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Abstract. Linear evolution equations in a space with a generalized norm are considered. 
Stability conditions are obtained. In particular, the "freezing" method for ordinary differential 
equations is extended to equations in Banach spaces. 
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1. Introduction and notation 

Throughout this paper B is a Banach lattice with a positive cone B+ and order contin-
uous norm lB (see [10, 13]), and L(B) is the space of all bounded linear operators 
acting in B. Let X be a linear space and M: X - B be a mapping with properties 

M(x)>Oif and only ifxA0 
M(Ax)=\lM(x) for every A E C and x E X	 (1.1)


M(x + y) 15 M(x) + M(y) for every x,y E X. 

Such a mapping was introduced by L. Kantorovich (see [15: p. 334]) who called M 
generalized norm. Since this notion can confuse the reader, we will call a mapping M 
satisfying properties (1.1) normalizing, and X will be called space with a normalizing 
mapping. Following [15], we shall call B norming lattice. Note that a space with a 
normalizing mapping is a particular case of a pseudo-metric space introduced by Kurepa 
(cf. [2: p. 51]). Clearly, a space X with a normalizing mapping M : X - B is a 
normed space with norm

ll h llx = JIM(h)JIB	(h e X).	 (1.2) 

In the sequel, the topology in the space X is defined by the norm (1.2), and X is 
assumed to be a Banach space. 

Throughout this paper A(t) for 1 2 0 is a linear closed operator in X with dense 
domain D(A(t)). Let us consider the equation 

ii = A(t)u	(1 20)	 (1.3) 
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where ü = In the present paper two-side Solution estimates for the equation (1.3) 
are derived under some assumption on normalizing mappings. Note that a normalizing 
mapping gives us much more informations about the equation than a usual (number) 
norm does. As an application of the estimates, new stability conditions for the equation 
(1.3) are derived. The estimates complement well-known results (cf. [8] and references 
therein). In particular, by the normalizing mapping, the "freezing" method for ordinary 
differential equations [1, 9, 14] is extended to equations in Banach spaces. In addition, 
our results generalize estimates of Wazewski and Lozinskii from the theory of ordinary 
differential equations (see [3, 9]). Moreover, main results from [5, 6] (in the linear 
case) are extended. Note that our stability conditions below are particularly formulated 
in terms of the Hurwitzness of auxiliary matrices. This fact allows stability criteria 
for matrices (for example, the Hurwitz criterion) to be applied to infinite dimensional 
systems. 

We define a solution of the equation (1.3) to be a function u : [0, +oo) - D(A(t)) 
having a strong derivative and satisfying equation (1.3) for all t > 0 (cf. [11, 12]). We 
will say that the equation (1.3) is stable if for every u 0 E D(A(0)) it has a solution 
u = u(t) with u(0) = u 0 satisfying the relation 

U ( t )11X < c IIu(0)IPx	(t > 0) 

with a constant c independent of u(0). Our Assumptions are as follows: 
1. D(A(t)) is constant, i.e. D(A(t)) = D for all t > 0. 
2. A(t) is continuously dzfferentable in t on D, i.e. A(t)v is strongly continuously 

differentable for any v E D. 

3. I - 5A(t) is invertible for all t > 0 and small enough S > 0. 
As for Assumption 1, in our reasoning below the existence of an admissible set of 
operators {A(t)} j >o (see (11, 12)) is sufficient. Here and below I = 1x is the unit 
operator in X. Further, for a partition 

0 = t	<t< ... <t') = t 

of the segment [0, t] let us denote 

Unk = (I A(t)8) 1 (I - A(t2 1 )S_1)' ... ( - 

for k < n and	= I where 5k =
	= t	- t 1 (k = 1,..., n). Recall that if for


any finite t there is a constant N = N(t) independent of n and k such that 

II UnkIIx N ,	 (1.4) 
then the family {A(t)} j >0 is called stable [11, 12]. The property (1.4) is very essential 
for the existence of a solution. But to check this condition is usually not easy. As shown 
below, the relation (1.4) can be checked using the normalizing mapping. 

A few words about the contents of the paper In Section 2 upper and lower estimates 
for the solution are derived. Section 3 is concerned with finite systems of evolution 
equations. In Section 4, by results from Section 3, the "freezing" method for ordinary 
differential equations is extended to systems of evolution equations in Banach spaces. 
Finally, in Section 5 an example is given.



Stability of Evolution Equations	951 

2. Solution estimates 

Let us suppose that, for small enough s5 > 0, there is a continuous operator-valued 
function a:	—* L(B) such that 

M((I - 5A(t))'h) (18 + a(t)8)M(h)	(hE X; t >_ 0)	(2.1) 

where R+ = [0, +oo). We will need to consider the linear equation 

	

(t) = a(t)z(t)	(t > 0)	 (2.2) 

in B. 

