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Abstract. There are two classes of physical wave phenomena: with (e.g. water waves) or 
without (e.g. flash or bang in space) after effects. The second class is said to obey Huygens' 
principle. The mathematical formulation concerns Cauchy's initial value problem to a given 
linear hyperbolic differential equation, and is generalized to arbitrary dimensions as well as 
to curved spacetimes, i.e. Lorentzian manifolds. The original conjecture that every Huygens-
type equation is transformable to the wave equation in Minkowski spacetime was refuted by 
counter-examples found by K. L. Steilmacher and by P. Gunther. Since then, many results 
accumulated, but a general characterization of the equations which satisfy Huygens' principle is 
not yet known. Some classes of examples show interesting relations to other branches of physics 
or mathematics: the new higher spinor field equations of Buchdahl and Wünsch solve the long-
standing inconsistency problem, Huygensian wave equations on symmetric spaces are treated 
by means of Lie-theoretical methods, far-reaching generalizations of the Stellmacher-Lagnese 
examples are related to Coxeter groups and to integrable dynamical systems. The present 
paper surveys the research on Huygens' principle - from Hadasnard up to recent results. 
Keywords: Hyperbolic equations, Huygens' principle, Hadamard 's cofficients, Hadamard 's 

fundamental solution, tail term, characteristic conoid, conformal invariants, con-
formal derivatives, moments, higher spin field equations, Riesz kernels, mean value 
operators 

AMS subject classification: 35 L 10, 58 G 16, 35 Q 75 

0. Introduction 

The principle which is treated in this survey has a physical meaning and a mathematical 
one, whereby the latter evolves by abstraction and generalization from the former. The 
physical Huygens' principle is a special feature of some wave phenomena. Namely waves 
can show fundamentally different appearances. If a stone is thrown into water, new 
waves come from the centre of disturbance even when the stone has vanished. Behind a 
sharp forwara wave front the whole interior domain is excited by waves, which spread 
out in form of concentric circles; there is no backward wave front. In contrast, a flash of 

M. Belger: Math. Inst. der Universitt, Augustuspl. 10, D - 04109 Leipzig 
R. Schimming: Ernst- Moritz-Arndt-Universitãt, Inst. für Math. und Inf., Friedrich-Ludwig-
Jahn-Str. 15a, D - 17487 Greifswald 
V. Wünsch: Fried rich- Schiller- Universität, Math. Inst., Ernst-Abbé-Platz 4, D - 07743 Jena 

ISSN 0232-2064 / $ 2.50 ® Heldermann Verlag Berlin



10	M. Belger, R. Schimming and V. Wünsch 

light or a bang is momentary, i.e. we observe a sharp forward wave front and a backward 
wave front and smoothness between these. 

The stone, the flash and the bang have in common that they are a limitcd dis-
turbance. If the waves produced by it show a sharp backward front, then Huygens' 
principle is said to be valid, if not, then the Huygens' principle is said to be violated. 

The transition from physics to mathematics involves the following. 

Model building: Description of a wave phenomenon by a partial differential equa-
tion of hyperbolic type. 

Generalization: Every hyperbolic equation might be taken into consideration, let 
it be realized in nature or not. Up to now, an exact theory of Huygens' principle has 
been developed only for linear hyperbolic equations. 

Geometrization: Modern differential geometry with its key concepts manifold, 
Riemannian metric, fibre bundle, ... becomes the appropriate language. 

The mathematical Huygens' principle is expressed in terms of Cauchy's initial value 
problem to a given hyperbolic differential equation. Huygens principle is satisfied if the 
solution of such a problem taken in a point x depends only on the Cauchy data (and their 
derivatives) on the intersection of the initial hypersurface with the past characteristic 
conoid issuing from x.	 - 

Essentially, two classes of linear hyperbolic equations have been investigated: second-
order equations with a Laplace-like principal part, and first-order equation systems 
which can be reduced to Laplace-like equations with special initial values. The D' 
Alembert equation and the Klein-Gordon equation for scalar fields, differential forms 
or other fields belong to the second-order class. The Weyl and Dirac equations, the 
Maxwell and Proca equations and some more belong to the first-order class. The spinor 
formalism has proved to be extremely useful in order to deal with such first order 
equations. Thereby the long-standing problem to describe higher spin fields on a curved 
spacetime has found a satisfactory solution. 

Three books [21, 35, 401 are landmarks in the history of the concept which we 
consider here. J. Hadaniard [40] analysed three variants A, B, C of wave-like behaviour, 
and he called B Huygens' minor premise. R. Courant and D. Hilbert [21] reduced the 
name to Huygens' principle, though the latter existed already with another meaning. 
The problem to characterize all Huygens-type linear hyperbolic equations turned out to 
be more and more complex the longer it was investigated. Nowadays, there is a bulk of 
results and the problem is solved for some subclasses of equations, on the one hand. But 
Hadamard's problem remains unsolved in general and even in the physically important 
particular case of the wave equation on a four-dimensional spacetime on the other hand 
[4). P. Gunther's monograph [35] presented most of the results on Huygens' principle 
at its time and developed a systematic theory. The greater part of the results in review 
article [3] is due to the author of the book and his school. 

There are, additionally to the books [21, 35, 401, papers which give an introduction 
to Huygens' principle. Each of them stresses a special aspect: R. G. McLenaghan's 
paper [61] is centered on plane-wave spacetimes and their generalizations, P. Gunther's
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article [36] is aimed at an intuitive and historical understanding of Huygens principle, 
J. J. Duistermaat [22] compares several different approaches to wave equations. Many 
informations on a few pages are contained in B. ørsted's review [67] of P. Gunther's 
book [35]. 

1. The D' Alembert equation on R' 

Let us consider a simple example of a linear hyperbolic equation - the wave equation 
or D' Alembert equation

DU(—)u=O 
for a scalar field u on the fiat n-dimensional spacetime R' - as a first step towards a 
mathematical formulation of Huygens' principle. Note that 0 u = 0 is, for instance, 
a realistic linear model for sound if n 4. The spacetime R n is equipped with the 
Minkowski metric

g dt 2 -	dx 

where t = x 0 is the time, and xk = XI, . , Xn-I are Cartesian coordinates in space. 
The same information as in g is contained in the so-called world function 

n-i 

a = 0'(X, Y) = [(x0 - yo)2 - >2(xk - Yk)2] 

The invariant distance r = r(x, y) between two points x, y E R" is given by 

r(x,y) = 2a(x,y)14 

Some elements of Minkowski geometry are defined in terms of a: 

D(x) = { y e R'a(x,y) > 0) 

is the solid light cone with vertex x, its boundary 

C(x) := DD(x) = {y E R Th a(x,y) = 0) 

is the light cone surface. Note that both D(z) and C(x) decompose into future parts 
D+(x) , C+(x) and past parts D(x), C(x) the points or events of which are later or 
earlier, respectively, than x. Let us further introduce the zero time hyperplane 

H = {0} x 

the (n - 1)-dimensional ball in H

11(x) = D(x) n H
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and the (n - 2)-dimensional sphere in H 

S(x)=C(x)flH. 

Now we are able to pose Cauchy's problem: the wave equation U u = 0 is completed 
by initial conditions

UIH = UO 

9u 
at H 

=UJ 

It is well-known that for sufficiently smooth initial data u0 and u 1 there is a unique 
solution u = u(x) = u[uo,u i ] and that

a u[uo,u j ] = U P, U 11 +	u[0,u0] 

Thus, the general Cauchy problem is reduced to the special one 

tL IH = 

au 
ijilH 
- = u1. 

Let us analyse the well-known solution formulas to the latter, namely 
ri+t 

2u(t, XI ) = f ui(y)dy 
ri—i

uj(yi ,y2)dyidy2 

	

2u(t,xI,x2)= if	t2(xi_yi)2_(x2_y2)2 
2) 

4tu(t,xi,x2,x3)=	Jf	u1(y1,y2,y3)dS 
S(t,z i ,r3,zs) 

for n 2,3,4 named after D' Alembert, Volterra and Poisson, respectively [21]. For 
n = 2 and n = 3 the value u(x) of the solution u depends on the data on the whole of 
the ball B(x), while for ii = 4 it depends only on the data on 5(x). If we reverse the 
direction of time and consider u(x) as a disturbance concentrated at the point x, then 
we arrive at the situation of the introduction. In this definition, by analogy, Huygens 
principle is satisfied here for n = 4 and is violated for n = 2 and n = 3. The analysis 
can be extended to arbitrary dimensions and shows that the wave equation 0 u = 0 on 
Minkowski spacetime R is Huygens' for even n > 4 and is non-Huygens' for odd n 3 
and also for n = 2. 

