
Zeitschrift für Analysis und ihre Anwendungen

Journal for Analysis and its Applications


Volume 15 (1996) No. 4, 1015-1023 
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Uncertainty Principle for Positive Definite Densities 
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Abstract. The products of variances of adjoint positive definite densities have a greatest lower 
bound A. We improve the known estimates of A showing 0.527 < A < 0.8609... 
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1. Introduction 

Recall that a function p: R - C is called positive definite if 

>p(Xj - xi)cij ^: 0 
i=l j=1 

for all x 1 E R and c1 E C (i = 1,.., ri) and for each n E N. In the sequel, when writing 
a positive definite density, we mean a density that is positive definite and continuous. 
The density of the normal distribution with mean zero and variance a 2 is an example 
of a positive definite density. 

By Bochner's Theorem (see [4: Theorem 1.9.6]) we know that a function f is a 
characteristic function if and only if I is positive definite, continuous and f(0) = 1. 
Now let p be a positive definite probability density. Then its characteristic function f 
is integrable and non-negative (see [4: Theorem 1.9.8]). Therefore the function 

+00	—1 

(x) 
= (L f(x)dx) 1(x)	(x ER) 

is also a positive definite density. It is called the adjoint density of p. A density p is 
said to be selfadjoint if I =	Note that p is selfadjoint if and only if p = 

Denoting by a 2 and & 2 the variances of p and P, respectively, the product a22 
cannot be arbitrarily small. This fact is closely related to the uncertainty principles in-
vestigated in harmonic analysis and physics (see [11). Roughly speaking, it is impossible 
for a non-zero function and its Fourier transform to be simultaneously very small. 
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We denote by A the greatest lower bound for all products of variances a 22 of 
adjoint densities. It is known that 0.454 < A <0.8907. The lower bound can be found 
in [3: p. 365] and the upper bound in [2: Resultat 3.12]. From [2: Satz 3.71 it is 
also known that there is a selfadjoint positive definite density such that its product of 
variances is a4 = A. In this note we will improve the lower and upper estimates for A 
showing 0.527 < A < 0.8609... 

2. The upper estimate for A 

In this section we give an upper estimation for A by considering special selfadjoint 
densities. These densities are of the form 

1 
-e 2	ak	H4k(x)	(n>0) 

k=o	(4/c)! 

where the Hk are Hermite polynomials defined by 

Hk(X) = ( _ 1)kex2-(e2)	(k > 0). 

Note that every selfadjoint density p satisfying JH1' I x Ip(x ) dx < oo has the form 

 2	(2k)! p(x)=,e--2 >akH4k(x) 
k=O 

with pointwise convergence (see [2: Satz 1.13]). If the conditions 

E ak = 1	 (1) 

and
(2k)!E 4k

 
(xEIR)	 (2) 

k=O 
are satisfied, then

1	_L	 (2k)! 

	

Pn(x)Vze 2 > ak(5iH4k(x)	(ri)'O) 
k=O 

is a selfadjoint density. This can be proved using the equality 

+00 

	

= f ee r Hk(x)dx = i ke_Hk (t)	(t e R; k > 0)
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(see [5: Theorem 57]). The variance of this density is given by 1 + 8E'= , k a k (see [2: 
p. 49]). Hence the product of variances, denoted by A, is 

2 
.. ,a)	 1+8 E kak )	(n 21). 

We search for coefficents a0 ,... ,a such that the conditions (1) and (2) are satisfied 
and the product of variances is as low as possible. Because the coefficient of x in 
the Hermite polynomial H is positive condition (2) implies that a is non-negative. 
If the product of variances is lower than 1, then at least one ag (k = 1,. . . , n - 1) is 
negative. Therefore we consider the case n 2 2. Obviously the conditions (1) and (2) 
are equivalent to the conditions 

	

1+G4 k(x)ak 20	(n 2 2)	 (3) 

where
(2k)! 

	

G4k(x)=-- j H4 k(x)-1	(XER;k>1) 

and

ao=1—ak	(n>2). 

The product of variances is minimal if and only if the value c =	k ak is minimal.k I
So we search for a point a E R'1 such that 

ãEPfl={aERaI2_G4k	 1 
ak_ G4(x) (x>)}


k=2 G, 
(X)  

G4x)
1	

(0<x<\)} 
n 

a E	= {a e	
k=2 G4 (x)

	
G4 (X) 

and
—p mm. 

Note that the function G4 has its only zero in (0, +oo) at 

Now we consider the case n = 2. 

