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Abstract. It is shown that the validity of Huygens' principle for the non - self- adjoint wave 
equation on a Petrov type Ill space-time implies that the space-time is conformally related 
to one in which every repeated null vector field of the Weyl tensor is recurrent. It is further 
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1. Introduction 

This paper is devoted to the solution of Hadamard's problem for the general non-self -
adjoint scalar wave equation in four dimensions which may be written in coordinate 
invariant form as

F[u] := gabvavbu + Aaôau + Cu = 0	 (1.1) 

where g' denotes the contravariant components of a pseudo-Riemmanian metric with 
signature (+, -, -, -) on the space-time manifold V4 and Va denotes the covariant 
derivative with respect to the Levi-Civita connection. We assume that g , A0 and C 
are C'-functions and restrict our consideration to a geodesically convex domain. 

Hadamard [14] defined Huygens' principle to hold for equation (1.1) if for every 
Cauchy initial value problem, and for each point x 0 E V4 , the solution of equation (1.1) 
depends only on the Cauchy data in an arbitrarily small neighbourhood of S n C(xo), 
where S denotes the Cauchy surface and C(xo) the past null conoid of x 0 . Such an 
equation is called a Huygens' equation. 

Hadarnard's problem is that of determining, up to equivalence, all Huygens' equa-
tions. Two equations of form (1.1) are equivalent if one may be transformed into the 
other by any combination of the following trivial transformations which preserve the 
Huygens' nature of the equation: 

(a) Coordinate transformations. 
(b) Multiplication of both sides of equation (1.1) by a conformal factor 

which is equivalent to a conformal transformation of the metric at = e2(3gab. 
(c) Replacement of the dependent variable u by A(x)u where .\(x) is nowhere 

vanishing. 

The solution to Hadamard's problem has been found for the case when V4 is locally 
conformally flat. In this case it has been shown [3, 15, 17] that every Huygens' equation 
is equivalent to the ordinary wave equation 

Lilu := 9 1 Va VbU = 0	 (1.2) 

on fiat space-time. A detailed review of this work can be found in Professor Gunther's 
treatise "Huygens' Principle and Hyperbolic Equations" [13]. The problem has also 
been solved for (1.1) for space-times of Petrov type N [6, 12, 22, 311 and for the self-
adjoint equation (1.1) (A° 0) for Petrov type D [7, 23, 331. Results have also been 
obtained in this case for Petrov types III [8] and II [4], although for type III it was 
necessary to place a mild restriction on the Weyl tensor in order to solve the problem 
(see Theorem 2 below), while for type II only a partial result is available. McLenaghan 
and Walton [22, 31] show that any non- self- adjoint equation (1.1) on any Petrov type 
N background space-time satisfies Huygens' principle if and only if it is equivalent to 
the pure wave equation (1.2) on an exact plane wave space-time with metric 

ds 2 = 2dv{du + [D(v)z 2 + b(v) 2 + e(v)z]}dv - 2dzd	 (1.3)
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in a special coordinate system, where D and e denote arbitrary C°°-functions. Their 
theorem depends on a key result proven by Gunther [12], namely, that Huygens'principle 
is satisfied by equation (1.2) on every exact plane wave space-time. 

The main purpose of the present paper is to extend the analysis to Petrov type 
III background space-times. Recall that a Petrov type III space-time is defined by 
the existence of a null vector field 1a called a repeated principal null vector field which 
satisfies

CbcdFelf)ld	0	 (1.4) 

where Cabcd is the Weyl tensor defined below. For such a space-time Carminati and 
McLenaghan have proven the following two theorems [6]. 

Theorem 1 (see (6)). The validity of Huygens 'principle for the conformally invari-
ant scalar wave equation on any Petrov type III space-time implies that the space-time 
is conformally related to one in which every repeated principal null vector field 1a of the 
Weyl tensor is recurrent, that is

1(a1b;c) = 0.	 (1.5) 

Theorem 2 (see [6]). If any one of the following three conditions 

	

W ABCD ; FEttt O tOE = 0	 (1.6)a 

	

W AB cDEE, L f L B oD o Cj = 0	 (1.6)b 

	

ABCDE-E'0	
(1.6)WABCD;EE' t 1. . 1. 0 0 

is satisfied, then there exist no Petrov type III space-times on which the conformally 
invariant scalar wave equation

Du + Ru = 0	 (1.7)

satisfies Huygens' principle. 

In Theorem 2, WABCD is the Weyl spinor, which we will introduce explicitly in 
the next section. We note that Carminati and McLenaghan also prove this result for 
the Weyl equation and Maxwell's equations [6]. It should also be mentioned that the 
restrictions (1.5) of Theorem 2 in the case of these equations has been recently removed 
by McLenaghan and Sasse [24]. 

