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On a Class of Multilinear Operator Equations

J. Janno and L. v. Wolfersdorf

Abstract. By means of contraction principle in a Banach space E with a scale of norms
|| - lle (& > 0) existence, uniqueness and stability of solutions are proved for a general class of
operator equations u + Gou + G1u = ¢ including multilinear ones where Go,G € (E — E)
are some operators. The theorems are applicable to equations with operators of generalized
convolution type.
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0. Introduction

Recently, by Bukhgeim [2] and the authors (6], global existence and stability theorems
for some types of abstract one-dimensional nonlinear convolution equations are proved
using norms with exponential weights. This method has been applied also to multi-
dimensional nonlinear Volterra equations of convolution type in Lebesgue spaces L,
with mixed norm {5].

In the present paper this approach is extended to a general class of nonlinear op-
erator equations in a Banach space with a scale of norms. In particular, this class of
operator equations includes some types of equations with multilinear operators. As a
special case of such multilinear operators a class of operators of generalized convolution
type in classical spaces C and Lo is dealt with.

1. Main theorem

We study the operator equation

u+Gou+Giu=g (1.1)
in a Banach space E, which is endowed with a scale of norms || - ||, (¢ > 0) satisfying
the condition

(o) lluflo < llulle < lulle (v € E,020) (1.2)
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936 J. Janno and L. v. Wolfersdorf

with a continuous positive function 1. For the operators Go, G, € (F — E) there hold
the following assumptions: .

(A1) [IGous — Gouzlle < Mo(llurllo, lluzlle, o) - llur — uzlle (us,uz € E, 0 > 0).

(A2) |[Giu]ls =0 asoc — o (u€E).

(A3) [|Gius=Ghrualle < Myi(f, llur~fllo, lluz—fllo, 0)-[lur —uzl, for every uy, ug, f €
E and 0 2 0 with ||u; — fllo < po (i = 1,2) where py is some given positive
number and the coefficients My and M, satisfy the following conditions:

(A4) M, € C(R% — Ry)

Mo (py, p2,0) is increasing in py, p; and decreasing in o
limg .o Mo(p1, p2,0) = 0 for any positive py, ps.

(A5)' My € C(E x [0,p0)? x Ry — Ry)

M, (f, p1,p2,0) is increasing in py, p2 and decreasing in o

mi(f, p1,p2) 1= limg—co Mi(f, p1,p2,0) € C(E x [0, po]* — R4)
Q(f) :=mi(f,0,0) < 1.

Here, as usual, R} denotes the positive real semi-axis.

Let us first draw some simple conclusions from the conditions (A2), (A4) and (A5).
Due to the monotonicity of Mg in ¢ and the last condition of (A4), for every pair p > 0
and € > 0 we can define

oo(p,€) = inf{a. € [0,00) : My(p,p,0)<¢ if 0> U'.}'

Moreover, it follows from the condition (A4) that, for any € > 0,

Mo(pr,p2,0) <e if 0<pi<p(i=1,2) and o >aoo(p,e) = - (1.3)
00'€ C(RE — R,). : ' (1.4)
Let us further denote
o(f) = Qiy (1.5)
Evidently, by (1.5) and the last condition of (A5) we have the inequalities
Qf) < —— +Q(f) <q(f) <1

Thus, due to the last condition of (A5) and the monotonicity of M, in p;, p; and o
respectively, we can define

’

Tl(f)—SUP{TG(O pol: mi(f,p1,p2) < +§(f) if px,pzsr}

and

o1(f) =inf {0, € [0,00) : My (f,ri(f)ra(f),0) S alf) i 020},
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Then the first two conditions of (A5) imply
M(f,p1,p2,0) <q(f) <1 if 0<py,p2 <7i(f) and o > o4(f) (1.6)
g¢,m1,00 € C(E - R4). (1.7)
Finally, in view of (A2), for every p > 0 and f € E we can define

1-4q(f)
2

o2(f,p) = inf {o. €[0,00): I Sllo < b ifo> o.} ,

Then there holds o)
IG1flle < == p (1.8)
if 0 > o2(f, p) and due to the continuity of G, (see (A3)) and q we have
o2 € C(E X R+ - R+) (19)

Now we can formulate our main result.

