contained in the interval [A, +00) if Fa(0) < 0. We computed the
following values with the program Mathematica:

o F.(o) ot

0.8207 [ —0.0010983517 ... | 0.453667568 . ..
0.8464 | —0.0012940136... | 0.513218873 ...
0.8511 | —0.0011355911 ... | 0.524713649 ...
0.852 | —0.0015642939... | 0.526936617 ...
0.8523 | —0.0011071585... | 0.527679173 ...

Wl —lo] 3

Hence A > 0.5276... B
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