The proofs of the Theorems 1 and 2 and the other results for scalar wave equations of 
the form (1.1) are based on the following necessary conditions for (1.1) to be a Huygens' 
equation: 

(I) C =	+ AaA" + R 

(II) H k a ; k = 0 

(III) S b k;"	Ck l L -	abkl = _5(HakHb" - .gHjHki) 

(IV) TS [3Sabk H k c + C k ab l Hck; j] = 0 

(V) TS 13ckcdl;n cf C k ; rn + 8Ck cd 1 ;eSklf + 40Scd'Sfk - 8CCcd1Sk1e;f
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_24C k cd 1 Sefk ; 1 + 4Ckcd1C1mkLfm + 2CkcdlDmeuILkm 

+12Hk c: d e H k f - 16HkC ; d H k p ; f - 84HkcCcdelHIf - 18HkcH'dLcf] = 0 

(VI) TS 136C k ab I C1cdm;kH m c - 6C k ab l ;cClde m Hkm - 138Sab'Ckcd,H'e 

+6SabkHkc;de + 6C k ab l .cHkd;l e - 24Sabk;cHkd;e 

+12C k ab I L kc Hld;e - 9C k ab t ;cLkdHIe - 9Sabk L cd H k e ] = o. 

where
Hab = A[a,b]	 1 

Cabcd = Rabcd - 29[0[L]]	
(1.6) Saôc = La[b;c]	 I Lab = Rab + IRgab 

and R0bd denotes the Riemann curvature tensor, Rab the Ricci tensor and TS[ } the 
operator which takes the trace free symmetric part of the enclosed tensor. 

The history of these conditions is as follows: 
Conditions (I) - (IV) were proved by Gunther [11]. Condition (V) was derived by 

Wünsch [32] for the self-adjoint case and McLenaghan [19] for the non- self- adjoint case. 
Condition (VI) is due to Anderson and McLenaghan [2]. The solution of Hadamard's 
problem for Petrov type N also required the use of a seventh necessary condition (VII) 
which has been derived by Rinke and Wünsch [30]. In the present paper these results 
are extended to the case of equation (1.1) on Petrov type III background space-times. 
The main results will be the proof of the following extensions of Theorems 1 and 2: 

Theorem 3. The validity of Huygens 'principle for any non-s elf-adjoint scalar wave 
equation (1.1) in any Petrov type III background space-time implies that the space-time 
is conformally related to one in which every repeated null vector field of the Weyl tensor, 

is recurrent. 

Theorem 4. There exist no non-self-adjoznt equations (1.1) which satisfy Huygens' 
principle on any Petrov type III background space-time for which equations (1.6) hold. 

The plan of this paper is as follows: 

Section 2 consists of a description of the formalisms used. Section 3 prepares for 
the proof of Theorems 3 and 4 by applying the formalisms of Section 2 to the necessary 
conditions. Sections 4 and 5 contain the proofs of Theorems 3 and 4, respectively. 
Finally, Section 6 contains our concluding remarks.
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2. Formalism 

We employ the two-component spinor formalism of Penrose [26, 291 and the spin coeffi-
cient formalism of Newman and Penrose [25), whose conventions we follow. Spinors are 
transformed to and from tensors via the Infeld-Van der Waerden symbols aa 4hl' (a e 
{O,... ,3}) which are Hermitian in the spinor indices A, A' e {O, 11. The role of a met-
ric on the spinor space is played by the skew symmetric spinors EAB and A'B' where 
we will define co, = o'i' = 1. Spinor indices are raised and lowered according to the 
convention

	

A AB	 B 
C =	(, (A = C BA	 2.1) 

where (A is an arbitrary spinor. 
We will use extensively the spinorial equivalents of the tensors defined in (1.7). They 

are
:. ABA'B' + cbAB,fAB 

Lab + 2(ABA'B' - A(ABEA'B') 
-	 (2.2)

Cabcd 'j.' 'PABCD(A'B'CC'D' + 'FA'B'C'D'€ABECD 

Sabc .. tDABC;DA,fC,B, +	A'B'C';D'ACCB 

where the spinor cbns = c6(AB) is called the Maxwell 3pznor, the spinor ABA'B' = 
(AB)(A'B') is the Ricci spinor, and corresponds to the trace-free part of the Ricci 

tensor, A = R, and ''ABCD = "(ABCD) is called the Weyl spinor. 
We define the connection of the spin space to satisfy aa AA' ;88 AB;CC' = 0. 

The basis of the spin space is denoted by the spin dyad {OA,IA} which satisfies the 
completeness relation OA I A = 1. We define the null tetrad {l,n,m,ni}, which is a basis 
Of M4 , according to 

l a	 a	a	A-A' a	A-A'	a_ a	A-A' =	An'O 0 ,	-	AA't	,	=	AA'O . .	( 2.3) 

Let us look now at how all the spinorial quantities introduced above are denoted in 
the Newman-Penrose formalism. We begin with the Newman-Penrose spin connection 
which one denotes according to [7] 

VBB' OA = IBB' O A + II,98' L A '1 

	

VBB' i A = IIIBB'OA - IBB'LA	
(2.4) 

where
'BB' = f0 B 6J3' - aO B L B' - 13t,358' + EtBtB' I 11,91pT	 JJOBOB' + pOtJJ' + aL B ö J3'	tBB'	 (2.5) 

	

= i.'Of30J3' - AObtB' - PtB0B' +	jj'.  

Along with the spill connection, the spinor covariant derivative also contains four 
first-order differential operators, denoted in Newman-Penrose notation by 

VAn'S = 6SOAÔA' - 6SOALA' - 5SI A 5A ' + DStAIA'	 (2.6)
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where S is an arbitrary scalar field. The curvature spinors and Maxwell spinor are also 
decomposed according to the spinor dyad in the Newman.. Penrose formalism. They take 
the form

	

'PABCD = '0 LABCD —4 1P I O(ALBCD)	 (2. 7) 
+ 6 'P2 O(ABLCD) - 4 T3 O(ABC L D) + 'P4 OABCD 

and

ABA'B' =	22 O AB OA'B' - 212 O(A L B) t A'B + 02 IABOA'B' 

+	O(AtB)O(A'LB') -2 4^o l tABO(fl'tB) +	OOLABtA'B'	
(2.8) 

+ c.c.

