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Abstract. In an arbitrary curved space-time the Hodge-de Rham equations with Lorentzian
gauge are studied. Using the spinor calculus and propositions on the curvature tensors, espe-
cially on Hall’s canonical forms of Ricci tensors, some properties of the tail terms with respect
to second order differential operators are proved. Finally, all Huygens’ operators are explicitly
determined.
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1. Introduction

In a four-dimensional pseudo-Riemannian manifold (M,g) with a smooth metric of
Lorentzian signature the Hodge-de Rham equations for p-forms with Lorentzian gauge

Au=w

(u,w € AP, p=1,2) (1.1)

bw =
are considered, where A = —(dé + éd) denotes the Hodge-de Rham operator (see [2, 5,
12, 15, 18, 19)), d the exterior derivative and 6 the co-derivative. The equations (1.1) are
of physical interest. Especially, if u € A is the electromagnetic vector potential and the
source w represents a charged particle moving along a world line, then the divergence
of w must vanish (see, e.g., F. G. Friedlander [1]).

For the equations (1.1) Huygens’ principle (in the sense of Hadamard’s "minor
premise”) is valid if the solution of Cauchy’s initial value problem in a sufficiently small
neighbourhood of the initial space-like surface F depends only on the Cauchy data in
an arbitrarily small neighbourhood of the intersection of the past semi-null cone with F
(see [2, 5, 7, 13, 18, 19]). Only if Huygens’ principle is valid, then the wave propagation
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is free of tails (see [2, 5, 7]}, i.e. the solution depends only on the source distribution
on the past null cone of the field point and not on the sources inside the cone.

The present paper is motivated by earlier investigations on Huygens’ principle for
the usual Hodge-de Rham equations (without Lorentzian gauge) (see [5, 18, 19]).

The main result in this paper reads as follows.
Theorem 1.1.

(i) The equations
Au=w

. , Al
bw =0 (wwea)

satisfy Huygens’ principle if and only if g is either‘a plane wave metric or @ metric with
Y Y9 p P !

Cabed =0 and Rqp = iRgabv

(i1) The equations
Au=w

,w € A?
bw=0 (w,w )

satisfy Huygens’ principle if and only if g is either a plane wave métric or a metric with
Casca =0 and R (Rap — ;—Rgab) =0.

The paper is organized as follows:

After some preliminaries we give in Section 3 some necessary and sufficient condi-
tions for the validity of Huygens’ principle for equations (1.1). We show relations for the
tail terms with respect to some differential operators and determine the first coincidence
values of the tail terms. In Section 4, the spinor calculus, Hall’s canonical forms of the

Ricci tensor, some propertics of the curvature tensors, and the second coincidence value
of the tail terms are used to prove Theorem 1.1.

2. Preliminaries

Let (M, ¢) be a space-time, i.e. a4-manifold together with a smooth metric of Lorentzian
signature, and gqs, g%, V., Rabed; Rap, R and Capcq the local coordinates of the covariant
and contravariant metric tensor, the Levi-Civita connection, the curvature tensor, the
Ricci tensor, the scalar curvature and the Weyl curvature tensor, respectively. The signs
of the curvature tensor and of the Ricci tensor are determined by the Ricci identity

1
VieVyT: = —§Rabch“ o (2.1)

and
Ras = ¢'* Rais,

respectively. AP denotes the space of p-forms of class C*°. On AP the exterior derivative

d, the coderivative § and A = —(d§ + 6d) are defined. The following relations are valid

(see {5, 12]): : o
. (du)al”'“rﬂ = V{a‘uazmaw“] .

u € AP 2.2
(6u)ay - ap_, = —ka“kanwap-l ( ) (2:2)
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and
(LPU)a10, = (A)aray = O Uaa; ~ CayayLiteq = %Ru,,l,,, (u € A?) (2.3)
(LWu)g, := (Au)a, = Oug, — Ra®uy (u € AY) (2.4)
LOy:= —(6du)=0u  (u€ A (2.5)
where O = ¢%°V,V,. Because of the commutator relations (see [5: pp. 283])
L) = [P~V (p>0) (2.6)
the operator L(P) maps
Af = {u € A?: fu =0}

into itself and the Hodge-de Rham equations (1.1) with Lorentzian gauge can be written
as