Theorem 2.1. Let inequality (2.1) hold. Then for any initial vector n 0 E D, the 
equation (1.3) has a solution u. Moreover, it satisfies the inequality 

	

M(u(t)) < z(t)	(t > 0)	 (2.3) 

where z is a solution of the equation (2.2) with the initial condition z(0) = M(u(0)). 

Proof. First we check the existence of a solution. According to inequality (2.1) we 
easily get	 - 

	

M(U ,ouo) 5 fl (i + a(t k )Sk )M(uo)	 (2.4) 
1 <k<n 

where the arrow over the product symbol means that the cofactor indices increase from 
the right to the left. With the notation in = maxo< 3 <t 11a(s)JIB there holds 

II'B + 6a( t )IIB :5 1 + inS emö	(t >_ 0).


Due to (1.2) the latter inequality and (2.4) imply 

IR't,o'oIIx	II M ( Un,o uo)118	e t flM(uo) 8	(1	k < n). 

Thus by (1.2), condition (1.4) holds and consequently the equation (1.3) has a solution 
for every initial veètor uO E D due to the well-known Corollary to Theorem 4.4.1 in [12: 
p. 1021 (see also [11]). 

Now we prove the relation 

	

u(t) = limU 0 uo	as max 6 ( — 0	 (2.5) 

in the sense of the norm of X. Indeed, from (1.3) the equality 

71 (u(t,) - u(t,_ i )) = A(t,)u(t) + hnj	(t = 

follows where
ha,, = u'(t,) — S' (u(t 3 ) — u(t3_i))
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That is,
u(t) = (I — A(t)5)' (u(t_ 1 ) +  

By this relation, omitting simple calculations, we get 

n
( n) u(t) = u 00 +	Ufl,khflk5k .	 ( 2.6)


k=0 

But u is a solution of the equation (1.3). So it is a differentiable function, and therefore 
the expression

— -1 (u(s +5) - u(s)) 

is uniformly bounded with respect to S > 0 and s 5 t < +. Thus, h,k are uniformly 
bounded with respect to k	n and n	2. Taking into account that hn,k —4 0 as 

n) —* 0, and employing the Lebesgue theorem on passing to the limit under the 
integral sign, we get

n
(n) 

l h ,IIx o	0	as n —, +00. 
k=1 

Now (1.4) and (2.6) yield the required relation (2.5). On the other hand, the limit in 
the strong topology of the operators 

H (IB+a(tk)Sk)	as maxS-40 
1<k<n 

is the Cauchy operator related to the equation (2.2) (see [4]). Now the desired assertion 
follows from the inequality (2.4) and the equality (2.5) I 

Note, if in (2.1) a(t) = a0 (t > 0) is a constant bounded linear operator, then under 
the hypothesis of Theorem 2.1 

M(u(t)) < e(0i.M(u(0))	(t > 0). 

Let us consider the case B = R. Then inequality (2.1) takes the form 

(I — SA( t ) ) ' h M	(1 + a( t ) S )II h Mx	(i > 0; h E X) 

where a is a scalar-valued continuous function. Then due to Theorem 2.1 any solution 
u of the equation (1.3) with an initial vector u0 C D satisfies the estimate 

t u ( t )IIx	Il u (0)Ix exp (10 a(r)dr)	(t	0).	 (2.7) 

Certainly, if equation (2.2) is stable, then by (1.2) and (2.3) the equation (1.3) is stable 
as well. So Theorem 2.1 gives stability conditions. 

Now we are going to establish lower estimates for solutions of the equation (1.3).
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Theorem 2.2. Let for all t > 0 and small enough J > 0 the relation 

M((Ix + c5A(t)'h)	(I + a_(t)t5)M(h)	(h e X; t _> 0)	(2.8) 

hold with a continuous operator-valued function a_ : -+ L(B). Then any solution u 
of the equation (1.3) (if it exists) satisfies the inequality M(u(t)) ^! w(t) (t > 0), where 
w is a solution of the equation

	

ti>(t) = —a_(t)w(t)	 (2.9) 

with the initial condition w(0) = M(u(0)). 

Proof. For a fixed to > 0 and every t E [0,t 0 , put in equation (1.3) 

= to - t,	Ai(r) = —A(t 0 - r),	y(r) = u(to - T).	(2.10)


Then equation (1.3) takes the form 

dy 
= A j (r)y(r)	(0	r	to).	 (2.11) 

Condition (2.8) gives 

	

M((Ix - 5A i (r))'h) < (I + a_(to - r)ö)M(h)	for h E X.