Some visualization may help to understand the step from spatial to spacetime ge-
ometry. Imagine a wave process and a series of photographs of it. If the snapshots are 
piled up in their temporal order and if they are, in thought, interpolated to a continuum, 
then we obtain the picture of the wave process in Minkowski spacetime. For instance, 
the future light cone C+(x) is the picture of a point-like disturbance at x, which just 
appeared at the start of our physical discussion in the introduction.
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2. Huygens' principle for second-order equations 

Let us introduce, taking advantage of differential-geometric concepts, a far-reaching 
generalization of the precceding example. 

• The Minkowskj spacetime R" is replaced by an n-dimensional Riemannian mani-
fold (M, g) of Lorentzian signature (+ -	-). 

• The independent variables are now local coordinates x a = x', x2,... Xn of a point 
x e M. 

• The dependent variable or unknown function generalized to a section u = u(x) of 
a given vector bundle E over M. 

• The wave equation on R n is replaced by a linear partial differential equation of 
the form 

where u and I are sections of E, (9(2l) = (gab) belongs to the metric g = 90 ,, dxadxb 
D is a covariant derivation, and W is a section of the endomorphism bundle End E to 
E.

• The world function of (M, g) can be introduced as the solution a = a(x, y) of the 
differential equation

9(V0c)(V6a) = 2a 

together with the initial conditions 

(Vo)(x,x) = 0 

(VaV 6 )(x,x) = gab(X) 

where the Va are the Levi-Civita derivatives with respect to the first argument x. 

The light cone is replaced by the characteristic conoid. More precisely, the solid 
conoid D(x) is defined by a(x, y) ^! 0 and the conoid surface C(x) is defined by a(x,.y) = 
0.

• The time coordinate is replaced by a time function, that is a function t = t(x) 
such that

gab(Vg)(Vt) > 
0 

The zero time hyperplane is replaced by the spacelike hypersurface 

H = {x E M I t(x ) = 01 

We set then
B(x)=D(x)flH	and	S(x)=C(x)flH. 

• Finally, the equation L[u] = I is completed by initial conditions 

U IH = U0 
9Ob(v0j)(D6)1 = ui
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to a Cauchy problem. 

Some comments are in order. 

1. We apply the usual notations of tensor calculus, in particular the Einstein sum-
mation convention with respect to repeated indices in products. 

2. All objects are assumed to be smooth, i.e. of differentiability class C°° 

3. The world function a = a(x, y) exists, in general, only locally, that means for x 
and y sufficiently near to each other. Therefore, D(x) and S(z) are restricted to some 
neighbourhood of the point x E M, and all constructions based on these elements are 
local ones. 

4. The Levi-Civita covariant derivatives V are given in terms of the Christoffel 
symbols r 6 to the metric g. In particular, we have for a function or scalar field s = .s(x) 

V0 s = aas	and	VaVbS = aobs - rabacs 

where '9a ='9 are the partial derivatives with respect to the local coordinates xa. 

5. Covariant derivatives Da of sections u of E are characterized by the Leibniz rule 

D(su) = (Vs)u + SDaU 

for scalar fields s. The second derivatives DaDe, are defined by another Leibniz rule 
which combines D and V. 

6. The differential operator L introduced above has the same principal symbol as 
the Laplacian or D' Alembertian

= gabVaVb 

acting on scalar or tensor fields. Therefore, we call L Laplace-like or of Laplace type. 
Notice that A and L are hyperbolic if the metric g has signature (+ - .. . 

Huygens' principle. Now we can give a mathematical formulation of Huygens' 
principle. A Laplace-like hyperbolic operator L is Huygens' if for every H, x, f, uo, u1 

the solution u = u(x) of Cauchy's problem taken at x depends only on the data u O , u  
and its dervatives taken on 5(x), but not on the values of u0 , u 1 in the interior of B(x). 
That means, if the data differ only in B(x) \ 5(x), then the solution u(x) at x will be 
the same. This can be made more precise, using the linearity.of L. Huygens' principle 
becomes the following peculiar property of a differential operator L: if the initial data 
uo, u 1 have support in the interior of B(x), i.e. 

suppu0 ,suppu 1 CB(x)\S(x), 

then the solution u of the Cauchy problem (with I = 0) 

L[u] = 0 

U IH = UO 

9ab(Vt)(Du)1 = Ui
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vanishes at the point x. 

There are several theories which give existence, uniqueness, and a construction of 
a solution of the above Cauchy problem. Each of them leads to its own criterion for 
Huygens principle. Let us mention the following: 

• J. Hadamard [40, 411 constructed a solution by means of "finite parts of divergent 
integrals". He found that Huygens' principle holds for the differential operator L if 
and only if n is even, n > 4, and the formal adjoint L* to L admits a logarithm-free 
elementary solution. 

• M. Riesz [68] introduced a semigroup of integral operators with kernels V(z, y, A), 
A being the semigroup parameter. He solved the Cauchy problem by means of analyt-
ical continuation to A = 2. Huygens' principle holds, for even n > 4, if and only if 
V(x,y,2) =0. 

• S. L. Sobolew [79, 801 and L. Asgeirsson [6, 7] studied, for even n > 4, L[u] = I 
together with timelike derivatives of order 1, 2,... , 9 of this differential equation and 
derived from the resulting system an integral equation for the solution of Cauchy's prob-
lem. Huygens' principle holds if and only if a certain' integral kernel, called "diffusion 
kernel" vanishes. In this case, the integral equation becomes a solution formula. 

• F. G. Friedlander [23] and P. Gunther [35] reformulated the Cauchy problem 
in terms of distributions and constructed distributional solutions. Huygens' principle 
holds, for even n > 4, if and only if the fundamental solution of L has its support on 
the characteristic conoid surface (and not in the interior of the solid conoid). This is 
equivalent to the condition that the "tail term" to L vanishes. 

It is not suprising that all the necessary and sufficient criteria for Huygens' principle 
from different authors turn out to be equivalent. They can all be reduced to one 
more explicit condition, which is accessible to evaluations and calculations. We have, 
in order to present this condition, to introduce the so-called Hadamard coefficients 
Hk = Hk(x , y) (k = 0, 1,2,...) to L. These two-point quantities are recursively defined 
by

ga6(Voo)D6H0 + pH0 = 0, Ho(x, x) = I 
+ (p + k)Hk = L [Hk_I] for k > 1 

where

p = (i7 - n) 

and where all differentiations refer to the first argument x. Each Hk = Hk(x, y) behaves 
like a section of E with respect to x E M and like a section of the dual bundle E' 
with respect to y € M. Thus, a diagonal value Hk(x,x) can be interpreted as a 
section of End E. In particular, Hu(x, x) = I is required to be the unit matrix. The 
differential-recursion system for the Hadamard coefficients has a remarkable property: 
it can be shown that there is a neighbourhood of the diagonal of M x M where solutions 
Hk =Hk (x,y) (k=0,1,2 .... ) exist and are unique. 

Theorem I. Huygens' principle never holds for n = 2 or for odd n	3. So, 
let n = 2m + 2 > 4 be even. Huygens' principle holds for the formal adjoint L* of
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the Laplace-like hyperbolic operator L if and only if the m-th Hadamard coefficient to 
L contains the world function a = a(x, y) as a factor, that means there is a regular 
two-point function R = R(x, y) such that 

Hm(x,y) = cr(x,y)R(x,y)	 (1) 

An explicit or implicit proof of this criterion can be found in each of the papers 
[6, 23, 35, 40, 68, 79]. Notice that L and its formal' adjoint L can easily interchange 
their roles since Lt = L. The two-point condition (1) implies a sequence of one-point 
conditions, namely conditions for the Taylor coefficients of Hm with respect to the 
running point x and the origin y. We need, in order to present these, elements of a 
calculus of symmetric differential forms. 

A symmetric p-form

U = Up = Uaia2,,,a,dXa1 d Xa2  .. . X ap
 

is a special notation for a totally symmetric covariant tensor field of valence p. For 
instance, the Riemannian metric g = gabdx a dx t) is a symmetric 2-form. The multipli-
cation of symmetric forms is the tensor multiplication followed by symmetrization. A 
metric g defines a trace operator tr by 

tru0=0  

tru1=0	 I 
tr U2 = g ab U ab	 I 
tru =ab	 dxa3 . . . dx°' for p > 3 . J 

Every p-form u, admits a unique decomposition into a part proportional to g and a 
trace-free part TS up:

	

U P =g•u_ 2 +TSu ,	tr (TS up ) =0, 

where" . " indicates symmetric multiplication. All these facts are naturally generalized 
to (End E)-valued symmetric forms. 