Theorem 1. Let (1.2) and the assumptions (Al) - (A5) be satisfied. Then for
every g € E equation (1.1) has @ unique solution u € E. For the solutions u; and us
corresponding to data g and gz, respectively, the estimates

2 . -
(1) |lur — u2fle < T(fl)”gl - g2llo f o 2 3(f1,p(91,92)) and |lg1 — g2llo <

S(flap(gl ,92))
2

S2 - <. — - if g1 — < 8(f1,
(52) s = el < o S alar, g 19 92l ¥ llor ozl < U4
p(91,92))
hold. Here p(g1,92) = maxi=12{2||Gogillo + llgillo}, f1 s the solution of the equation
f+Gof=g (1.10)

with g = g1, g is defined by (1.5), 5(f1,-) > 0 and §(f1,-) > 0 are certain continvous
functions.

Proof. Let us define the balls
Bpo(w)={u€E: Ju-vls<p} (p>0,020,v¢E)

in E.
Step 1. At first we show that the auxiliary equation (1.10) has a solution in the

ball Bg ,(g), where R = 2||Gog|lo and o is chosen large enough. By assumption (A1)
and (1.2) for the operator A¢f = g — Go f we derive the estimates

140 f = gllo = lIGofllo < IGof — Goglle + lIGoglle

< Mo(lfllelgller0) - 1F = ollo +
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and
4o fi = Ao f2llo = IIGofi — Gofalle £ Mo(llfillo, I f2lle,0) - Ifi = follo-
I fi,f2, f € Br,o(g), then
Ifle <B+llgle  and  ifillo < R+ liglo (i=1,2).

Now by (1.3) we have
1 R 1
lof ~gllo S 5R+5 =R and  [lAofi ~ Aofalle < 3Ifi ~ foll

if f,fi € Br,o(g) with 0 > ao(R + |lgllo, 3)- Thus, for such o the operator Ay maps
Br,o(g) into itself and is a contraction in Bg,(g). This implies the existence of a
solution to equation (1.10) in Bg,(g), where R = 2||Gogllo and o > ao(R + ||g]|o, 3)-

Step 2. Next we are going to show that a unique solution of equation (1.1) exists
in the ball B, ,(f), where p is small enough, o is large enough and f is a solution to
equation (1.10). Let us denote

Au=nggu—Glu.

By virtue of (1.10) and the assumptions (A1) and (A3) we derive the estimates

lAu = fll,
=||Gof — Gou — Gru+G1f — Gifll» :
< lIGof — Goulls + IGrf ~ Grullo + 1G1 fllo (111)

< (Mol fllo, lulloro) + My(£,0,llu = Fllo, )] - llu = fllo + G Fllo
if [lu ~ fllo < po and

||A‘U.1 - A'U.z”a' .
< IGour = Gouzllo + [|Grur — Gruallo (1.12)

< [Mo(llullla, luzlle, o) + Mi(fillur = fllos lluz = fllo,y o) -l — wallo

if flui — flle < po (2 =1,2). We further estimate the coefficients My and M, in (1.11)
and (1.12). Suppose that u,u),u; € B, +(f), where p < ry(f). Then we have

lulle <ri(H+Nflle * and  luille <1 (f) +Ifll0 (1=1,2) (1.13)

and (1.3), (1.6) imply

Mol ler0) < 22 and” Mo(luslos sl o) < F=2E (11
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if o > 00 (r1 () + | fllo, =52) and

Mi(f,0,llu = flls,0) < g(f) and My(f,llus = flios lluz = fllos0) < g(f)  (1.15)

if ¢ > 01(f). Combining (1.11), (1.12) with (1.14), (1. 15) and also taking (1. 8) into
account, we obtain