LPy =y (v, we A}, p=1,2). (2.7)
Let M be a causal domain (see (2, 5]) and I'(z,y) the square of geodesic distance
of z,y € M. For any fixed y € M the set {z € M : I'(z,y) > 0} decomposes
naturally into the open subsets D (y) and D_(y) called future and past of y, respectively.
The characteristic semi-null cones C+(y) are defined as the boundary sets of Di(y),
respectively. Then D (y) consists of those points z € M for which the geodesic segment
from y to z is causal and future-oriented. If this segment is a time like or a null line,
then z belongs to int D4 (y) or C4(y), respectively.

Let Gi(y) (p = 0,1,2) be the fundamental solution of the operator L{P) and
TP)(-,y) the tail term of G%(y) with respect to y. Then the inclusion supp Gi(y) €
D4(y) holds (see (2, 5]). The tail term is just the factor of the regular part of the
corresponding fundamental solution. For T(P) there is an asymptotic expansion

oo

TO(z,) ~ 3 5 U (2, y)(0(z,v) (28)

k=0

where the Hadamard coefficients U ,E" ) are determined recursively by the transport equa-
tions (see (2, 5, 13, 19})

1
verv, Ul 4+ (0T -8+ sk) U = —LPUP (k> 0) (2.9)
with the initial conditions
UR=0  and  UP(y,y) =1P()

where I®) denotes the identity.!)) For a timelike separation of z and Y, T(”)(~,y) is

defined as the unique solution of the characteristic initial value problem
L@ e Ly) =0

(:v) (2.10)

T(p)(z’y”r:o =0

(see (2, 5, 13, 18, 19]).

1) The operator L® and all derivatives refer to z.
P
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3. Huygens’ principle

From Giinthers’ investigations there follows (see [5: Chapter IV]):
Proposition 3.1.

(i) The Hodge-de Rham operator LP) : AP — AP is o Huygens’ operator 2) if and
only if
TP (z,y) =0 (3.1)

for all z and y.
(ii) The Hodge-de Rham operator with Lorentzian gauge LP) : A2 — A2 is a
Huygens’ operator %) if and only if

(TP (z,y) =0 (3.2)

" for allz and y.

In (18, 19] the following proposition was proved:

Propositioh 3.2.

(i) L 0 AY = A' is a Huygens’ operator if and only if g is flat.

(ii) L™ : A2 = A? is o Huygens’ operator if and only if Capeq = 0 and R = 0.

Remark 3.1. Obviously, the operator L(P) : A} — A? is a Huygens’ one if g is
flat. In the following we are interested in the determination of all metrics for which
L® : A? — A? is a Huygens' operator.

The tail terms T(P)(z,y) satisfy the relations (see [5: p. 289])
5T P(z,y) =dyy T D(z,y)  (p=1,2). (3.3)
Corollary 3.1. From (3.2) it follows
d(z)d(y) TP D(z,y) = 0 (3.4)

for all z and y.
Proof. The relations (3.3), (2.10) and (3.2) imply

d(z)6(2) TP (2,y) = d(2)d(y) TP (z,y) = —6(z)d() TP (z,y) = 0

and thus the assertion is proved i

) Le. Huygens’ principle for the corresponding equation LPu = w (u,w € AP) is satisfied,
see Section 1.
%) In this case (8, L(”,I®) is a Huygens’ triple, see [5: pp. 249).
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Remark 3.2. The condition (3.4) is satisfied for p = 2 if and only if the Maxwell
equations

du=0

(ue A%, we Al
bu =

form a Huygens’ system (see [5: p. 288)).

Remark 3.3. A metric g is said to be plane wave if ds? = g4 dz®dz® has the form

. .
ds? = 2dz'dz? — Z aap(z') dz®dz? (3.5)
a,f=3

where the matrix (aag) is positive definite (see (2, 4, 5, 17]).
The following result was proved in [5: pp. 683 - 685):
Propositioh 3.3. If g i3 a plane wave metric, then d(z)T(P)(x,y) =0(p=1,2).