Theorem 2. Let n = 2m+2 >4 be even. If Huygens' principle holds for L*, then 

TS(D01 Da 2 ... Da p Hm)(X,X)dX 1 dX 2 . . . dx°' = 0	 (2) 

for p = 0, 1,2.... . If, in particular, the objects M, g and L are analytic, then the 
conditions (2) are not only necessary but also sufficient for Huygens' principle. 

The proof of Theorem 2 evaluates (1) and is based on 

(VaVb a)(x,z) = g0b(x) 

(Va Va2 "Va9 a)(x,x)dx°'dx"2.. .dxap = 0 for p ^! 3 

Let us explain the left-hand side of (2): Covariant derivatives Da 1 , Da 2 , ..., Da, with 
respect to x are applied to the m-th Hadamard cofficient Hm(X, y), the result is restricted
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to the diagonal x = y, finally the symmetric and trace-free part of the resulting p-tensor 
is taken. 

Standard arguments of the theory of invariants show that the (End E)-valued tensor 
components

(D., D.,. . . Dap Hm)(X,x) 
are polynomials in the variables 

y, g0&, gab , .ILabcd, V, flabcd, V, Vc2Rabcdi 
F06 , D, F06 , D, Dc2Fab, 

where the components of the Riemannian curvature R0bcd and the components of the 
gauge field curvature Fab are defined through the Ricci identities 

( V 0 V6 - V 6 Va) Vc = R0bd v
( D0 D6 - D6 D0 )u = F06u 

for a 1-form v = v0 dx°, v 0 := gab v6 and for a section u of E, respectively. 
For low values of n and p the conditions (2) have been made explicit. 
Theorem 3. Let n = 4. If a differential operator 

L = 9 abDaD6 + W 
satisfies Huygens' principle, then 

(1) W -	= o 
(ii) D 6 Fab = 0 

 B06 1 = F06Fo' + FbcFaC - lgFFCd 

Here and throughout the paper we use the following notations: 
D	'dab - 9 '.acdb 

are the components of the Ricci tensor, 
R = g0bR0,, 

is the scalar curvature,
Wabcd 

are the components of the conformal curvature tensor (the definition of which we omit 
here) and

B06 = V'V"Wacdb - RWacdb 

are the components of the Bach tensor. 
A proof of Theorem 3 was given for the scalar case in [27] and for the vector-bundle 

case in [74]. 
The above conditions (i) - (iii) in Theorem 3 admit the following interpretations: 

(i) means that Cotton's invariant C = W - *1 vanishes; (ii) is the Yang-Mills equation 
for the gauge potentials Aa in D. u = i9au + A0 u, and the endomorphism trace of (iii) 
is a gravitational field equation with a Yang-Mills source.
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Theorem 4. Let n = 6. If a differential operator 

L = YO6DD + W 

satisies Huygens' principle, then 

30g°'D0 DbC + 6RC + WabcdW°I + 15FObFab + 90C 2 = 0 

where C = W - fI is the so-called Cotton endomorphism to L. 

A proof of Theorem 4 was given for the scalar case in [29) and for the general case 
in [73]. The result also appeared earlier in the context of spectral geometry [25, 26]. 

Note that the formula in Theorem 4 also admits an interpretation, namely as a 
nonlinear Higgs equation for C = C(x) with some source terms. 

4. Trivial and non-trivial Huygens' equations 
The class of Laplace-like differential operators 

L = gabDaDb + W 

is form-invariant under diffeomorphisms, when the objects g, D and W are carried along 
with the diffeomorphism. Clearly, it is also form-invariant under coordinate transfor-
mations. Further, we have form-invariance under gauge transformations 

L = A1LA 

where A = A(x) is a section of the automorphism bundle Aut E to E, and under 
conformal transformations

= e_(m+2Lemc 

where cp = (x) is a smooth function, m = !, and functions are notationally identified 
with multiplication operators. A gauge transformation with A induces 

=g,	Da=A'DaA,	WA'WA 

while a conformal transformation with induces [35, 66, 74] 

= e2 "9	and	W = e 2 "(W + Ie_mcemc) 

One can show that multiple covariant derivatives D of sections u of E behave like Levi-
Civita derivatives of scalar fields under a conformal transformation [74]. In particular, 

= D0u 

Two Laplace-like operators L and L are called equivalent if there is a combination 
of coordinate transformations, gauge transformations, and conformal transformations
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which changes L into E. A Laplace-like operator L is called trivial if it is locally 
equivalent to an operator

= gab396 

where gab = const and aa = -. Obviously, all elements in the definition of Huygens' 
principle are invariant under diffeomorphisms, gauge transformations, and conformal 
transformations. (The characteristic conoid is, in particular, conformally invariant.) 
Hence: 

Huygens' principle is a covariant, gauge invariant, and conformally invariant 
property! 

A hyperbolic operator L is trivial if and only if it is locally equivalent to the wave 
equation on R". The latter is Huygens', if n > 4 is even. So we come to the conclusion: 

If n > 4 is even, then a trivial hyperbolic operator L satisfies Huygens' principle. 

Naturally, the question arises whether there are non-trivial Huygens' equations? M. 
Mathisson (58] in 1939 gave a negative answer for a scalar-type operator L on the 
four-dimensional Minkowski spacetirne 

L gab (5a + A 0 )(06 + Ab) + W	(a,b = 1,2,3,4) 

9 a = const, Aa =A. (Xb),  W = W(x") 

If such a hyperbolic operator is Huygens', then it is trivial. The proof of this fact in 
[58] is an evaluation of the conditions 

Hi (x,x) = 0,	(Da H 1 )(x,x) = 0,	(Da DbH1)(X,X) 9ab 

Later, K. L. Stelimacher [81] in 1953 found a positive answer to the above question: 
he constructed a non-trivial Huygens' equation in n = 6 dimensions. His example is 
scalar-type and the underlying manifold is flat, i.e. g

ab
const. It reads, in a notation 

which differs from Stellmacher's, 

L - gab[. at/b - 2(e,x) 2 - " 

where
(x,y) = 

is the scalar product of x,y E R' with respect to the flat metric and e E R n is an 
arbitrary unit vector, i.e. (e, e) = 1. In a second paper [82] he generalized the example 
to any even dimension n > 6 by introducing a parameter 1: 

L = g abaa ab - 1(1 + 1)(e,x)2 

The Hadamard coefficients Hk to this L can be explicitly calculated [77]: 

Hk = (_1) k k! ( 1

) 
(1±/c) (e,x)_k(e,y)_k
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If 1 = 0, 1,. . , rn —1, then obviously Hm = 0, hence Huygens' principle holds. Moreover, 
if I 0, then the operator is non-trivial. Stelimacher's example does not cover n = 4. 
This gap was filled by P. Gunther [321 in 1965. He showed the following: 

For every even n 4 the scalar wave equation A u = 0 to a plane wave metric 

g	2dx°dx 1 - a tj ( x O )dx 2 dxi	(i,j = 2,3,... ,n —1), 

where the matrix a(x°) = (a,(x°)) is positive definite, satisfies Huygens' 
principle. 

The proof relies on an explicit formula for the world function: 

=(x° —y°)(x'	y1)	u ij 	—y)(x' _)) 

where u R,(x°, y°) are the elements of the matrix 

u(x°)y°) = 

(
jXOa(t)_ldt) 

The plane wave metrics admit a physical interpretation as plane gravitational waves. 
They are characterized by the existence of a vector field 1 = lOO such that 

Valb = 0,	Rob[cdl]	0 1	l[fVe]Rabcd = 0 

where the brackets [ I indicate antisymmetrization. The group of motions of a general 
plane wave spacetime is isomorphic to the (2n - 3)-dimensional Heisenberg group; it is 
generated by translations and null rotations [72]. 

After P. Gunther's paper [321, non-scalar operators L too have been studied with a 
plane wave background. The following results have been found in [71] for a), b) and in 
[88] for c) (cf. also [47, 64]). 

Theorem 5. Let (M, g) be a plane wave manifold of even dimension n. Then the 
following equations satisfy Huygen's principle in (M, g): 

a) The Hodge-de Rham wave equation 

(d5 + 5d)u = 0 

for alternating p-forms u (0 <p < n), if n > 6 (see also Section 7 and there the result 
a) with footnote 1)). 

b) The Maxwell equations 

du=0	and	6u=0 

for alternating p-forms u (1 < p < n - 1), if n > 4 (see also Section 7 and there the 
results (M), (V) and behind that the Corollary).
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c) The D' Alembert equation A  = 0 

on 1-spimor fi e lds u, if n = 4. 