AB = 00 LAB - 2 0 O(A L B) + 02 0AB	 (2.9) 

where the convenient notation LA,. AN = LA, . . . 1 A has been introduced and "cc." 
denotes the complex conjugate of the proceeding terms. The Newman-Penrose field 
equations are the equations relating the curvature components to the spin coefficients. 
Throughout this paper we will refer to the Newman-Penrose equations according to 
their enumeration in [25] and the Bianchi identities according to the order in which 
they occur at the end of Pirani [29: Chapter 41. 

There are two types of transformations corresponding to the trivial transformations 
of Section 1 that will be employed in the proof of Theorems 3 and 5. The first is the 
dyad transformation

ol=c_o
(2.10) 

= e -2 (t + qo) J 
where w is also complex. The second is the conformal transformation. There is con-
siderable freedom in choosing conformal weights for spinorial quantities. We will follow 
Penrose [27] and choose 

a- a	- e aa AA'	 and	a	 a 

	

= eAA'.	 (2.11) — 
We must also assign conformal weights to the spin basis. Following McLenaghan and 
Walton [22] we will choose 

= e 2 OA	and	1A = eiCA I	 (2.12) 
where r is a real parameter. These two transformations lead to transformations of the 
Newman-Penrose spin coefficients, curvature quantities, and differential operators. The 
transformations of some of these quantities are listed in [8] and [22]. In adition to the 
transformations listed in [8] and [22] we require the following transformations of the 
components of the Maxwell spinor induced by (2.12): 

= 
'r-3),1 00' =	= _(r+1)2.	(2.13) 

In Section 3,, we will outline the conversion of the necessary conditions (I) - (VI) into 
Newman-Penrose form in in preparation for the proof of Theorems 3 and 5. This will give 
us, when combined with the Newman-Penrose field equations and the Neman-Penrose 
form of the Bianchi identities, a large set of algebraic equations in the Newman-Penrose 
quantities. In Sections 4 and 5, we will prove Theorems 3 and 4 by showing that this 
set of algebraic equations is incompatible unless Theorems 3 and 4 hold.
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3. Necessary conditions: Newman-Penrose form 

As outlined at the end of Section 2, the goal here will be to prove Theorems 3 and 4 
by showing that the Newman-Penrose field equations, Maxwell's equations, the Bianchi 
identities and the six necessary conditions are incompatible for a Petrov type III space-
time unless Theorems 3 and 4 hold. In order to do this, we will need to express the 
Petrov type III condition (1.4) and the six necessary conditions (I) - (VI) in Newman-
Penrose form. As an intermediate step, we will express them in spinorial form. The 
method is straightforward and we will present only examples here. 

We begin with the Petrov Type III condition. It is well known [29] that (1.4) implies 

'ABCD = cr(AaBckCÔD). 

We can easily convert this to Newman-Penrose form by choosing our spin basis so that 
cA is proportional to 0A and öjj to tD. We may further use a dyad transformation to 
set I' 3 = — 1, sø that

'IABCD = 40(ABCtD). 

This form of the Weyl spinor will be used to simplify the expansion of the necessary 
conditions (I) - (VI). 

We now proceed with the conversion of the necessary conditions. We will use the 
sixth necessary condition (VI) as an example of how the expansion is carried out. It is 
convenient to convert condition (VI) to spinorial form term by term (note that the TS 
operation is distributive over addition). Let us begin with the term 6SabkH !C c;de. Then, 
according to (2.2) and (2.2) 4 we have 

6 TS(SabkHkcde) .'. 6 S[(FRABC;KA,H.0 + K' A'B'C';AK'fBC) 

(O
K CE K' C , + cb c' c 

J;DD'EE' 

where we introduce the notation

A	AC	A B .	CB°B. 

Recalling that VfAB = 0 and noting that the symmetric part of CAB vanishes since CAB 
is skew-symmetric, we have 

6 TS(SabkHtc;dc) 

6s[	1' A'B'C';Ak'BC;DD'EE' —	ABC;KA'B'C';DD'EE'] 

where the S operator on a spiror takes the symmetric part. 
The remaining terms in condition (VI) are converted to spinorial form in a similar 

manner, whence we obtain 

(VI)s 0 = s[ — 61 ABC;JA4B'C'DD'EE' +
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+

+ lS'IJABC;KA'DED'EcbB'C 

'IWE - 138P K ABcKA 'T'B'C'D'E'bDE 

+6 tF K ABc;DD,B,c, E,A , 0KE + 6"ABCD•EE' KA,B,C,J.D 

+c.c.]. 