Now Theorem 2.1 yields the following estimate for a solution y of the equation (2.11): 


M(y(T)) V(7-)M(y(0))	(0 T to) 

where V(r) is the Cauchy operator of the equation 

dwi = a(to - 7-)w 1	(0 <T <t0 ).	 (2.12) 
dT 

But according to (2.10), y(r) = u(t), and 

	

!vf(u(t)) < V(to - t)M(u(to))	(0 < t < t0). 

For t = 0 that relation implies 

V' (to)M(u(0)) < .M(u(to)). 

Since V is the Cauchy operator of the equation (2.12), V' is the Cauchy operator of 
the equation (2.9) (see [3]). Now taking into account that to is arbitrary, we arrive at 
the stated result I
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Note that if in equation (2.9) a = b0 is a constant bounded linear operator, then 
Theorem 2.2 implies

.M(u(i)) > e°Zi4'(u(0))	(t 2 0). 
Let us consider the case B = R. Then inequality (2.8) takes the form 

(i + 5A(i)) ' h I	<(1 + b (t) 8)MhI	(t >0; h E X, II h IIx = 1) 

where b is a scalar-valued continuous function. Then by Theorem 2.2 every solution u 
of the equation. (1.3) with the initial vector u 0 E D satisfies the estimate 

t l u ( t)IIx 2 Iu(0)Ilxexp (_jb(T)dT)	(t >0). 

Certainly, if equation (1.3) is stable, then by Theorem 2.2 the equation (2.9) is stable 
as well. So Theorem 2.2 gives necessary stability conditions. 

Furthermore, let for instance X = H be a Hilbert space with scalar product (, •)j-j, 
and A(t) = iS(t) + T(t) (i > 0), where S(i) are selfadjoint operators with constant 
domain D. Besides, suppose that T(t) is bounded. Then 

Re (A(t)h,h) 11 = Re (T(t)h,h) 11 > —T(t)	(he D; II h IIH = 1) 

and
II(IH + öA(t)) h, = 1 + 2 R (A(i)h, h) H + (A(t)h, A(t)h)H2 

.2 1 - 2 II T ( t )II11 5	(h E D; II h IIH = 1).

Thus

IRIH +öA(i)Y1IH <1 + II T ( t )11H 6 + o(ö)	as b 10.

Now thanks to Theorem 2.2 

II u ( t )IH 2 II u (0 )IIH exp _ J .II Tr IIH dr)	(i 20). 

3. Systems of evolution equations in a Banach space 
Let X >	be a direct sum of Banach spaces Ek with norms	lIE,., and let

h = (hk ).. 1 be an element of X. Define in X the normalizing mapping by 

.M(h) = ( Il hkllE,.)=i .	 .	(3.1) 

That is, M(h) is the vector whose coordinates are ll hk lIE,. (1 < k n). Furthermore, 
let A3 k(t) be linear operators acting from Ek into E3 , and A(t) be defined by the matrix 
( Ajk( t )) kl . Thus, equation (1.3) takes the form 

ü j =	Ajk(t)uk	(t 2 0; 1 <j <n; u = u(i)).	 (3.2)
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It is assumed that the operators Akk(t) have dense common domains Dk C Ek and are 
continuously differentiable on Dk. For j 0 k the operators A1k(t) are bounded and 
strongly continuously differentiable. Moreover, 

I Ajk( t )IIEk_EJ < a ,k( t )	(t 2 0).	 (3.3)


Besides, with every small enough S > 0, 

	

- 5A kk( t )) h k)II E 2 (1 - akk(t)S)IlhkIIEk	(hk e Dk)	(3.4) 

where a (1 j, k < n) are scalar-valued continuous functions. That is, A,k(t) are 
assumed to be bounded for j 54 k. Clearly, the domain D of A(t) is the direct sum of 
D, (1 j n). Hence, 

M((Ix - SA(t))h) = II(IE, - Ai (t)5)h + S>2j:gkAjk(t)hkME,


where M3 ((Is - SA(t))h) is the coordinate of the vector M((I - 5A(t))h). Therefore, 

M, ((Ii - SA(t))h) > (Is, - A,(t)8)h, 11IE) - 5 1i:,Ikll Ai k ( t) 11IE1 
2 (1 - ajj( t )5)II hjIE1 - S>.kVajk(t)IIhkIIEk. 