There are more theorems of this type where plane wave metrics are sufficient for 
Huygens' principle. There are also many theorems where plane wave metrics appear as 
necessary conditions for Huygens' principle [56, 581. Notice that we do not present here 
a theory of Huygens' principle for hyperbolic first-order systems. Let us only mention 
that the latter are equivalent to hyperbolic Laplace-like systems with special initial 
values in Cauchy's problem. 

An important subclass of the linear hyperbolic equations of second order are those 
with constant coefficients. The above question can be modified: Are there non-trivial 
Huygens' equations with constant coefficients? M. Mathisson's result gives, again, a 
negative answer for n = 4 and one-component (i.e. number-valued) fields u. A positive 
answer can be given for N-component fields, N 2 2. The following systems with 
constant coefficients non-trivially satisfy Huygens' principle [75]: 

For N = 2, n > 4 even: 

For N = 3, ri 2 4 even: 

For N = Ti 2 4 even:

• 0 u 1 + ( 5' - 32 )u, + 53 u2 = 0 
0 u2 (Sj - S2)U2 = 0. 

o u 1 + 52 tz 2 = 0 
o u 2 + 53U3 = 0 

0 u 3 = 0. 

0 Ui =0 
0u 1+,+51 u 1 =0 (i=1,2,...,n-1). 

Here 0 = a02 - -... - 5_ is the wave operator of the fiat spacetime R'. 

5. Linear differential equations of mathematical physics 

Let us consider in this section a (possibly curved) spacetime of dimension n 4. The 
principle of first quantization associates kinds of elementary particles to field equations. 
Thus, the linear field equations of mathematical physics can be classified by the rest 
mass in and by the spin quantum number s of the associated particles. If .s is integer, 
then the particle is called a boson and the field is a tensor of valence s. Ifs is half-integer, 
then the particle is called a fermion and the field is a spinor of valence 2s. 

For in = 0 and absent sources there are the following field equations: 

s = 0: D'Alembert equation Au = 0.
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s =	Weyl's equation	= 0. 

s = 1: Maxwell's equation V b Fa6 = 0 for Fab : VaA6 - VbAa. 
s > 1: Several equation systems have been proposed. Among these, 

	

V	
,AP=0	(p=2s-1) (A WA

is distinguished by particularly good properties [48, 50]. 
For rn > 0, jz :=	, where c is the velocity of light and 71 is Planck's constant, and 

absent sources there are the following field equations: 
s = 0: Klein-Gordon equation A u +,u 2 U  = 0. 
S = : Dirac equation .yaV0u + jiu = 0. 

= 1: Proca equation V b Fa6 -
 112 A. = 0 for Fab : VaAb - V6Aa. 

j s > 1: Several equation systems have been proposed. 
Most of these equations exhibit disadvantages if they are, by means of minimal gravi-
tational coupling, extended to a curved spacetime: either they require additional struc-
tures or they imply inacceptibly strong integrability conditions. The following system 
discovered by H. A. Buchdahl and brought into a convenient form by V. Wünsch is free 
of such inconsistencies [49 - 51, 87, 88, 90, 91, 931: 

V cQ flA I ,Ap + /1 X A , ., ApJi = 0 

- 1XAA 1 ..... A = 0 (p = 2s - 1). 

Notice that in the above scheme the field equations for s = 1 and s = 1 can be 
subsumed to the equations given for s > 1. R. Illge [50, 51] constructed a Lagrangian 
and an energy-momentum tensor to these higher spin field equations. 

Observed elementary particles can be associated to most but not all of the above 
linear field equations. For in = 0 one has only 

s	: Neutrinos v 
s = 1: Photon y. 

For in > 0 one has 
s = 0: Scalar mesons ir, K, D, r, 
s= : Leptons e,ji,T,baryonsp,n,A,E,,... 
s = 1: Vector mesons 
s> 1: Resonances. 

Notice that all the above fundamental equations in spacetimes are of hyperbolic type, 
i.e. they have wave-like character. Elliptic equations emerge from the hyperbolic ones 
by the assumption of stationarity; parabolic equations emerge as macroscopical models 
by means of thermodynamics. 

It makes sense to ask about Huygens' principle for each of the fundamental equa-
tions. The following has been proven in [87, 88, 90, 91, 93].
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Theorem 6. The spinor field equations of Buchdahl and Winsch 

Ap + I.LXA ,.., ApX 
= 

VX
Ap)X -	 Ap = 

for p = 2s - 1, s > 1 , p > 0 satisfy Huygens' principle if and only if the underlying 
spacetime has constant curvature and the value of the scalar curvature equals R = 
12s2. 

Spinors are needed for the description of fermionic fields, but they are also used as 
technical tools: the tensorial conditions for Huygens' principle automatically decompose 
into their irreducible parts if they are translated into spinorial form [88, 89, 92, 94, 98, 
99]. 

5. Relations to conformal differential geometry 
Let T be a geometric object which is generally defined on any Riemannian manifold 
(M, g). It is called a concomitant of the metric g if its components are coordinate-
independent functions of

g ab,	3ai9ab,	5ai5a2 gab, .... 

A concomitant T = T[g] of g is called polynomial if its components are coordinate-
independent polynomials in 

ab g ,	gab,	°ai9ab,	'9a,3a29ab 

An important theorem states that the components of a polynomial concomitant T = 
T[g] are coordinate-independent polynomials in 

gab,	gab,	Rabcd,	VaiRabcd,	Val Va2Robcd..... 

It is desirable to describe the conformal behaviour of T[g]. P. Gunther and V. Wünsch 
[38, 39, 85, 94, 991 solved this task; let us shortly review their theory. 

A polynomial concomitant T is said to have the conformal weight w = const if for 
every p = const

T[e2'g] = e2T[g] 

It is said to have the conformal order k if T[e 2 °g] depends for every function W E C(M) 
only on p and its derivatives up to the k-th order, but not on derivatives of a higher 
order. Further, T is a (relative) conformal invariant of weight w = const, if for every 
function w E C°°(M)

T[e2'g] = e2"T[g] 

(Clearly, such a T has conformal order 0.) For example, the Weyl conformal tensor for 
g in n > 4 and the Bach tensor (for ti = 4 only) are conformal invariants of weight -1. 
The Schouten tensor L = LabdX 2 dX to g, which is defined by 

(ii - 2)Lab Rab - _______ 
2(n R -
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has conformal weight 0 and conformal order 2, since = e2 'g implies 

La& La6 + VaV6co - (Vaca)(V&c) + 9ab(Vc0)(VcO). 

Let T be a polynomial concomitant of conformal weight w. Then the infinitesimal 
conformal transform of T is defined as the limit 

X,T = lim (T[e2 "g] - e2T[g]). 

P. Gunther and V. Wünsch [38, 39] proved that T is a relative conformal invariant if 
and only if

X,T=0 
for every W E C(M). If, in particular, T is a polynomial concomitant of conformal 

cc order 1, then V T (VaT) ® dX a given by 

VaT = VaT - L6X'T 

is again polynomial and of conformal order 1. Here the so-called infinitesimal generators 
xa are defined by

XWT =: (X°T)V0 

where the X'T do not depend on p. The operators V. are called the conformal deriva-
tives. 

P. Gunther and V. Wünsch were able to construct sequences of conformal invariants 
by means of these tools, thus contributing to conformal differential geometry. Strictly 
speaking, the objects of conformal differential geometry are not the Riemannian metrics 
g but their conformal classes

{e2 g p E C°°(A4)} 

The theory of [38, 391 applies to Huygens' principle, as follows. Let n = 2m + 2 > 4 
be even, Hm = .F1m (,y) be the m-th Hadamard coefficient to L = g0bDaDj, + W, and 
abbreviate

 fk\ (I+rn—l)/(—,m)2m-2) Ckj=(1)k (—m)
2	 )

(2k+ 

Ikl(X )	TS(7 aj ... ; 7a,	•.. Va k Hm)(X,X)dXdX .. dx 
V	 V 

Ik(X) 

=C

kl Iki(X). 

Here 7 a are the conformal derivatives with respect to the first argument x, and '7 are 
zY 

the conformal derivatives with respect to the second argument y; a symbol TS means 
the trace-free part of a symmetric form. 

P. Gunther [35] called the trace-free symmetric forms 'k = Ik(x ) ( k = 0, 1,2,...) 
the moments of the differential operator L and proved the following
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Theorem 7. Let n = 2m + 2 > 4 be even. Each moment 'k (k = 0,1,2,...) is 
a conformal invariant of weight —in. Moreover, if L satisfies Huygens' principle, then 
Ik = 0 fork = 0,1,2..... 