One may convert the first five necessary conditions (I) - (V) through the process il-
lustrated above. The results of this conversion may be summarized in the following 
proposition: 

Proposition 1. If Huygens' principle holds for the equation (1.1), then the follow-
ing conditions are satisfied: 

( I )s 0 = C 

( II )s 0 = OAK; KA, 

( III )s 0 = 'J1 AJ3K1,; 1 'A''B' + PSZAB KLcIKLA,B, + 50AB',bA'B' 

(IV)s 0 = 3'J/ABcK;"(AcbB'c) + 

_cI ABC h ( A ,H,;C,)K - 'PA'B'C' K' (c) 

(V) 5 0 3WABCD;I<K' 'J1A'S'C'D'!' +

- 401F(ABCIKI.K (A' B'C'D') K' ; K D) 

ATIt	I	it'	Alit'	I	K (A8C'&'(ABCIK;KI	D)D') - '''	(A'B'C' ''(ABCIK; K'ID)D') 

KD') - 124K' (A'B'C' 'I'(ABCIKI; ' D')D)K' 

—16'"(ABcD)KK'(A' 'B'C'D') " - 32A4'ABCD'I'A'B'C'D' 

- 

+16 ( n B . c (c4n'B'D')D) - 420(nB0cD)'I'A'p'C'D' 

- 360(ABCD)(C'D4A'B'). 

We remark that [23: equation (2.7)] has been used to obtain a stronger form of 
condition (iii)s. 

We now have obtained the necessary conditions in a form suitable for conversion 
to the Newman-Penrose formalism. To perform this conversion, two methods were 
employed. The first, which was used for the expansion of the conditions (I) - (IV), is 
the NPspinor package for the MAPLE symbolic algebra system. For cases where larger 
expressions are involved, the NPspinor package may not be suitable for conversion from 
spinor to Newman-Penrose form. In the case of the necessary conditions (V) and (VI), 
we modified MAPLE code written specifically for the conversion of these conditions
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to Newman-Penrose form by G. C. Williams. A listing of the MAPLE code for the 
modified Williams routines can be found in [1]. 

Because the tensorial form of the necessary conditions always involves the trace free 
symmetric part of a tensorial expression, the spinorial form of all the necessary condi-
tions will involve spinors of the form S(A,A,,)(A' A) Thus, when we label the dyad 
components of such equations, it is sufficient to specify the number of unprimed indices 
with the value one and the number of primed indices with the value one. For instance, 
we can identify the dyad component S (ljl o o)(1'I'o' a') as the (3,2) component of the 
spinor S, and likewise for the conditions themselves. Thus, the component of condition 
(IV) with three 1 and two 1' indices would be denoted by (IV)/(3,2). This component 
labeling scheme is the one used throughout the rest of this paper. 

4. Proof of Theorem 3 

As in Section 3 we choose our dyad so that 'T ABCD = 40(ABCLD). This form of WABCD 
is invariant under conformal transformations if we choose the conformal parameter r = 1 
from the transformation, which we shall. Since we wish to deal only with the non-self -
adjoint wave equation, we shall restrict our considerations to the case 

	

Q'AB j4 0.	 (4.1)

We start by proving the following lemma. 
Lemma 1. The validity of Huygens' principle for the scalar wave equation (1.1) 

on a Petrov type III background implies that, with respect to a spinor dyad {o, t}, where 
o is the repeated principal spinor of the type III Weyl spinor, there exists a conformal 
gauge for which

= or = = = = C T =	= I oi = 02 = A = 0. 
Proof. Consider first condition (IV)/(2,3), which for the selected dyad yields ic0 = 

0. Assume 

(i)k0 

which implies

	

= 0.	 (4.2) 
Thus, under assumption (i), condition (IV)/(1,3) yields kç5 1 = 0 which, by that same 
assumption (i), yields

	

= 0.	 (4.3) 
Using (4.2) and (4.3) we see that condition (IV)/(1,2) yields k(302 + q ) = 0 which, 
again due to assumption (i), implies 

	

302 + 42 = 0 =	2 0.	 (4.4) 

However, (4.2) - (4.4) contradict our initial criteria (4. 1), and so we have by contradiction 
that assumption (i) must be false, or

r. = 0.	 (4.5)
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It follows immediately from condition (111)/(2,2) that 

	

00 = 0.	 (4.6) 

Inspection of [8: equation (2.23)] and (2.12) reveals that (4.5) and (4.6) are invariant 
under conformal transformations. 

The results above and condition (IV)/(0,3) imply 5 I = 0. If we now make the 
assumption 

(ii)a540 

then it follows that

	

= 0.	 (4.7) 

Substituting (4.5) - (4.7) into condition (III)/(0,2) we have a(9 2 - 2) = 0 which, on 
account of assumption (ii), implies 2 = 0, which, with (4.6) and (4.7), again contradicts 
(4.1) and thus proves by contradiction that assumption (ii) is false, or that 

	

or = 0.	 (4.8) 

Further, by [8: equation (2.23)] we note that (4.8) is invariant under conformal trans-
formations. 

Using the results obtained so far, we have from conditions (II)/(1,1) and (IV)/(1,2), 
respectively,

-	
- DO, =	

'	 (4.9) 
6(e—p)q i + D 1	O	J 

Substituting the conjugate of (4.9)i into (4.9)2 one obtains 

	

- 2p +	) = 0.	 (4.10) 

Assume 

(iii) 01 $ 0. 