4w = flo <[22 4 )] o+ 1220 -

-and
| Aus — Augll, < [I‘QM " q(f)] o =l = 22—

if u,u1,u2 € B, o(f), p < r1(f) and o> o3(f, p) where

os(f,p) = max{al(n, oo(r1(F) + £ll, q(f),oa(f,p)}- (1.16)

Since 1+g(j) < 1, we have that A maps B, ,(f) into itself and is a contraction in B,, o(f)

if p < r1(f) and o > o3(f,p). Thus, equation (1.1) has a unique solution u in every
ball B, o(f), where p < ri(f) and o > 0;3(f, p). Particularly, this proves the existence
result of Theorem 1.

Step 3. Let us prove the uniqueness of the solution of equation (1.1) in E. Suppose
that u; € E and uy € E are two arbitrary solutions of equation (1.1). Then

lui = fllo = |Gof — Goui — Gruills
S Gof = Gouills + |Gruillo

< Mo(llfllos lluillos @) - llui = flle + IG1uille (2= 1,2).

Now it follows from (1.2) and the assumptions (A4), (A2) that |lu; — f|lo < i (f) if o
is greater than some number o4 which depends on u;,u; and f. Thus, u; € B, (),0(f)
if 0 > 04. Taking 0 > max{o4,03(f,71(f))}}, the solutions u; and u; belong to a ba.ll
where the uniqueness of the solution has already been shown. Thus, u; = u,.

Step 4. Now we derive a stability estimate for the solution of the auxiliary equation
(1.10), which is uniquely determined as we have just shown. Suppose that f, and f, are
the solutions of (1.10) with g replaced by ¢, and g2, respectwely Then by assumptlon
(A1)

Ifr = falle < llg1 = g2ll0 + 1Go f1 = Go fllo

< gy = g2lle + Mo(ll falles Il f2lles 0) - 1 fy = fallo-

From Step 1 it follows that || fi-gillo < Riif o > go(Ri+l|gillo, 2), where R; = 2||Gogillo-
Thus, observing (1.2) we have ’

(1.17)

1fille < 21Gogillo + llgillo < max {211Gog;llo + llg;llo} = p(g1, 92) (1.18)
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if o > g0(p(g1,92): 3)- In view of (1.18) condition (1.3) implies

1 )
Mo(IfillosNfalloso) < 5 i o 2 ao(p(91, 92), ).
This together with (1.17) yields
1f1 = fallo < 2llgs = gslle it & 2 a0(p(91,92), 3). (1.19)

Step 5. Finally, let us derive the estimates (S1) and (S2). Suppose that u; and u,
are the solutions of equation (1.1) with g replaced by ¢; and g3, respectively. Then, by
the assumptions (Al) and (A3),

lu1 = uzlle < |Gour — Gouzllo + |Grur — Gruz|lo + llg1 — g21l0
< [Mo(llutlles llualle, o) + Mi(f1, llur = fills, llu2 — fillo, o) (1.20)
X flur — uzllo + |lg1 — g2llo

if ||lus — fille € po (¢ = 1,2) where as above f; is the solution of equation (1.10) for
g = g1. We estimate the quantities ||u1lo, [|uz(ls and |Jus = fills, luz = fills in (1.20).
It follows from Step 2 that -

liwr = fille £7(fr)  if o > a3(fi,m1(f1)) (1.21)
and " .
luz = follo < Erl(fz) if o2 a3(fz2,3r1(f2)) (1.22)

By virtue of the continuity properties (1.7}, (1.4) and (1.9) the functional o3 defined by
(1.16) is also continuous in its arguments. Thus, there exists 6(f1) € (0, 371(f1)) such
that .