V. Wünsch [85 - 94] extended the "method of moments" for n 4 to the Maxwell 
equations in the version

du=0, Su=0 

for an alternating 2-form u and to Weyl's equation 

VX = 0. 

He constructed in both cases a sequence { Ik}k>o of trace-free symmetric k-forms with 
the following two properties: 

• Each 'k is a conformal invariant of weight -in. 

• If the field equation under consideration satisfies Huygens' principle, then 'k = 0 
for k > 0. 

We omit the concrete expressions for the 'k because of their complexity (cf. [60, 
100]). The moment equations ' k = 0 are determined explicitly at present for 0 
k 4. Using some results on the theory of conformally invariant tensors one obtains 
information about the algebraic structure of the moments for 0 k 6 (s. [99]). 

A step towards the determination of all Huygens' metrics for the conformally in-
variant field equations 

(E1) Scalar wave equation g" 6 V 0 V 6 u -	= 0 

(E2) Maxwell's equation V' Fab = 0 for F01, = V 0 , Ab - V1,A0 

(E3) Weyl's equation	= 0 

in an arbitrary four-dimensional spacetime is a program outlined by J. Carminati and 
R. G. McLenaghan, based on the conformally invariant Petrov classification of the Weyl 
tensor [19, 96, 99]. One obtains, in particular, the following: 

Theorem 8. Huygens' principle for the conformally invariant equations (E1 ) - 
(E3 ) is valid only for conformally flat and for plane wave metrics within the classes of 
centrally symmetric, Petrov type N, D-spacetimes, or spacetimes with V 0 R6 = 0.
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6. Relations to the Korteweg-de Vries equation 
J. E. Lagnese [56] considerably generalized Steilmacher's examples of non-trivial Huy-
gens-type equations. He introduced, in order to formulate his result, a sequence of 
polynomials Pk = Pk( i ) (k > 1) of one real variable I through the recursive differential 
equation

2k—i 
(P\2 

di Pk_I) -( 

together with the initial condition
Pi = 1. 

It is a highly non-trivial fact that this recursion is solved by polynomials. From 

-	
f 

(2k_1)f(, 
D

- -P_ )

2 
dt 

Pk-1  

it is clear that Pk depends on k - i integration constants a 1 , a2 ,... ,ak_I: 

Pk = Pk (t) = Pk(t;al,a2,... ,ak_) 

One constant, say a 1 , is merely a translation of I; that means I and a 1 appear in the 
combination I + a 1 . We set a 1 = 0 and present the first polynomials: 

P2 = I 

P3 = + a2 

P4=t6+5a2i3+a3i-5a 

Generally, Pk is a monic polynomial of degree (), that means 

Pk = t('2 ) + lower terms. 

The sequence of the Pk has been discovered three times, at least. First, by J. L. 
Burchnall and T. W. Chaundy [17] in 1929, second, by Lagnese [56] in 1969, and third 
by M. Adler and J. Moser [1] in 1978. The last mentioned paper unveiled a relation to 
the Korteweg-de Vries equation: the functions 

u(x) = 2-- log Pk(x) 

are the rational solutions of the Kordeweg-de Vries equation which vanish at infinity. 
Moreover, these u = u(x) are finite-gap potentials in the one-dimensional time-free 
Schrödinger equation

Lyy +u(x)y=Ay. 

The name of these special potentials refers to the fact that the components of the 
spectrum of L are separated by finitely many intervals, called gaps. J. E. Lagnese [56] 
proved the following.
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Theorem 9. 9. Let a fiat spacetime R" of even dimension ii = 2m + 2 > 4 be equipped 
with a Lorentzian scalar product 

( X 1 Y) =gab XaXb,  gab = const 

and let e E R n be a unit vector, z.e (e, e) = 1. A hyperbolic operator of the form 

L = 9ab30 + w((e,e)) 

satisfies Huygens' principle if and only if there is a k < rn and a polynomial Pk, as 
described above, such that

w(t) = 2 
d2 

109 Pk (t) 

Yu. Yu. Berest and A. P. Veselov [10 - 13) had the idea to generalize the Steilmacher 
class of Huygens-type equation from one-variable potentials to many-variable potentials. 
They discovered an unexpected relation to Coxeter groups, i.e. to finite reflection groups 
of an Euclidean space. 

Theorem 10. Let G be a Coxeter group on R"', a system of positive normals 
to reflection hyperplanes of C, m Q a positive integer attached to each a E L+. The 
operator

W(X) = w(x 1 ,... , x_ i ) =	 + 1)(a, a)
tO&Q

QE A+

	a, X)2 

satisfies Huygens' principle if and only if n = 2m + 2 > 4 is even and iEA+ m <m 

The functions w = w(x) given in Theorem 10 are known as the Calogero-Moser 
potentials [2, 65]. They again represent solutions of the Kordeweg-de Vries equation, 
and the motion of their poles defines some integrable dynamical system, called Calogero-
Moser system. In this way, distant areas of mathematics are unexpectedly connected 
to each other. 

7. Huygens' principle on symmetric spaces, especially of 
constant curvature 

The class of Riemannian manifolds which we will consider now admits a geometrical 
definition as well as a Lie-theoretical one. 

Let(M,g) be a Riemannian manifold, and x = x(t) denote a local geodesic starting 
at x(0) = y. The map s 5 which sends x(t) to x(—t) is defined in a neighbourhood 
of y; it is called the geodesic reflection at y. If, in particular, every sy is a global 
isometry of (M,g), then (M,g) is called a symmetric space. It turns out that such 
a manifold can be represented as a homogeneous space, that means M = G/H is the 
factor manifold of a Lie group C with respect to a Lie subgroup H C G. More precisely, 
here C is semisimple, H is the identity component of the subgroup of elements which are
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invariant under some involutive automorphism, and M is equipped with a biinvariant 
metric g which is induced by the Killing form of C. 

The analysis on symmetric spaces can use both, analytical and Lie-theoretical meth-
ods. This advantage led to new examples of the validity of Huygens' principle. Namely, 
consider the modified wave equation 

a2u R = u + U 

for a scalar field u = u(x,t) (x E M,t E R) on a symmetric space M = C/H, 
where A = gVaVb is the Laplacian to the positve definite biinvariarit metric g of M 
and R denotes the scalar curvature. (Note that the Riemannian curvature tensor of a 
symmetric space is covariantly constant, hence R = const.) S. Helgason [42 - 45], T. 
Branson and G. Olafsson [14], and P. Gunther [35] proved the following: 

The modified wave equation above satisfies Huygens' principle in the following cases 
of odd-dimensional symmetric spaces. 

(i) M = G is a simple compact Lie group. 

(ii) M = G/H, where G is a connected semisimple Lie group and H C C a maximal 
compact subgroup, is a symmetric space of non-compact type and the Lie algebra g to 
G admits a complex structure. 

(iii) M = G/H is a symmetric space of non-compact type and all Carian subgroups 
of G are conjugate to each other. 

The authors of [14, 35, 42 - 451 solved the Cauchy problem in the cases (i) - (iii) by 
means of Lie-theoretical methods and then read Huygens' principle from the solution 
formulas. 

Riemannian manifolds of constant curvature are globally or locally symmetric spaces 
and are covered by the aforesaid cases. Thus we get the following example. Let (M, g) 
be a manifold of constant curvature K and odd dimension n > 3. Then the modified 
wave equation or Klein-Gordon equation 

32u Ku &2	( 2 ) 

for a scalar field u = u(x,t) (x E M,t e R) satisfies Huygens' principle. This fact 
has been repeatedly discovered or rediscovered and the Cauchy problem to this Klein-
Gordon equation has been solved by means of several methods [16, 53, 57, 771. 

A manifold (M, g) of constant curvature K can have any signature of g. Let us 
assume Lorentzian signature (+ - .. . -) and consider the Klein-Gordon equation 

	

u+Au=O,	A=const 

for a scalar field u = u(x) (x e M). R. Schimming and H. Schlichtkrull proved [78] 
that

U + [1(1+1)— m(m + 1)] Ku = 0	(m = a, n ^ 4 even)
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satisfies Huygens' principle for 1 = 0, 1,... ,m - 1. 
The following "negative results" are known for Riemannian manifolds (M, g) of 

constant curvature K and of dimension n (where these results are obtained by means 
of purely analytical methods [8, 9, 34)): 

a) The Hodge-de Rahm wave equation 

(dö + Sd)u = 0 
for p-forms u (1 p n - 1, n 2 4 even) satisfies Huygens' principle only if K = 

b) The modified wave equation 

a2 +(dS + öd)u = cu 

for p-forms u (0	p	ii, n odd) satisfies Huygens' principle only if p = 0 and 
c= (L)2K. 

c) The Maxwell equations on the Lorentzian product (R x M,dt2 - g) 

au

dv=0 

for a (p - 1)-form u and a p-form v satisfy Huygens' principle if and only if p = 
The positive part of the last result is explained as follows. If (M, g) has constant 

curvature, then (R x M, dt2 - g) is conformally flat, on the one hand. The Maxwell 
equations are conformally invariant if p equals one half of the dimension of the spacetime, 
which means here p = on the other hand. So the problem can be conformally 
transformed to Minkowski spacetime. 