Then (4.10) implies that

e=p —.	 (4.11) 

Exploiting the conformal invariance of the results in the proof thus far, we now use the 
conformal transformation law for p (i.e. [8: equation (2.23)]) to set 

	

= —p	 (4.12) 

which gives (4.11) the form

	

= P.	 (4.13) 

Equations (4.12) and (4.13) imply that 125: equation (4.2a)] may be written as Dp 

—p 2 + oo which, when added to its complex conjugate, gives 

2 = —p.	 (4.14)



Huygens' Principle on Petrov Type Ill Space-times	47 

Furthermore, from condition (11)/(1,1) we have 

DO, =	 (4.15) 

Substituting (4.14) and (4.15) and its conjugate into condition (V)/(1,1) gives 01q5p 2 = 
0. Since	0 contradicts our assumption, we conclude 

	

P = 0,	 (4.16)

which in turn yields
=	= 0.	 (4.17) 

The results of assumption (iii) thus far imply, in conjunction with [25: equations (4.2d), 
(4.2e) and (4.2k)] that

DT = D/3 = oi = 0.	 (4.18) 

Substituting (4.5), (4.6), (4.8), (4.16) - (4.18) into condition (111)/(1,2) yields q = 0 
which contradicts assumption (iii). We conclude that 

	

= 0,	 (4.19)

which, by (2.13), is also conformally invariant. 

Next, consider the Pfafilan derivatives of the remaining Maxwell component yielded, 
by conditions (11)/(0,0) and (I1)/(0,1). 

= —2 2 fl + 27- 

D02 = —20e + 2P• f	
(4.20)

Substituting these into condition (IV)/(0,1) one gets 

82 = (-6 + 6 - 2)2 + ( + 2a + 47r)2. 

,,From this point on we will assume that these Pfaffiaris of the Maxwell spinor have 
already been substituted for according to these equations. 

Now, by adding [25: equation (4.2a)] to its complex conjugate we obtain	= —p2.
Thus, [25: equation (4.2a)], conditions (III)/(1,2), (IV)/(1,1) and (VI)/(2,2) become 

Dp = (f + e)p 

D€ = _2 + 3f.p - - e2 + fE + Dp 

0 = 3 02P + 2eq52 - 3pçb 2 + 242
(4.21) 

0 = — 13p3 2 + 13p3 2 + 3 2 p2 ë + 32p2 e + 2i2pe 
+302 p2E  - 20 2 pe€ + 302 P2 +202 pe2  + 202pDë 
- 302 pDp - 3 2 pDp - 2 2 pe2 - 22pDe,
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respectively. By eliminating DE and Dp from (4.21) 4 using (4.21) and (4.21) 2 , multi-
plying the resulting equation by two and then adding to it 4p 2 times (4.21) 3 we obtain 
4p3 (2 + 2) 0 which implies that either p = 0 or q5 2 = 02 . Let us assume 

(iv)pO. 

Then 02 = 02• It follows immediately from (4.21) 3 that, if 02 540, E = - f which in 
turn implies from (4.21) that Dp 0 and from (4.21) 2 , when it is subtracted from its 
conjugate, that Dc = 0. Thus, (4.20) 2 when respectively subtracted from and added to 
its conjugate yields

Dç62 =0, 
1 

E =p. 

Now consider condition (V)/(2,2) which, in light of the results just obtained, takes 
the form

p2(2 - 2)( 2 + 2) = 0. (4.22) 

Considering assumption (iv), (4.22) implies 2 = ±2. We proceed with the case 02 = 2, 
which immediately implies, by (4.20), that T = 20 which in turn implies, by way of 
condition (IV)/(0,1), that t = —2/3. 

Thus [25: equations (4.2c), (4.2d), and (4.2e)] and condition (VI)/(2,3) may be 
written as

D13 =/9p + 
1 Do, 

Da =p — ap — 70p)+io 
2	 (4.23) 

Sp =2D/3 + 3/3p + px 

0 =p(/Jp - p + 2D - - 2 cIo i - 4D/3) 

respectively. Eliminating all the derivative operators from these equations, one is left 
with p ( 3flp + p + 2 cIo) = 0 which, since p 54 0, implies that 

(Doi 

Next, consider the first Bianchi identity of [29[, which we may now write as 

p(1 1/3p + Spa + 3D(/3) + D(a) - 46( p)) = 0. (4.24) 

Combining (4.23) - (4.23) 3 and (4.24) we have 0 = p2 (0 - a) which, under assump-
tion (iv), implies 3 = c. Substituting this into (4.23) 2 we also obtain Da = 0 while 
substituting it into (4.23) 3 yields Sp = 4pa. 

Let us now consider [25: equation (4.2p)] and the second Bianchi identity of [29] 
which at this point have the forms

1-	2	1 = Ap + 2a +	02	 (4.25) 
D(4 02 ) = p(Ap - 26(a) + 4a2 +(D 02) . J
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These equations imply D 02 0. On the other hand, [25: equation (4.2g)] now takes 
the form

DA = —28o + p.\ - 4t2 + 20 

which with (4.25) implies D.\ = 0. 

Next, consider condition (VI)/(2,4), which can now be written as 

0 = p(p - 25ä - 4ã2 - 02) .	 (4.26) 

By combining (4.25) with (4.26) we obtain 0 = p(-8a 2 - 2 02 ) which implies that 
= _42 which in turn implies by (4.25) that 6a = —pA. 