According to (3.1) that inequality can be written in vector form 

M((I - SA(t))h) > (I - a(t)5)M(h)	(h E D)	 (3.5) 

with the matrix a(t) = (a3 k(t)). It is simple to check that the invertibility of the 
operators 1E, - SAkk (t) (1 k < n) implies that of the operator Ix - SA(t) for small 
enough 5> 0, because the A3k(t) (j 0 k) are bounded. Employing (3.5) we easily get 

	

M((I - SA(t))'v) < (Icr. - a(t)S)'M(h)	(v E X).	(3.6) 

But
(Icr. - a(t)5)' = 'c + a(t)5 + o(5)	(5 10).


This relation and (3.6) yield the condition (2.1). Now Theorem 2.1 immediately implies 

Theorem 3.1. Let conditions (3.3) and (3.4) be fulfilled. Then for every initial 
vector u0 E D, the system (3.2) has a solution u : - D. Moreover, it satisfies the 
inequality (2.3), where z is the solution of the equation (2.2). with a variable (n x n)-
matrix a(t) = ( a,t( t )) and the initial condition z(0) = (IIu(0)IlEk)I. 

Note that, similarly, by Theorem 2.2 lower estimates for the solutions of the system 
(3.2) can be obtained.
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Corollary 3.2. Let conditions (3.3) and (3.4) be fulfilled with constant entries 
a,k( t ) = a3 (1 < j, k n) and assume that (a3 k) is a Hurwitz matrix (that is, all 
its eigenvalues lie in the open left half-plane). Then the system (3.2) is stable. 

Denote by A(z) the Lyapunov exponent of a solution z of the equation (2.2). Lozin-
skii (see [9]) introduced the logarithm norm 

L(t) = urn sup	+ ha(t)II - 1). 
h....+Oh 

For every solution z of the equation (2.2), the logarithm norm implies the estimate 
<L where we used he notation 

-	.	1	i 

P=llrn sup j J p(s)ds. 
i — +00	0 

In particular, that estimate implies 

)t(z) < max (a 2 + k^ I I a tkI)	and A(z) < max (akk + k^1IajkI). - 1<i<n	 I<k<n 

The estimate A(z) L and Theorem 3.1 yield 
Corollary 3.3. Let conditions (3.3) and (3.4) be fulfilled. Let also L < 0. Then 

the system (3.2) is stable. 

Now we are going to specialize assumption (3.4) in the case of an orthogonal sum 
of Hilbert spaces. Namely, let X = H	 be an orthogonal sum of Hilbert 
spaces Ek with scalar products (.,	and norms	E, = v"( )Ek. For an element

h = (hk). 1 e H, let the normalizing mapping be defined by formula (3.1) as well. 

Corollary 3.4. Let conditions (3.3) and 

Re (A kk( t ) h , h ) E	a,(t)IIhII	(1	k	n,h e Dk)	(3.7) 

be fulfilled. Them for every initial vector no e D, the system (3.2) has a solution u. 
Moreover, it satisfies the inequality (2.3) where z is a solution of the equation (2.2) with 
avariable (ro x n)-matrix a(t) = (a,k(t)) and the initial condition z(0) = (IIu(0)IIEk 

Proof. Considering that 

(I - 8Akk (t)) h 11
2,= 1 - 2 Re (Akk(t)h, h) Ek 6 + (Akk(t)h, Akk(t)h) Ek6


	

> 1 - 2a,(t)6	(h E Dk; II h IIEk = 1) 
we easily get the inequality (3.4). Now the result is due to Theorem 3.11 

Certainly, Corollaries 3.2 and 3.3 are true replacing condition (3.4) by condition 
(3.7). 

Note that in the case n = 1, that is under the condition 


	

Re (A(t ) h , h ) H <a( t )II h II	(1 <k <n,h eD) 

where a is a scalar-valued function, Corollary 3.4 yields the estimate (2.7). Thus we have 
obtained the Wazewski inequality [9] established for solutions of ordinary differential 
systems.



Stability of Evolution Equations	957 

4. Applications of the "freezing" method 
Recall some results connected with the "freezing" method for ordinary differential equa-
tions. Let Q be an (n x n)-matrix with eigenvalues )(Q) (k = 1,...,n) counted with 
their multiplicities. The following quantity plays a key role in this section: 

1/2 
g(Q) = (N2(Q) - E IA k (Q)1 2 )	 (4.1) 

where N(Q) is the Frobenius (Hubert-Schmidt) norm of Q, i.e. N2 (Q) = trace(QQ). 
If Q is a normal matrix: QQ = QQ, then g(Q) = 0. The following relations are true: 

9 2 (Q) 5N2 (Q) - trace Q 2 1	and	g2(Q)	N2(Q* - Q) 