o3(f2, 311(f2)) < 203(f1, 2r1(f1)) and 3ra(f2) < mi(fi) — 26(f1)
i [|f: — fallo < 26(f:). From (1.22) and (1.2) we now obtain
luz = fille < lluz = fallo + |1 f2 = fillo < r1(f1) (1.23)
if 0 > 203(f1, 371(f1)) and ||fi = fallo < 26(f1). Denote

os(f1) = max {as(fy,rs(£1)),205(f1, kra (1)) }.
The estimates (1.21) and (1.23) imply '
luile < Wfillo +ri(f)  (=1,2)" (1.24)

if 0 > 05(f1) and [|fi — fzllo < 26(f1). With the help of the bounds (1.21) and (1.23)
- for ||ui — fi|lo and (1.24) for ||u;||l, and the conditions (1.3) and (1.6) we continue the
estimation of ||u; — uz||, in (1.20) obtaining

1+ q(fi)
2

lus = wallo < Nluy = u2lle + g1 = g2(lo
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if
o 2 051, 7 2 a0 (Wfllo i), =RLL) o2 000, 15 = fallo < 2507)
Since
s 2 oo (Il + i) RLL)  and o) 2 )
we obtain

2
llur = u2lis < T—dh) llgr — g2llo (1.25)

if o > 05(f1) and ||fi — f2llo < 26(f1). Taking (1.19) and (1.2) into account we see that
(1.25) holds if

o > 6(f1,p(g1,92)) = max {os(f1); 00(p(91,92), %)}

and
llgr — g2llo < 6(f1,p(91,92)) = 6(f1) - ¥(o0(p(q1,92), 3))-

Thus, we have proved the estimate (S1). But the estimate (S1) together with (1.2)
implies the estimate (S2). Finally, since o9 is continuous, ¥ > 0 and é§ > 0, the
functions &(f;,-) and 8(f;,-) in the estimates (S1) and (S2) are also continuous and
§ > 0. The proof is complete B

2. Equation with multilinear operator

As a particular case of equation (1.1) we consider the operator equation

N ny
u+Gou+Zsz,j[Gi’lu, ,Gi'ku] =g (2.1)

k=2 j=1

where N > 2 and nx > 1, G{,.‘ €(E— Ei’_-), Ei,.‘ (1 < i < k) are Banach spaces and
K j are multilinear operators from Ei,l X .o X Ei,k into E. We suppose that the spaces
Ei,,‘ are endowed with scales of norms || - ||x,i,j,» (¢ > 0) which satisfy the condition

Nullkijo < lulleijo  (u€E}, 0>0) - (2.2)
and for the operators K ; and G{_i there hold the following assumptions:
k :
(B1) ||Kk,;lf1,- fillle < ck,j Hl I fillk,iso for fi€ By, (1 Si< k020, ck;20)
1=

(B2) |IKk i1, fillle £ Ak,j(o) - 11;1‘ Ifillxtgo - I fillkiso for fr € BL, (1 <1<
k,o>0,i=1,..k).
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(B3) |G} 1 = G} awallkizio < MY (llusllo, lluzlla) - lur = uslly for w1, uz € E (0 > 0)
where the coefficients Ax ; and M] ; satisfy the following conditions:

(B4) M\ j € C(Ry — R.,.),/\i_j is decreasing, limy—o ’\2,)‘(0) =0.
(B5) M;:, € C(R% — R+),M,fxi(p1,p2) is increasing in p; and p,.
Concerning the operator Go we assume (A1) and (A4).

Theorem 2. Let (1.2) and (2.2), the assumptions (B1) - (B5) as well as the as-
sumptions (Al) and (A4) be satisfied. Then equation (2.1) has for every.g € E a
unique solution u € E. For the solutions u, and uy corresponding to date ¢, and g,
respectively, the estimates’

(C1) Jlur —uzllo < 6llg1 —g2llo if o > 6(f1,p(91,92)) and |lg1 — g2l0 < 8(f1,p(91,92))

(C2) s = wall < Sz oy = 2l f 91 = gallo < 57 plo1,92)

hold. Here p(g1,g2) is defined as in Theorem 1, G(f1,-) > 0 and 6(f1,-) > 0 are certain
continuous functions.