Now, let us consider the [25: equations (4.2f) and (4.2h)] and condition (111)/(0,1), 
which now may be written as 

2Dy—öp=—(7+5')f_8aä_2A+2411	.1 
D li 	 (4.27)

66 + 2D-y - Sp + 4Dj - 2ä = aä + 14p + 6f7 - 2i - 411 - e J 
respectively. These equations imply that 

146a - 2& = 6cI i i - 4py + 6A - 1 1p + pl	 (4.28)

On the other hand, from [25: equation (4.21)] we have 

6a -	= p + 2p + (p - )p + A + ii .	 (4.29)

Solving (4.28) and (4.29) for 5a and 6ã we get 

—p+A)
(4.30) 

ã	-	- A - 4p + pu). }  

Subtracting (4.30) from the complex conjugate of (4.30) 2 we get 

- 2up - A -	= 0	 (4.31)

while adding (4.29) to its conjugate gives 

/ p +7p—pTA + A +i1 — py=O.	 (4.32)

Adding (4.31) and (4.32) and recalling assumption (iv) we obtain

(4.33) 

However, condition (IV)/(0,0) now has the form 

2y+3j.t+2+3=0.	 (4.34)
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Solving (4.33) and (4.34) we get = --y and /1 = — j. 

Next, upon substituting (4.30) into (4.27)2 and adding and subtracting the result-
ing equation from its conjugate we get

D,i = o) 
4	+ A - ii 0. j	

(4.35) 

We further note that (V)/(3,3) now reads 
: —A+5up-4Q-27p=0.	 (4.36) 

Solving (4.36), (4.35 )2 and (4.31) for a,	and A we obtain 
2 

'a = 

A - -	- 2c	 (4.37) 

i =—yp+2th. 

Thus, by (4.35), (4.37)i and (4.27) i we have Thy = 0 and 6p = 0. 
Now, consider [25: equations (4.2o) and (4.2r)], the fourth and seventh Bianchi 

identities of [29] and [25: equations (4.2i), and (4.2m)], which can be written respectively 
as	

4 
0=—So+ -yã+ PC/ —(:A--(I)i2 

-	3	8 
0=8o—&y— pv+3äA+ ay+1 

o = 621 +	+ &(86 + 6 + 4vp - 4äA +	- 221)

0=Dv+26a+4+pv+1 

o = 2D 12 + 2Apa +	+	+ 2P& - V P2 + 2P12 

o = bA -	- 2pv+	+ 2ä\ — 1 — 21, 

We may solve these equations to obtain expressions for each of the Pfaffian operators. 
In this manner we obtain 

bA = —
5

p(4y - lOp + lOäA - 5I21 - 5) 

• = _ j (4ic - lO + 1 06 - 5 hi + 5) 

5a = — 10 (12-ya - Spi + 20A + 5 4 21 - 5) 

Dv —(4'y - 5pi: - lOa.X - 5h1 + 5) 

D4 21 = —p(44ya - lOpi + lOãA - 5 '21 —5) 

21 = _(127 - 20api - 50aäA - 15 21 + 25a + 7)yp).
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Substituting these derivatives into the commutator [,c5]a, the fifth Bianchi condition 
in [29], conditions (111)1(0,0), (VI)/(3,4) and (VI)/(3,5) one obtains 

p(-85pv + 244-ya + llOä.A - 5 (1)21 - 55) = 0 
p(Spzi - 152-ya + 20äA - 40421 - 10) = 0 
p(Spz.' - 127a + 20ä.X + 151)21 + 65) = 0	 (4.38)

p(-230pzi - 448ya + 280äA + 2601)21 - 565) = 0 
cr(-60pu + 184ya + 60äA + 701) 21 - 155) 0. 

Solving the first four equations of (4.38) for the four unknowns pu, -ya, aX and 1)21 we 
get

53 PV

= -

61 
12 

Substituting the above values into (4.38) 5 we get immediately a = 0. However, this 
clearly contradicts (4.39)2, and thus we conclude that assumption (iv) fails in the case 

= 2. Exactly the same steps lead to a contradiction for the case 02 = —2. Therefore, 
assumption (iv) is false, and we conclude that 

	

P = 0.	 (4.40) 

This equation has immediate consequences. First, from [25: equations (4.2k) and 
(4.2a)] we have = 0 and = 0 which, in conjunction with the third and ninth 
Bianchi identities of [29] implies D'1) 11 = 0 and D(A) = 0. 

Next, from (4.21) 2 and condition (V)/(2,2) we have 

g2 + io + 6 2 + Dë + Th = 0 

- + D = 0 

from which we conclude that

	

=0.	 (4.41) 

We then have immediately from [25: equations (4.2c), (4.2d) and (4.2e)] and the second 
Bianchi identity of [29]

Dr = 0 

Da = 0 

	

Df3 = 0	 (4.42) 

D1)02 = 0
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while (4.42)2 and condition (111)/(0,2) yield 
Dr = 0.	 (4.43) 

We now consider the conformal invariance of our results under the assumption 
DO = 0. Recalling [8: equation (2.23)] and (2.2) we observe that equations (4.5), (4.6), 
(4.8), (4.19), (4.40) and (4.41) are invariant under a conformal transformation. Thus far, 
we have only exploited the conformal invariance by specifying Dçb to obtain condition 
(4.12). We now wish to make the further specification 

5c = 1-
= 

while preserving Dcb = 0. This will imply T = 0 in the new tetrad according to [8: 
equation (2.23)]. In order to check whether or not this specification of Sqf is compatible 
with (4.12) we must verify the integrability conditions generated by considering [D, 8] 4, 
[D, 8] 0 and [8,8] 0. The expressions obtained for these commutators are 