Theorem 2.1. There are coefficent3 äo, à 1 and a2 such that the conditions (1) and 
(2) are satisfied and

A 2 (ã i , ä2 )=	mm	- .X2(ai,a2)=0.8609... 
(a, 02)6 P2 n P2 

holds.
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Proof. First we minimize c2 = a 1 + 2a2 in the set P2 . For each x E (v", +oo) 

Gs(x) 
U = - _____ G4(x)V 

is a straight line in the Cartesian coordinate system (v, u). In the sequel we exchange 
the coordinates writing (u, v). A point (a i , a2 ) is in the set P2 if it is above all lines of 
the form

U_GVG()	(x>).	 (4) 

In the line a 1 = —2a2 + c2 the value c2 is to minimize. We shift this line downwards 
within the set P2 . So the line a 1 = — 2a2 + c2 is one of the lines which limit the set P2, 
that is there is an x 3 E (v', +) such that the corresponding line (4) has the slope —2. 
We denote the obtained point by 0 1 , 62 ). First we calculate the product of variances 
A 2( 6 1, 62) . Then we prove that the point ( a 1 , a2 ) is in the sets P2 and P2 . Last we show 
that the obtained product of variances is minimal. 

The equation
s(x) —2=— G	

(x3>'/) C4 (xi) 
holds. We obtain

(5) 

and	x3,2=\I7+v'1. 

and	-	1	
= —0.00901895... 

G4 (x3,2) 

xs,1 - 

Moreover,

1
—0.890981

Because of the definition of the set P2 , x,2 = v"7 + V1-4 is a solution of equation (5). 
Therefore

-	-	= —0.00901895... G4(x3,2) 
For the product of variances we obtain 

) 2 (a 1 , a2 ) = (1 +8 2 ) 2 = 0.860903... 

and for the point a

Gs(x,2) - à i =-2ã2 +E2 =—	a2— 
G4 (X.,,2)	G4(x,,2) 

In view of the above consideration we can suppose that ii, < 0 and a2 > 0. Since 
- > —2 and -i-- >0 on (O,/), we see that 

G8 (x)- a 1 =-2a2 + 2 <—	a2— (x(0,/)) G4 (x)	G4 (x)



On the Uncertainty Principle	1019 

and therefore a E 162. 
Now we prove that a E P2 . We show that 

-	( G8 (x).	1 a 1 max(—	a2— 
r)./ \ G4 (x)	G4(x) 

First the functions-a--- and -	are considered on the intervall (v', +oo). They 
4	G4 

	

have the following properties: ---< 0, -(i---)' > 0, -(-L)" < 	0, -(p)' is strictly 
decreasing, and there is an x0 E (2,3) with _(g8)' = 0: Up to now it was sufficient 
to .know that a 1 = —2ä2 + E2 . Next we show that the coordinate a2 has the value 

-	1	1	'\ / '	(_ G8(X.,,2))I. 
I/\G(x 3,2 )j ,'. 	G4 (X, , 2 

Obviously x 3,2 =3.2774...> x0 . Therefore a2 >0 and the function —ä 2 —	has a G4	G4 
local maximum at x 5,2 . Now we suppose that there is another extremum at x,, 
So

(	1 \' /( G8(x)

a2  

\ G(x,)j , \ G(x,,) 

follows. It is clear that also x must be greater than x 0 . Furthermore the derivative of 
the function -(--)'/(-)' must have a zero xd between x,, and X 3 2. Hence 

G 4	G4 

(	

1 Y
( '\'

G4(xd)kG4(xd))	kG4(xa)) 

but this is not possible because the left side is positive and the right side is negative on 
the interval (xo,+oo). Applying 

/ G8 (x) -	1 '\	/ G, (x)	1 \ 
lim ( -	a2 —	j = lim (-	a2 —	J = — zjv'l \ G4 (x) G4(x)j x—.	G4 (X)	G4 (X) 

it follows that 
-	G8(x92)	1	 / Gs(x)...	1 
a1= —	a2—	=maxl—	a2— 

G4 (x 3,2 )	G4(x,,2)	>\ G4 (X)	G4 (X) 

and also a E P2 . ') Obviously the point a is in the boundary 5P2 of the set P2 . So the 
product of variances is minimal. 

Now we have found a point a € 9P2 fl F2 , that is, a satisfies condition (3). Hence 

1 2 2	
(2k)' 

p2(x)=_r=e2-->2ak H4k(x) 

with coeffients a0 = 1 — — a2 , a = a 1 and a2 = a2 is a selfadjoint positive definite 
density with product of variances 

.X 2 (a i ,a2 )=	mm	- A2 (a i , a2) = 0.8609... 
(a j a 2 ) E P2 P2 

Thus the assertion is proved I 
Collorary 2.2. The inequality A ^ 0.8609... holds. 

We note that a1 = —0.0123976... and a2 = 0.0016893:..
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3. The lower estimate for A 

In this section we give a lower estimation for A. First we prove that the set of all 
products of variances is an interval. 

Lemma 3.1. The set of all products of variances aZ r2 of adjoint positive definite 
densities is the interval [A, +). 