Proof. Theorem 2 reduces to Theorem 1 if the operator

N Ny

Giu=Y_ > Ki,lG],u,..,G} (2.3)
k=2 j=1
satisfies the conditions (A2), (A3) and (A5) with Q(f) = 0.
The assumptions (B2) and (2.2) imply

1K k,;(frs oo fillle < Aej(0) - [T 1Ak g0 - 1 fillksisio (2.4)

I#£1

for f1 € Ei,, and p; € {0,0} (1 <1<k, 02>0,t=1,..,k). Condition (A2) is a simple
consequence of assumption (B4) and (2.4) with (py,...,px) = (0,...,0).

Let us show condition (A3). Due to the multilinearity of K, ; we can write

Ki;[Gh w1, G pma] = K i [GY vz, .., G} yus]

k
= Z Z Ky ; [X:,..., X;—‘laGi,p“l - G{’Pug,x;ﬂ, ey xi]
p=1 1 i . .
where I}, = (11, .0 lp-1, Ly, ., ) with all I, € {051},
Gl,u2—Gj f ifl,=lands<p-—1
Xs={ Gi,u1—Gj f ifl,=lands> p+1
GL,f ifl,=0
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and u;,u2 and f are arbitrary elements in E. Taking into account the assumptions (B1)
- (B3), we can estimate as follows:

Ke;[GL w1, .. ,GL yus] — Ki 5 (G} 1ua, ... ,G{’kug]”,

k
< Z{Ck,;‘-Mi,l(llwlla,llfllu) o Mzl £l

p=1

x fluz = fIE™" - M (lwallas lluzlle) - flur = uzllo

x M}y (lualla flle) - MY g(lluallos 1l ) - s — FIIS™

i {
+ 0> Meilo) o o phy
1#(1,...,1) o

] ]
x ML (el lzllo) - Hur = wzllo - by - m}

for u;, f € E (i =1,2) and 0 2 0, where I}, = (1, ..., {p—1,lp41, ..., lx) with all I, € {0;1}
and '

M} (lualle, 1 fllo) - fluz = fllo - ifly =1 and s <p—1
b= ML (lusllo, Iflle) - lus = flle ifl,=1and s> p+1
G o fllk,s,50 i1, = 0.

Estimating further, we have N
Kk (G s, s Ghs] = Ky (G2, e G e |

< M s (usllos lallos 1l NG Fls s - IGLFllkokio )

x { Do = AU e = A1 Aes(0) - DD lun = IS fluz - fllé’]

4),0220 \ 21,0220
) to=k—1 s1+02<k-1

X [lur = uzllo

for u;, f € E and ¢ > 0 where due to assumption (B5) the function M ; is continuous
and increasing in each of its arguments. Let us replace the arguments |u1o, ||uzllo
and [|fll, of My, by their majorants lur — fllo + [ fllo, 2 — fllo + Iflls and [Iflo,
respectively, and take a sum over k, j to get an estimate for the operator G, defined by
(2.3). We obtain

IG w1y = Gruzlle < My (f, llws = fllo lluz = fllo)
x[ %l = A5l - U2

41,6220
1<o  +42SN =1

. » '."

FYC D D TR { LR 7 Ru T B
21,0220 ..
s1+e<N=-1 : . § PR
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for u,-,f € E and ¢ > 0 where due to the mentioned properties of Hk,j: the continuity
of Gi,i and assumption (B4) the coefficients M, and ) satisfy the conditions

M, eC(E x R2+ —R4) and M,(f,p1,p2) is increasing in p;, p,

and .
A€ C(Ry = Ry), A is decreasing, lim Ao) =0.
a—o0

Hence there follow the assumptions (A3) and (A5) with Q(f) = 0 and an arbitrary po.
The Theorem is proved B

3. Equations with generalized convolution operators

As an example for a multilinear operator we deal with the following integral operator
of generalized convolution type:

Zn

z k ‘
K(fi,.., fil(z) = / /m(z,y) Hf,'(a.':l: - Biy)dy; - - dyn (3.1)
0 =1

0
where
2= (21, 2a)yy = (Y1,-,9n) € D= [J(0,X;)  (0<X; < o0).
j=1

We consider the operator K in the spaces E = C(D) and E = Loo(D) (for more general
spaces Ly cp. [1]). The function m should have the form

k
m(z,y) = mo(z,y) [[ mi(eiz — Biy) (3.2)
i=1
with mg € C(D x D) or mg € Loo(D x D), respectively. The parameters
@ =(aj,.af) and  fi= (6,5
aiz = (ajz1,...,alz,) and Biv'=(Blyr, .., Blyn)

are in R" where we suppose the componentwise inequalities

0<fBi<a; or a;i-1<B;<0<a (1<:<k) (3.3)
and
k k
Zai <1 and Zﬂi >0 (3.4)
=1 =1

sothat 0 S aiz - By < X if0<y<z< X, X =(Xy,..., Xn)
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The operator K is defined on F = [[5_, Ei,Ei = L,,(D) (1 € pi < 00),"and we
assume that m; € Ly, (D) (1 < ¢; < 0o0) where

1 1 1 1
Y ==1 and —=—4 = (3.5)
Ti T Di g

=1
with r; < 00. Due to these assumptions we have K € (F — E) in both cases E = C(D)
and E = Loo(D); for the proof in case E = C(D) compare [1: Section 10/Theorem 1].

We have to show that the operator K fulfils the assumptions (B1) and (B2) with
(B4) in suitably chosen scales of norms in E and F. For this purpose we use the
well-known norms with exponential weights

—alz

lulg  and  ||fillie = le™" fill e (¢ 20) (3.6)

lulle = lle
where |z| = 3°7_, z;. These norms fulfil condition (1.2) with YP(o) = exp(—aIXI) and
condition (2.2), respectively.
There holds |mg| < My with a positive constant My and by (3.4) we have .

<1_2))p<_ )

k
> By

=1

k
e—a]zl — H e—a|o.~z—ﬂ.~y| exp (_0

=1

k
< H e—Cloiz—=Biyl
=1

Hence using the Holder inequality in view of (3.5), we obtain

IKf1,-es felllo

\mi(aix - Biy) fi(aiz — ﬂ,-y)l e=oloiz=Bivl gy, ... dy,
1

ZTn k3] k
=

< Moesssup/.../
z€D 5

Ty

< : mi(z)fi(2)|" e~V dzy - - dz
<G Il ([ ) e

with

MO

k n
Co=M ][] (H |ﬂg'|-1)
=1 \j=1

Again by the Holder inequality there hold the estimations

r

/ |mi(2)fi(2)|" e_""l"dzl coedzy < ere (/ If,.(z)lp; e-"l‘lp‘dzl ...d2n> Pi
D D



946 J. Janno and L. v. Wolfersdorf

with M; = ([ Imi(2)|%dz; - d2,) % and

pr S

/D imi(z)fi(z)lm e=llnig, 4 < N{"(a) (/D |fi(2)Pidz "'dzn) 7

with N;(o) = (fD [mi(2)|% e=ol=l9i gz, ~~~dz,,)ﬁ if p; < oo (besides ¢;,r; < 00). There-
fore we have the desired inequalities

||K[f1, :fk]"a S CH “fl“l 4 (3'7)

i=1
with C = Co [[5_, M; and
K (i fillle < M) [T Nl - M fillio (1 <i<k) (3.8)
l#i

with A(o) = Cy ‘maXig(1,... k) (n,;“ M, - N,-(a)) where by the Lebesgue dominant con-
vergence theorem N;(0) — 0 as 0. — 00, hence also A\(¢) — 0 as ¢ —.c0. Corresponding
inequalities hold in case p; = oo for some i € {1,...,k}.