DT=0 
Df = 0	 (4.44) 

	

— ST + ST = —(a - )T - ( — a +	. 
That (4.44) and (4.44)2 are satisfied is clear upon inspection of [25: equations (4.2c) 
and (4.2k)] while (4.4) 3 can be seen to hold due to [25: equations (4.2p) and (4.2q)]. 
Thus, we can make the transformation (4.43) and conclude as a result that T = 0 [8]. 
We can now recover results which were not conformally invariant, since we have from 
[25: equation (4.2k)] that = 0. Thus from the second, third and ninth Bianchi 
identities of [29], NP (4.2d), and condition (III)/(0,2) we obtain 

D 11 =0 
DA = 0 
Da =0 

D 02 = 0 
Dir =0 

Further [25: equation (4.2e)] implies that DO = 0. It follows immediately, via [25: 
equaiton (4.2p) and (4.2q)], that 02 = 0 and A = 0 which concludes the proof of 
Lemma 11 

In order to establish Theorem 3 we need the following second lemma from [8]. 
Lemma 2. If, for any space-time, there exists a spinor dyad {Oa, ta} and a confor-

mal transformation0 such that
k = = p = T = e = 0 

"0 =	= 'I' = T 4 = 0, t11 3 = 

00 = 4 oi = 02 = A = 0 
then every repeated principal null vector field of the Weyl tensor is recurrent. 

Proof of Theorem 3. The proof follows trivially from Lemma 1 and Lemma 21
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5. Proof of Theorem 4 

The idea of the proof is to show
H. b =0.	 (5.1) 

If this equation holds, it is a well known result (see for example 122: p. 273)) that 
the equation (1.1) is equivalent to the conformally invariant equation (1.7). Equations 
(2.2) and (2.9) imply that Hab = 0 if and only if 0 0 = 01 = 752 = 0. Since we 
have already shown in Section 4 that equation (1.1) can be a Huygens' equation only if 

= çf = 0 in the specified gauge, we need only prove that 0 0 is incompatible with 
the necessary conditions when the equations (1.6) hold. In our special conform gauge 
these equations reduce to

a=8=7r=0.	 (5.2) 

With the results of Lemma 1 and this assumption, we see that conditions (V)/(2,2), 
(11)/(0,1) and (111)/(1,1) give c = 0. Also, from NP (5.21) (???) we see immediately 
that cI I I = 0. Finally, conditions (11)/(0,0), (11)/(0,1) and (IV)/(0,2) now require three 
of the Pfaffians of 02 to vanish, namely 

D0 2 = 82 = 602 = 0.	 (5.3) 

Many of the Newman-Penrose equations now have very simple forms. The following 
relationships are found amongst them: 

6 Y = 12 
= —1 

Dy = 0 
DA = 0	

(5.4)
D 1 t =0 
Dv = 2I - 1 

D 12 = 0 
6 1I 12 = 0. 

t From the commutator , 5]y we further obtain	21 = 0 which with final Bianchi
identity of [29] gives us D4 22 = 0. 

From the commutators [A, D10 2 , [ A, 612 and [A, 612 we have the mixed Pfaffians 

DAq2=0 •' 
61L 2 = 0	 (5.5)
öA 2 = 0. J 

Now, by applying the 6 operator to condition (IV)/(0,0) and substituting for bi from 
condition (V)/(4,3) we obtain 

(162 +6O2 +45222)4I2 + (2o+39 2 2 +276t 2 qf 2 )q 2 = 0.	(5.6)
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We may solve this equation for cI 12 provided T := 162 + 60 2 + 45 2 2 2 0. We 
observe that T = 0 implies that 0 = ±21"/15. Further, removal of Sp from 6 of 
conditions (IV)/(0,0) and (V)/(4,3) with the above values of 02 yields a contradiction, 
and we therefore conclude that T 54 0. Thus we can solve equation (5.1) for 412 to 
obtain	 - 

	

( 20+3902 + 27622) -2
	 7 12 = - 16 2 + 60 q5 2 + 45c522c52	

•	 5. 

Now, take 6 of condition (VI)/(4,5), [25: equation (5.2m)] and condition (V)/(4,3) and 
eliminate the Pfafflans. The resulting equation is 

—10200 2 + 17002 21 - 93222 + 1992242I2 

	

+4913222 + 660q 2 + 46102 2 4122 + 996120221	(5 8)+454)122222I + 39222I12 + 180 i q5 + 2280212 
+244024'12421 - 45 212 2 212 - 394 212 2 2 + 180 2102 = 0. 

By substituting for 112 from (5.2) herein we obtain for 02 the equation 

18240 22 2 +21177602 2 02  + 4457922322 
+20654402 4 02 + 3058242223 - 502608024q523 

	

— 11640042 q54 - 380270422 4 + 51840q52 3	 (5.9) 
—28800 2 - 340875 2 4 q5 2 5 + 383402522 

	

+320625 22 - 1055628 2 5 2 2	0. 