In order to strive for above results a) - c) (and much more besides), P. Gunther 
introduced special tools in spaces of constant curvature [33, 341, namely 

• geodesic p-forms 'yp(x, y) which are turned out in [8, 9 1 as pseudo-orthogonal 
invariants among the p-stepped double differential forms (two-point-forms), 

• spherical mean values MT[u] and M[u) of ordinary p-stepped differential forms 
u(x) in which two special geodesic p-forms rp (x,y) and c7p(x,y) appear as the kernels 
(t: radius of the sphere). 
These render (in Huygens' case explicit) solution formulas for several wave equations, 
for the D'Alembert equation, Euler-Poisson-Darbowc equation and in close connection 
with the latter the modified wave equation, furthermore Maxwell's equations. So from 
here the above Huygens' principle assertions a) - c) follow. 

General criterions for the Huygens' principle behaviour of Maxwell's equations in 
pseudo-Riemannian manifolds (M, g) of signature (+ - . -) and dimension nare 
found in [31]; weightily (e.g. for corollaries in spaces of constant curvature) there is the 
following assertion: 

1) In an arbitrary curved space (M,g) with n = 4 all Huygens' equations among these 
equations are explicitely determined (see Wiinsch [90, 93]).
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In (M, g) the Maxwell equations for differential forms U(x) of the degree p 

(M)du=O, Su=O	(ipn — i) 

satisfy Huygens' principle if and only if 

(V) döV,(x,y;2) = 0	(x,y EM) 

(where Riesz's kernel form V,, essentially is the factor of the logarithmic term in Hada-
mard's elementary solution to the Hodge-deRahm wave equation, see the "negative 
result" a) above). In spaces of constant curvature P. Gunther founds the four linear 
independent geodesic solutionsy,'(x, y) of (d5 + d) u = 0 and because one of them (in 
[8, 341 just	is Hadamard's elementary solution, this leads in [9] to the Huygens' 
principle assertion a). Another solution,	at the same time solves (M) and because 
of V, = c (l) with c constant P. Gunther's criterion (V) means that 

Corollary. Maxwell's equations (M) in spaces of constant curvature satisfy Huy-
gens' principle. 

On the strength of their origin as geometric invariants or as solution type for certain 
differential equations (of mathematical physics) the geodesic forms or also the spherical 
mean values disclosed new insights into many other, mathematical facts and therefore 
their study is interesting in its own right. 

8. A review of other problems 

This survey is not intended to be complete. Let us mention here subjects which we 
have not treated, namely certain extensions of Huygens' principle to other classes of 
hyperbolic equations, some conceptual generalizations of Huygens' principle, and some 
open problems. 

We have considered two classes of differential operators only: Laplace-like second-
order operators and first-order operators the iteration of which is Laplace-like. The very 
definition of Huygens' principle can also be applied to the following classes. 

Systems of mixed first and second orders; for instance 

(dö+Sd)u=0, öu=0 

where u is an alternating p-form. 

• Singular Cauchy problems, like the Euler-Poisson-Darboux equation 

c92 u aOu a=const 

with special initial values	
u(0, x) = uo(x) 

au	
=0. }
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• Linear gauge field equations of hyperbolic type; for instance Maxwell's equations 
in the form

du=0, öu=j, 
the linearized Yang-Mills equation, and the linearized Einstein equations [95, 97]. 

• Semiliriear hyperbolic equations; the simplest type reads 
0 u + F(u) =0. 

There are well-developed theories for some mixed systems, for the Euler-Poisson-Dar-
boux equation, and for the first-order Maxwell system. There are further preliminary 
results for the linearizations of the Yang-Mills and Einstein equations [95]. As a curiosity, 
we mention speculations on Huygens' principle for the fully nonlinear Einstein equations 
[70, 83]. 

Huygens' principle admits conceptual generalizations in different directions; there 
exists results on each of the following items. 

• Replacement of the exact validity of Huygens' principle by an approximate validity. 
The standard perturbation technique defines orders of approximation. The first and 
second orders are the most interesting ones [30, 35, 841. 

• Replacement of the local Huygens' principle (treated here) by a global - in space 
and in time - Huygens' principle. This global problem is akin to scattering theory. 

• Replacement of the Cauchy problem by a characteristic initial value problem, 
where the data are prescribed on a future characteristic conoid (conoid problem) or on 
two interesting null hypersurfaces (Goursat problem). 

• Study of higher-order hyperbolic equations the principal part of which is not 
defined by a Lorentzian metric. The characteristic conoid is then replaced by a system 
of cones which are defined by means of polynomial equations. Domains between such 
cones which do not contribute to the solutions of Cauchy problems are called lacunas. 
This concept naturally generalizes Huygens' principle. 

• A natural generalization of Huygens' principle to Laplace-like equations of any 
mathematical type - elliptic, hyperbolic, ultrahyperbolic, or complex-holomorphic - is 
the property that, for even dimension, there exists a logarithm-free elementary solution 
in Hadamard's sense. Note that for the elliptic type the elementary solution generalizes 
the Newtonian potential (which belongs to the scalar Laplacian).. 

Let us finally try to formulate open problems of topical interest: 
• Proof of the conjecture that for the dimension n = 4 every Huygens-type linear 

hyperbolic equation belongs either to a conformal.ly fiat metric or to a conformal image 
of a plane-wave metric (cf. [18 - 20, 59 - 63, 96 - 99]). 

• Construction of Huygens-type modified wave equations on symmetric spaces for 
non-scalar fields, e.g. alternating differential forms. 

• Estimation of effects due to the violation of Huygens' principle in our actual 
universe; derivation of approximative formulas which can be given to the hands of 
astrophysicsts. 

• Development of a theory of Huygens' principle for semilinear hyperbolic equations.



32	M. Belger, R. Schimming and V. Wünsch 

References 

[1) Adler, M. and J. Moser: On a class of polynomials connected with the Korteweg-de Vries 
equation. Comm. Math. Phys. 61(1978), 1 - 30. 

[2] Airault, H., McKean, H. and J. Moser: Rational and elliptic solutions of the KdV equation 
and related many body problems. Comm. Pure Appi. Math. 30 (1977), 95 - 148 

[3] Anderson, G. and R. G. McLenaghan: On Huygens' principle for relativistic wave equa-
tions. C. R. Math. Acad. Sci. Canada 15 (1993), 41 - 45. 

[4] Anderson, C. and R. C. McLenaghan: On the validity of Huygens' principle for second 
order partial differential equations with four independent variables. Part II. Ann. Inst. 
Henri Poincaré, Phys. Théor. (accepted). 

[5] Anderson, C., McLenaghan, R. G. and T. F. Walton: An explicit determination of the non-
self-adjoint wave equations that satisfy Huygens' principle on Petrov type III background 
space-times. Z. Anal. Anw. (this number). 

[6] Asgeirsson, L.: Some hints on Huygens' principle and Hadamard's conjecture. Comm. 
Pure App!. Math. 9 (1957), 307 - 326. 

[7] Asgeirsson, L.: On Cauchy's problem for linear partial differential equations of second 
order in four variables. Comm. Pure AppI. Math. 14 (1961), 171 - 186. 

[8] Belger, M.: Geodätische Formen auf pseudo- Riemannschen Réumen. Serdica. Bulgaricae 
Math. Publ. 4 (1978), 43 - 49. 

[9] Belger, M.: Geoddtische und harmonische geodiitische Formen in (pseudo-) Riemannschen 
Räumen konstanter Kriimmung mit Anwendungen zum Huygenschen Prinzip. Theses. 
Leipzig: University 1969. 

[101 Berest, Yu. Yu. and A. P. Veselov: Huygens' principle and Coxeter groups (in Russian). 
Uspekhi Mat. Nauk. 48 (1993)3, 181 - 182. 

[11] Berest, Yu. Yu. and A. P. Veselov: Huygens' principle and integrability (in Russian). 
Uspekhi. Mat. Nauk. 49 (1994)6, 7 - 78. 