We point out the particular case k = p + 1 (p > 1) with
1
;=0 and Bi=-- (1<:<p) and ar =B =1
p

of (3.3) and (3.4), which leads for f; = u (1 < i < k) to the power operator of convolution
type

Kplu] = /.../m(z,y)u’(%)u(z —y)dyr - - - dyn. (3.9)

Examples of operators GJ ; fulfilling the Lipschitz conditions (B3) with (B5) in the
weighted norms (3.6) are also given by powers of functions with deviating argument,
for instance. So let us consider in the space E = C(D) or E = Loo(D) the operator

(Gu)(z) = uP(h(z)) (p 2 1, entire) (3.10)

where h € Cpn(D) is a continuous n-dimensional vector function satlsfylng 0< h(z) < £.
We have

|e“’"|[(Gu1)($) - (GUQ)(I)]|

=171 [uy (h(z)) — ua(h(2))) Z ud (h(z))ub ™ 7 (h(z))

¢=lz=ph(z)] —"|"(")|Iul(h(z)) - uz(h(2))|

S oM ) A O]

7=0

p—1
<l = wazlle Y lluall? lluzll3 ™7,
=0
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i.e. condition (B3) is fulfilled with M(py, p2) = 32729 pipf ™' 7.

As an application of the foregoing considerations we show that the initial-value
problem for the one-dimensional integro-functional-differential equation

V() + @ (t,v(t),vz(g), ...,v"°(%))

+ /ao(s,t)v(t —s)ds + /bg(s,,t)v'(t —s)ds

+/v(t—s)gak(g,t)vk(%)d5 | - (3.11)

+ /v'(t - s)gbk(s,t)vk(-z-)ds

+ [oe- s)gc&(s,t)[b%%n*ds = g(t), v(0)=co

0 7

with ¢ € R and entire ng,n;,n2,n3 > 1 has a unique solution v € C'[0,T] for
g € C[0,T) in any finite interval [0, T) (T > 0), if the functions ax, bx and ck are contin-
uous and the function ®(¢,v;,v2,...,n,) is continuous and fulfills a uniform Lipschitz
condition in the variables (vi,v2,...,Un,)-

The statement immediately follows from the above results by taking u = v' € C[0, T

with :
t

v(t) = /u(s)ds + co

0

as unknown function and observing that by the Young inequality

livr = v2lle < min(T, ) [lur — u2llo
for the norm (3.6) in C[0,T] (cp. [6: Example 5]). So the term with the function &
generates an operator of the form Gy, the integral terms are operators of the form (3.1).
Of course, the functions v”(%) in (3.11) can be replaced by other operators of the form
(3.10). For functional-differential equations of the form (3.11) without integrals cp. (3,
4}, for instance.

We finally remark that further examples related to the examples in [6] are possi-
ble, also for systems of differential and integral equations and for operators Gi,‘. with
functional dependence on u.



948 J. Janno and L. v. Wolfersdorf
References

(1] Benedek, A. and R. Panzone: The spaces L” with mized norm. Duke Math. J. 28 (1961),
301 - 324.

(2] Bukhgeim, A. L.: Inverse problems of memory reconstruction. J. Inv. Ill-Posed Probl. 1
(1993), 193 - 205. !

{3] El’sgol’z, L. E. and S. B. Norkin: Iniroduction in the Theory of Differential Equations
with Deviated Argument (in Russian). Moscow: Nauka 1971.

(4] Hale, J. K.: Theory of Functional Differential Equations. New York: Springer-Verlag
1977.

(5] Wolfersdorf, L. von: A class of multi-dimensional nonlinear Volterra equations of convo-
lution type. Demonstratio Math. 28 (1995), 807 - 820.

(6] Wolfersdorf, L. von and J. Janno: On a class of nonlinear convolution equations. Z. Anal.

Anw. 14 (1995), 497 - 508.

Received 04.07.1996