Let us define 02 = x + iy. Then the real and imaginary parts of (5.9) are

0 = y(92400x 4 + 548500x 6 + 55125y 8 + 330750 y 4 x 4 +9408 Y2 

+ 77152 y 2 x 2 + 220500y 2 x 6 + 916188 y 4 x 2 + 220500 y 6 x 2 - 15248y4	(5.10)

+ 183844y 6 + 1280844 y 2 x 4 + 55125x 8 + 36288x2) 

and

0= x(60750y4 x 4 +10125y8 +5949324y2 x4 +40500y6 x 2 +40500y2x6 

- 240592y4 + 3914748y4 x 2 -661472 y2 x 2 -80448 Y2  + 626724y 6	(5.11) 

+ 10125x8 - 420880x 4 + 2661300x 6 - 126528x2), 

respectively. Clearly,
x=y=0	 (5.12) 

is a solution of equations (5.10) and (5.11). If it is the only real solution, then we have 
proved that 02 must vanish for a Huygens' equation on our background, and hence have 
proved the theorem. Now, suppose x = 0 but y 54 0. Then (5.10) implies 

55125y6 + 183844y4 - 15248y2 + 9408 = 0
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which has no real solutions for y. Thus there are no real solutions of equations (5.10) 
and (5.11) with x = 0 but (5.12). Next, suppose y = 0 but x 0 0. Then equation (5.11) 
implies

10125x6 + 2661300x 4 - 420880x 2 —126528 = 0. 

This equation has two real roots x 2 = x, 2 , so it would seem that there are real values 
Of 02 540 for which equation (5.10) has a solution. However, suppose 02 = ±x,. The 
proof that this case is impossible and is now described without giving the explicit forms 
of the equations obtained, since they are very long. We begin by noting that L02 = 0. 
Now apply the 6 operator to condition (V)/(4,4) and eliminate the mixed Pfaffians using 
the [6, ]-y. [6, [6, and [6, AJA commutators. Eliminate 6A and 422 from the 
resulting equation using 6 of condition (VI)/(5,4) and the final Bianchi identity of [29], 
respectively. Apply the 6 operator to the complex conjugate of the resulting equation 
and eliminate the remaining 8.X's using 6 of condition (VI)/(5,4). Finally, substitute for 

12 in the equation thus obtained from 6 of condition (IV)/(0,0) to obtain 

260287171875x 3 12 - 87747543000x 5 1 ° + 2309587376400x38 
—1845238913280 x 5 6 + 383433397504 x 3 4 - 27548129280 

+11925549056 = 0 

which implies 0 = 1 and is therefore a contradiction. Thus, we have proven that the 
only solution of equations (5.10) and (5.11) for which x = Dory = 0 is (5.12). 

It remains to prove that there are no solutions of equations (5.10) and (5.11) for 
which neither x nor y vanish. Under this assumption these equations imply 

N1 :=92400x 4 + 548500x 6 + 55125y8 + 330750y 4 x4 + 9408y2 
+77152y 2 x 2 +220500y2 x 6 +916188y4 x 2 +220500y 6 x 2 - 15248y4 
+ 183844y6 + 1280844 y 2 x 4 + 55125x 8 + 36288x 2 = 0 

N2 :=60750y4 x 4 + 10125y8 + 5949324 y 2 x 4 + 40500 y 6 x 2 + 40500 y2x6	
(5.13)

- 240592y 4 + 3914748 y4 x2 —661472 y 2 x 2 -80448 Y2  + 626724y6 
+ 10125x 8 - 420880x4 + 2661300x 6 -126528 X2  = 0 

At this point we use the package grobner in the computer algebra system Maple for the 
bivariate polynomial equations defined by the polynomials N1 and N2 . In particular 
we employ the function gsolve. It computes a collection of reduced (lexicographic) 
Gröbner bases corresponding to a set of polynomials. The system corresponding to 
the set is first subdivided by factorization. Then a variant of Buchberger's algorithm 
which factors all intermediate results is applied to each subsystem. The result is a list 
of reduced subsystems whose roots are those of the original system, but whose variables 
have been successively eliminated and separated as far as possible. In the present case 
we obtain the two systems given by 

C 1 = [61893y4 + 18704y 2 +5120,3474y 2 +6165x2 +3321	(5.14)
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and

C2 = [219244532352355678500x 6 - 129285942125438651155x4 
+ 14924119857663214052x 2 - 6570939064338291552, 
36640800662397354485467414871 y 2

(5.15) 
+ 75604452477698114078389731000x 
+ 117265726948657219461533438885x 2 
- 8963925418010020951740016645.] 

By inspection the system (5.14) clearly has no solution. On the other hand, equation 
(5.15) has two real solutions x = ±xo. However, upon substituting x 2 = x0 2 into 
equation (5.15)2 we find that y must be imaginary. Thus, the only real solutions of the 
system (5.13) are x = y = 0. We have therefore shown that the only solutions in the 
specified gauge with a = /9 = = 0 are those for which Hab 0. We conclude that 
equation (1.1) is equivalent to the equation (1.7). We complete the proof of the theorem 
by noting that the conditions of Theorem 2 are now satisfied since the equations (5.2) 
imply the equations (1.6) in the conformal gauge we are using. I 

Conclusion. We have demonstrated in this paper that Theorems 1 and 2 of [8] for 
the self-adjoint scalar wave equation (1.1) (with A. 0) have counterparts, Theorems 3 
and 4, for the case of the non-self-adjoint scalar wave equation. In particular, Theorems 
3 and 4 now supercede Theorems 1 and 2. This extends the original work by two of us 
in [22] to extend the program begun by Carminati and McLenaghan [5, 6] to the case 
of non-selfadjoint wave equations. 
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