(see [7: Section 1.1]). 
Consider the equation (2.2) assuming that a = a(t) (t 2 0) is an (n x n)-matrix 

satisfying the conditions
v = sup g(a(t)) < +00	 (4.2) 

and
IIa(t) - a( s )IIcn < qo It - s I for t, s 0 (4.3) 

where qo is a constant. Denote by z(qo, v) the extreme right-hand (unique positive and 
simple) root of the algebraic equation

1\ k 
n+1 -	+ IJV n—k—i	 44 z	—q1	

_T 
Z 

Now we use the following result (see [7: p. 213]): 
Let the conditions ( 4.2) and (4.3) hold, and let a(t) + z(qo,v)Icn 
be a Hurwitz matrix for all t 2 0. Then the equation (2.2) is stable. 

Combining that result with Theorem 3.1, we obtain the following 
Theorem 4.1. Let conditions (3.3) and (3.4) be fulfilled and let the matrix a(t) 

satisfy conditions (4.2) and (4.3). Then the system (3.2) is stable provided that a(t) + 
z(qo, V )lC n is a Hurwitz matrix for all t 2 0. 

Put n—i k + 1 
wn=-/-. 

Then the inequality
z(qo,v) v'*(q w)*	if qown <_ V 

is true (c.f. [7: p. 213]). The latter inequality and Theorem 4.1 yield 
Corollary 4.2. Let conditions ( 3.3) and (3.4) be fulfilled and let the matrix a(t) 

satisfy conditions (4.2) and (4.3). Then if qown 5 v, the system (3.2) is stable provided 
that

a(t) + v'*(qow)*Icn 

is a Hurwitz matrix for all t 2 0.



958	M. I. Gil 

5. Example 

Consider the problem 

L
j(x,i+Eikx,i)uk	(1 j n; 0<x <1)1	(5.1) 

u(t,0) =u(t,1) =0	(t >0)	 J 
where q, and 1I.'jk are real-valued functions defined on [0, 11 x [0, +) being continuously 
differentiable in i. Set ii = (u) 1 , and for X take the Hilbert space H = L 2 ([0, 1],C'1) 
of square integrable C-valued functions 6 = (vk)1 on [0, 11, with 

(,)H =	I V k ( X ) tb k (x) dx	and	IWIIH =	V,V)H 
k=1 o 

as scalar product and norm, respectively. Clearly, H is the n-times orthogonal sum 
H = E of the same Hilbert space E = L2 [0, 11 of square integrable C-valued 
functions with usual scalar product and norm. Define on H = L2 ([0, 1], C') a normal-
izing mapping M: H - ]R n by M(v) = ( II vkIIE)i . Furthermore, put 

D 1	v E L 2 [0, 1]: v" E L2 [0, 1] with v(0) = v(1) = o} 

and D = (D 1 ). According to (3.2) define operators AJk(t) by the formulae 
(AJ k(t)vk)(x) = 71)jk(X,t)vk(x)	(k j4 i) 

and 

(Aj(t)vj)(x) =	j(x,t)2- +(x,t)v	(vj,vk ED 1 ; j,k = 1,... ,n). (5.2) ax 
Assume that

ajk(t) = sup kbjk (x,t)I < oo	(k 54 j, i > 0)	 (5.3)

zE[O,1] 

and
b, (t) = sup ?4 jj (x, t) < oc	and	in,(t)	inf	t) > 0 (t > 0).	(5.4) 

zE[0,1]	 zE[0,1] 

Hence
IIAjk(t)IIE	a(t)	(j	k, t > 0). 

Further, integration by parts and the condition v3 (0) = v3 (1) = 0 give

j 112


	

t ) Vi" Vj
E
 = _(j( . , t)v, v ) E	—m(t) (v, v)E < —m(t)2 IIv 

since /3(5)	7r2 is the smallest eigenvalue of the operator S defined on D 1 by the

formula

(Sv)(x) = —v(x)	(vi E D 1 ; j = 1,. .. , n). 
Moreover, relations (5.2) and (5.3) imply 

with
a,(t) = —mj (t)ir2 + b(t)	(j	1,. . . , n).	 (5.5)


Now according to Reamark 4.3, Theorem 4.1 implies
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Proposition 5.1. Let conditions (5.3) and (5.4) be fulfilled. In addition, let the 
matrix a(t) = (a3 k(t)) defined by (5.3) and (5.5) satisfy conditions (4.2) and (4.3). 
Then the system (5.1) is stable provided that a(t) + z(qo,v)Icn is a Hurwitz matrix for 
all t > 0. 

Certainly, instead of the differentiating operator one can consider the Laplacian one. 
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