Proof. Let (p1, iii) and (P2, p2) be pairs of adjoint positive definite densities with 
products of variances A 1 = ad 1 2 and A 2 ai2 2 , and for 0 E [0,1] let p be the positive 
definite density given by 

P( X ) = 0p 1 (x) + (1 - /3)p2(x)	(x E R). 
We denote the variance of p by a2 , the characteristic function by f and the variance of 
the adjoint positive definite density P by &2. We have a 2 = /3a + ( 1 - )3)a and 

-2 
-2	ft2f(i)dt	(0)al +(0)a2 
a=ff()d=	 1 

(0) 
Hence' / 

2 I /9 -	1-3 (fla 12 +(1 — $) a2 )i --?al 2 + --a2- 2 

	

A"2' •. 2-2 -	 \PIU)	P2 (0) 

	

-	 1 
(0) 

Since A is a continuous function of 0, and since A(0) = A 2 and A(1) = A 1 we see that 
the set of products of variances is an interval I. By [2: Satz 3.71 A is the lower end 
point of the interval I. 

To show that the product of variances can be arbitrarily large we give a simple 
example. Let p, be the density of the standard normal distribution. Then the charac-


	

teristic function fi2 is given by f,(t) =	and the variance is a, = 1. We define for 
y > 0 a new density by 

P(X) = p(x) + (p(x - y) + p(x + y)). 

The characteristic function is given by 

1(t) = 

	

1	 C2 

 (1 + cos yt)e 2 

Since f is integrable and non-negative the density p is positive definite. Recall that 
the variance a2 of the density p is — f"(0), where f is the corresponding characteristic 
function. Since the adjoint density P of p is (f f(x)dx)'f the variance &2 of P is given 
by &2 = (fx 2 f(x)dx)/(ff(x)dx). We obtain for the product of variances A of the 
adjoint densities p and 

A()	
—f"	 (1(0)ft2f(t)dt -	y2 +1)(e —y2-1) 

-	ff(t)dt	- _________________ e 2 +1 
Since lim_ A(y) = +x the set of products of variances is the interval (A, +oo)I
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Now let p be a selfadjoint density with characteristic function f . Then 

1(x) = /p(x).	 (5)


We will use the inequality 

f(x)> COS cTx+2J()	(O<Ixoi<)	 (6) 

where

J(x) =J( COS tx — COS ax)2p(t)dt 

(see [3: Satz 3/p. 348]). 

Lemma 3.2. The inequality 

	

2	
(COS 

xi	\2 	 t
J(x)> __cosxa) 2J—)+ cost )di	(xE!R) 

holds. 

Proof. Applying (5) and (6) we obtain 

+00 

J(X) = --- f(COS xt_ COS x)2f(t)dt 

0
.... 

>	J (COS xt— COS x)2f(t)dt 
0 

2
J (COS xt - cosx)2 (2J () + costa) di 
0 

and the assertion is proved I


We define Jo = 0 and

ir/2 
2	ff	2 

	

J(x)=	 (cos 
ix 
— _cosax) (2J--, (_)+ cost )di 

	

\/cYJ \	a 
0 

for all x E R and n 1. It is clear that J and J1 (n > 1) are strictly positive and that 
the inequalities

J>J	(n>0)	 (7) 

hold.
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Lemma 3.3. If a2 is the variance of a selfadjoint density, then 

K F(a) := a2

	

- 

2_8	
0 2/a 

where
ir/2 

4 f '
(n>0). K,, (or)=

0 

Proof. Applying (5) - (7) we obtain 

a 2 =fx2p(x)dx 

fx2f()dx 
v a  

0 
7r/2	 7r/2 

> 2
	Ix2cosxdx+ 4 j j ( X X2 dx 

J o	 0 
,r/2 

7r 2	4 
= 2a 

+	I () x2 dx 
0 

ir2-8
(n>0) 

and the assertion is proved U 

Theorem 3.4. The inequality A > 0.5276... holds. 

Proof. From [3: Satz 5/p. 3641 we know that if p and P are adjoint densities with 
product of variances A, then there is a selfadjoint density with the same product of 
variances. Therefore it is sufficient to consider only selfadjoint desities. By Lemma 3.3, 
the inequalities F(a) > 0 (n > 0) hold for a if a 2 is the variance of a selfadjoint density. 
Hence a4 cannot be contained in the interval [A, +) if F(a) 0. We computed the 
following values with the program Mathematica: 

n a F(a) a4 
0 0.8207 —0.0010983517... 0.453667568... 
1 0.8464 —0.0012940136... 0.513218873... 
2 0.8511 —0.0011355911... 0.524713649... 
3 0.852 —0.0015642939... 0.526936617... 
4 0.8523 —0.0011071585... 0.527679173...

Hence A>0.5276... U 
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