[12] Berest, Yu. Yu. and A. P. Veselov: Hadamard's problem and Coxeter groups: new exam-
ples of Huygens' equations (in Russian). Funct. Anal. App!. 28 (1994)1, 1 - 15. 

[13] Berest, Yu. Yu. and Yu. A. Molchanov: Fundamental solutions for partial differential 
equations with reflection group invariances. J. Math. Phys. 36 (1995), 4324 - 4339. 

[14] Branson, T. B. and C. Olafson: Equipartition of energy for waves in symmetric spaces. 
J. Funct. Anal. 97 (1991), 403 - 416. 

[15] Buchdahl, H. A.: On the compatibility of relativistic wave equations in Riemann spaces. 
Part II. J. Phys. A15 (1982), 1 - 5. 

[161 Bunke, U. and M. Olbrich: The wave kernel for the Laplacian on the classical symmetric 
spaces of rank one. Ann. Glob. Anal. Geom. 12 (1994), 357 - 401. 

[17] Burchnall, J. L. and T. W. Chaundy: A set of differential equations which can be solved 
by polynomials. Proc. London Math. Soc. 30 (1929), 401 - 414. 

[18] Carminati, J. and R. C. McLenaghan: Determination of all Petrov type-N space-times on 
which the conformally invariant scalar wave equation satisfies Huygens' principle. Phys. 
Letters 105A (1984), 351 - 354. 

[19] Carminati, J. and R. C. McLenaghan: An explicit determination of space-times on which 
the conformally invariant scalar wave equation satisfies Huygens' principle. Parts I - III. 
Ann. Inst. Henri Poincaré, Phys. Théor.: 44 (1986), 115 - 153 (Part I), 47 (1987), 337 - 
354 (Part II) and 48 (1988), 77 - 96 (Part III).



A Survey on Huygens' Principle	33 

[20] Carminati, J., Czapor, S. R., McLenaghan, R. G. and C. C. Williams: Consequences 
for the validity for Huygens' principle for the conforsnally invariant scalar wave equation, 
Weyl's neutrino equation and Maxwell's equation on Petrov type II space-times. Ann. 
Inst. Henri Poincaré, Phys. Théor. 54 (1991), 9 - 16. 

[21) Courant, R. and D. Hubert: Methoden der mathematischen Physik. Vol. II. Berlin: 
Springer-Verlag 1937. 

[22] Duistermaat, J. J: Huygens 'principle for linear partial differential equations. In: Huygens' 
Principle 1690-1990 (ed.: H. Blok et al.). New York: Elsevier 1992. 

[23] Friedlander, F. C.: The Wave Equation on a Curved Space-Time. Cambridge: University 
Press 1975. 

[24] Friedmann, A.: The wave equation for differential forms. Pacific J. Math. 11(1961), 1267 
- 1279. 

[25) Gilkey, P. B.: Spectral geometry of real and complex manifolds. Amer. Math. Soc. Proc. 
Syrnpos. Pure Math. 27 (1975), 265 - 280. 

[26] Gilkey, P. B.: Spectral geometry of Riemannian manifolds. J. Duff. Geom. 10 (1975), 601 
-618. 

[27] Gunther, P.: Zur Ctiltigkeit des Iluygenschen Prinzips bei partiellen Differentialgleichun-
gen vom normalen hyperbolischen Typus. Ber. Verh. Sãchs. Akad. Wiss. Leipzig, 
Math-Nat. Klasse 100 (1952), Heft 2. 

[28] Gunther, P.: Ober einige spezielle Probleme au.9 der Theorie der linearen partiellen Differ-
entialgleichungen zweiter Ordnung. Ber. Verh. Sãchs. Akad. Wiss. Leipzig, Math.-Nat. 
Klasse. 102 (1957), Heft 1. 

[29] Gunther, P.: Ober die Darbouxsche Differentialgleichung mit variablen Koeffizienten. 
Math. Nachr. 22 (1960), 285 - 321. 

[30] Gunther, P.: Huygenssche Differentialgleichungen, die zur Wellengleichung infinitesimal 
benachbart sind. Archiv Math. 16 (1965), 465 - 475. 

[31] GUnther, P.: Einige Siitze aTher Huygenssche Differentiolglcichungen. Wiss. Z. Karl-Marx-
Univ. Leipzig 14 (1965), 497 - 507. 

[32] GUnther, P.: Ein Beispiel einer nichttriviolen Huygensschen Differentialgleichung mit vier 
unabhängigen Veriinderlichen. Arch. Rat. Mech. Anal. 18 (1965), 103 - 106. 

[33] GUnther, P.: Harmonische geoddtische p-Formen in nichteuklidischen Räumen. Math. 
Nachr. 28 (1965), 291 - 304. 

[34) GUnther, P.: Sphdrische Mittelwerte für Differentialformen in nichteuklidischen Raumen 
mit Anwendung auf die Wellengleichung und die Mazwellschen Cleichungen. Math. Nachr. 
50 (1971), 177 - 204. 

[35] Gunther, P.: Huggens' Principle and Hyperbolic Equations (Perspectives in Mathematics: 
Vol. 5). San Diego: Academic Press 1988. 

[36] Gunther, P.: Huygens' principle and Hadamard's conjecture. Math. Intell. 13 (1991), 56 
-63. 

[37] Gunther, P. and V. Wünsch: Maxwellsche Cleichungen und Huygenssches Prinzip. Part 
I. Math. Nachr. 63 (1974), 97 - 121. 

[38] GUnther, P. and V. Wünsch: On some polynomial conformal tensors. Math. Nachr. 124 
(1985), 217 - 238. 

[39] Gunther, P. and V. WUnsch: Contributions to a theory of polynomial conformal tensors. 
Math. Nachr. 126 (1986), 83 - 100.



34	M. Belger, R. Schimming and V. Wünsch 

[401 Hadamard, J.: Lectures on Cauchy's Problem in Linear Partial Differential Equations. 
New Haven: Yale Univ. Press 1923. 

[41] Hadamard,J.: The problem of diffusion of waves. Ann. Math. 43 (1942), 510-522. 
[42] Helgason, S.: Fundamental solutions of invariant differential operators on symmetric 

spaces. Amer. J. Math. 86 (1964), 565 - 601. 
[43] Helgason, S.: Wave equations on homogeneous spaces. Lect. Notes Math. 1077 (1984), 

254 - 287. 
[44] Helgason, S.: Huygens'principle for wave equations on symmetric spaces. J. Funct. Anal. 

107 (1992), 279 - 288. 
[45] Helgason, S.: Geometric Analysis on Symmetric Spaces. Providence (R.I.): Amer. Math. 

Soc. 1994. 
[46] Holder, E.: Poissonsche Wellenformel in nichteuklidischen Riumen. Ber. Verb. Sikhs. 

Akad. Wiss. Leipzig 99 (1938), 55 - 66. 
[47] Ibragimov, N. H. and E. V. Mamontov: Sur le probleme de J. Hadamard relatif a la 

diffusion des ondes. C. R. Acad. Sci. Paris (Serie A) 270 (1970), 456 - 458. 
[48] IlIge, R.: Zur Gültigkeit des Jluygensschen Prinzips bei hyperbolischen Differentialglei-

chungssystemen in statischen Raum-Zeiten. Z. Anal. Anw. 6 (1987), 385 - 407. 
[49] flIge, R.: On Huygens' principle for the relativistic spin wave equations of Buchdahl and 

Wünsch in presence of a gravitational and electromagnetic field. Math. Nachr. 139 (1988), 
237 - 243. 

[50] lIlge, R.: On massless fields with arbitrary spin. Z. Anal. Anw. 11(1992), 25 - 35. 
[51] lIlge, R.: Massive fields of arbitrary spin in curved space-times. Comm. Math. Phys. 158 

(1993), 433 - 457. 
[52] Kagan, C. M.: On a class of singular problems satisfying Huygens' principle (in Russian). 

DokI. Akad. Nauk USSR 256 (1981), 1307 - 1311. 
[53] Kiprijanov, I. A. and L. A. Ivanov: Cauchy's problem for the Euler-Poisson-Darboux 

equation in a symmetric space (in Russian). Mat. Sbornik 124 (1984), 45 - 55. 
[54] Lagnese, J. E.: The fundamental solution and Huygens' principle for decomposable differ-

ential operators. Arch. Rat. Mech. Anal. 19 (1965), 299 - 307. 
[55] Lagnese, J. E.: A solution of Hadamard's problem for a restricted class of operators. Proc. 

Amer. Math. Soc. 19 (1968), 981 - 988. 
[56] Lagnese, J. E.: The structure of a class of Huygens' operators. J. Math. Mech. 18 (1969), 

1195 - 1201. 
[57] Lax, P. D. and R. S. Phillips: An example of Huygens' principle. Comm. Pure Appi. 

Math. 31(1978), 415 - 421. 
[58] Matthisson, M.: Le problème de Hadamard relatif a la diffusion des ondes. Acta Math. 

71(1939), 249 - 282. 
[59] McLenaghan, R. C.: An explicit determination of the empty space-times on which the 

wave equation satisfies Huygens' principle. Proc. Cambridge Phil. Soc. 65 (1969), 139 - 
155. 

[60] McLenaghan, R. G.: On the validity of Huygens' principle for second order partial differ-
ential equation with four independent variables. Part I. Ann. Inst. Henri Poincaré A20 
(1974), 153 - 188. 

[61] McLenaghan, R. C.: Huygens' principle. Ann. Inst. Henri Poincaré A37 (1982), 211 - 
236.



A Survey on Huygens' Principle	35 

[62] McLenaghan, R. C. and T. F. Walten: An explicit determination of the non-self-adjoint 
wave equations on curved space-time that satisfy Huygens' principle. Part I. Ann. Inst. 
Henri Poincaré, Phys. Théor. 48 (1988), 267 - 280. 

[63) McLenaghan, R. C. and C. C. Williams: An explicit determination of the Petrov type D 
space-times on which Weyl's neutrino equation and the Mawell's equations satisfy Huy-
gens' principle. Ann. Inst. Henri Poincaré, Phys. Théor. 53 (1990), 217. 

[64) Nishiwada, K.: Huygens' principle for generalized EPD equation. Proc. Japan Acad. A60 
(1984), 197 - 200. 

[65] Olshanetzky, M. A. and A. M. Perelomov: Quantum integrable systems related to Lie 
algebras. Phys. Rep. 94 (1983), 313 - 404. 

[66) ørsted, B.: The conformal invariance of Huygens' principle. J. Duff. Geom. 16 (1981), 1 
-9. 

[67) ørsted, B.: Book review to "Huygens' Principle and Hyperbolic Equations" by Paul 
Gunther. Bull. Amer. Math Soc. 23 (1990), 235 - 242. 

[68) Riesz, M.: L' intégrale de Riemann-Lioumlle et le probléme de Cauchy. Acta Math. 81 
(1949), 1 - 223. 

[69] Rinke, B. and V. Wünsch: Zum Huygenschen Prinzip bei der skalaren Wellengleichung. 
Beitr. Anal. 18 (1981), 43 - 75. 

[70] Sciama, D. W., Waylen, P. C. and R. C. Gilman: Generally covariant integral formulation 
of Einstein's field equations. Phys. Rev. 187 (1969), 1762 - 1766. 

[71) Schimming, R.: Zur Gültigkeit des Huygensschen Prinzips bei einer speziellen Metrik. Z. 
Ang. Math. Mech. (ZAMM) 51(1971), 201 - 208. 

[72] Schimming, R.: Riemannsche Räume mit ebenfrontiger und ebener Symmetric. Math. 
Nachr. 59 (1974), 129 - 162. 

[73] Schimming, R.: Hyperbolic Huygensian differential equations of second order for multi-
component fields (in Russian). Ukrain. Math. J. 29 (1977), 351 - 363. 

[74] Schimming, R.: Das Huygenssche Prinzip bei hyperbolischen Differentialgleichungen für 
allgemeine Felder. Beitr. Anal. 11(1978), 45 - 90. 

[75] Schimming, R.: A review of Huygens' principle for linear hyperbolic differential equations. 
Proceedings of the IMU-Symposium "Group-Theoretical Methods in Mechanics", Novosi-
birsk (USSR) 1978 (eds.: N. Kh. Ibragimov and L. V. Ovsyannikov). Novosibirsk: USSR 
Acad. Sci./Siberian Branch 1978. 

[76] Schimming, R.: Lineare Differentialoperatoren zweiter Ordnung mit metrischem Hauptteil 
und die Methode der Koinzidenzwerte in der Riemannschen Geometric. Beitr. Anal. 15 
(1981), 77 - 91. 

[77] Schimming, R.: Laplace-like differential operators with a logarithm-free elementary solu-
tion. Math. Nachr. 148 (1990), 145 - 174. 

[78] Schimming, R. and H. Schlichtkrull: Helmholtz operators on harmonic manifolds. Acta 
Math. 173 (1994), 235 - 258. 

[79] Sobolev, S. L.: Méthode nouvelle a résoudre Ic problme de Cauchy pour les equations 
lindaires hyperboliques norrnales. Mat. Sbornik 1 (1936), 39 - 71. 

[80] Sobolev, S. L.: Einige Anwendungen der Funktionalanalysis auf Gleichungen der mathe-
matische Physik. Berlin: Akademie-Verlag 1964. 

[81) Stellmacher, K. L.: Ein Beipsiel einer Huygensschen Differentialgleichung. Nachr. Akad. 
Wiss. Göttingen., Math.-Phys. Klasse 11 10 (1953), 133 - 138.



36	M. Belger, R. Schimming and V. Wünsch 

[82] Stellmacher, K. L.: Eine Klasse huygensscher Differentialgleichungen undihre Integration. 
Math. Ann. 130 (1955), 219 - 233. 

[83] Waylen, P. C.: On the degree of sharpness in solutions of Einstein's field equations. Proc. 
Roy. Soc. London A321 (1971), 397 - 408. 

[84] Wünsch, V.: Ober selbstadjungierte Huygenssche Differentialgleichungen. Math. Nachr. 
47 (1970), 131 - 154. 

[85] Wünsch, V.: Ober eine Klasse konforininvarianter Tensoren. Math. Nachr. 73 (1970), 
37-58. 

[86] Wünsch, V.: Maxwellsche Gleichungen und Huygenssches Prinzip. Part II. Math. Nachr. 
73 (1976), 19 - 36. 

[87] Wünsch, V.: Sur la validité du principe de Huygens pour les equations de champ spinoriel. 
C. R. Acad. Sd. Paris 283 (1976), 983 - 986. 

[88] Wünsch, V.: Cauchy-Problem und Huygenssches Prinzip bei einigen Klassen spinorieller 
Feldgleichungen. Parts I and II. Beitr. Anal. 12 (1977), 47 - 76 and 13 (1979), 147 - 177. 

[89] Wünsch, V.: Charakterisierung von Raum-Zeit-Mannigfaltigkeiten durch Relationen zwi-
schen ihren Kriimmungsspinoren unter Benutzung eines modifizierten Newman-Penrose-
Kalkiils. Math. Nachr. 89 (1979), 321 - 336. 

[90] Wünsch, V.: Selbstadjungierte Huygenssche Differentialgleichungen für nichtskalare Spin-
tensorfelder. Math. Nachr. 94 (1980), 211 - 242. 

[91] Wünsch, V.: Le problème de Cauchy por les equations de champs a spin quelconque. C. 
R. Acad. Sd. Paris 297 (1983), 509 - 512. 

[92] Wünsch, V.: Ober ein Problem von McLenaghan.. Wiss. Z. Pad. Hochsch. Erfurt-
Mühlhausen, Math.-Nat. Reihe 20 (1984), 123 - 127. 

[93] Wünsch, V.: Cauchy's problem and Huygens' principle for relativistic higher spin wave 
equations in an arbitrary curved space-time. Gen. Rel. Gray . 17 (1985), 15 - 38. 

[94] Wünsch, V.: Konforminvariante Variationsprobleme und Huygenssches Prinzip. Math. 
Nachr. 120 (1985), 175 - 193. 

[95] Wünsch, V.: Cauchy's problem and Huygens' principle for the linearized Einstein field 
equation. Gen. Rel. Gras'. 22 (1990), 843 - 862. 

[96] Wünsch, V.: C-Räume und Hygensches Prinzip. Wiss. Z. Pad. Hochsch. Erfurt-Mühl-
hausen, Math.-Nat. Reihe 23 (1987), 103 - 111. 

[97] Wünsch, V.: Huygens' principle on Petrov type D space-times. Ann. Phys. (7)46 (1989), 
583 - 597. 

[98] Wünsch, V.: Huygens' principle on Petrov type SNS space-times. Ann. Inst. Henri 
Poincare, Phys. Théor. 61(1994), 87 - 102. 

[99] Wünsch, V.: Moments and Huygens' principle for conformally invariant fields equations 
in curved space-times. Ann. Inst. Henri Poincare, Phys. Théor. 60 (1994), 433 - 455. 

[100] Wünsch, V.: On Huygens' principle for the Hodge-de Rham equations with Lorentzian 
gauge. Z. Anal. Anw. (this number). 

Received 26.08.1996