The next step is the determination of d(,)T(”)(y,y). For this purpose, for u € AP
we define

CPy = LPy - Ou. (3.6)
Then from (2.3) - (2.5) it follows that
COu=0, (CWu)a, = —Rq,bu, (3.7)
1
(C(Z)u)ala'z = _Cﬂlazcdqu - §Rualﬂz (38)

and for the corresponding Cotton invariants €?P) := C(P) + LRI (see [2, 5, 18]) we
obtain

1
¢®="R
6
et = ,° (3.9)
1
(2) biba _ bibz _ = pgby cb
Q:dxaz *= _QC““” 6R6[aléa§]

where Lo, = —Rgp + éRgab. The curvature operators Kgf?,, are defined by the Ricci
identity (see [5, 18])

1
Vi Vagu=-sK% v (ueAP) (3.10)

2 ayaz

Consequently, because of (2.1)

~(0
K9 =0
Kf.:?md = Ralazcd (3.11)
I\:(z??xzc‘c;dldz = Ralaz[cx[dl 602]“2]'
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Under consideration of (2.8), for the coincidence values TP)(y,y) and V;, T (y,y) we
obtain (see [5: p. 576]) ¢

1
7@ = y» = _EQ(P) » (3.12)

aty

1
v, T = v, P = EV‘*K"?’ - %vi,e:(”. (3.13)
Hence, on account of (3.9) and (3.11)
" (dyTM Loor .
( () )[0102]0 = 1_2 ﬂ[alaz]a - ZvlalLazla (314)

1
(d(z)T(Z))lal azazjoyo; = [EVQR‘I“IGZQI Jaza,

1 1
‘Va azaza ~ azoy Yaza ] A9
T ‘(C sesones ¥ G RGesengas ’) [eraza3),[ar 2] (3.15)
Now an easy calculation leads to the equivalence relation
dyT® =0 <= ViRy.=0 (p=1,2) (3.16)

and condition (3.2) implies the following
Proposition 3.4. For L(P) : APY 5 AP to be a Huygens’ operator the condition

v[aRb]c =0 (3.17)

18 necessary.

Remark 3.4. Obvously, (3.16) is equivalent to

V[aLb]c = vkacab =0
VaR=0.

A space-time (M, g) with property VXCyxqpc = 0 is called a C-space-time.
In (21, 22] the following result was proved (see Corollary 3.1 and Remark 3.2):

Proposition 3.5. The relation d(;yd(,)T")(z,y) = 0 and (3.17) imply that g is
conformally equivalent to a plane wave metric or to a flat metric.

There holds (see {13, 20 - 22}):

Proposition 3.6. Assuming (3.17) every metric g, which is conformally equivalent
to a plane wave metric, 13 a plane wave metric.

Now, the following lemma follows immediately from T(® = —L R (see (3.9) and
(3.12)) and the property T((z,y) = T (y,z) (see [2, 5]) by Taylor expansion of
TONz,y) inz =y:

Y If we disregard in the derivatives of T(”),U(”) ... the va.riables, then we stipulate their
g ’
coincidence values.
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Lemma 3.1. In the case R = const the condition d(,)d(y)T(o)(x,y) = 0 smplies
TS(Vi, - Vi, T®Y=0 (r>0) (3.18)

where TS(T...) denotes the trace-free symmetric part of the tensor T...

Now we need the coincidence values V(;lViZ)T(”) under the condition V;;T(P) =0
(see (3.16)).

Lemma 3.2. Assuming (3.17) one has

i

Vi, VigT® = 1) 11—2TS(R,~,.-,)€(”)

1 . 1 - (3.19)
- ETS(Vi.VizQ:(P)) + ggm.:c(p) .glp)
where
171, . 1 e
I7) = 1 l1¢ n’ubRab,f(p) + gk (P). K.(fb) - ZgimKi”)bI\:fp) - (3:20)
18 the moment of order 2 with respect to the operator L* := O — %R: AP — AP (see
(8])-

Proof. From (2.10) it follows that O T()(.,y) = —C®T®)(. y).. Consequently,
because of (2.8) - .

1
V(flviz)T(p) = TS(V,"V,'QUI(P)) - Zgilfzc(p) . T(P)‘
Now, (2.9) implies (see [5, 18, 19])-

TS(V4,ViU?) = 5TS(Riyi) U

1 .
- ETS V,-1V.~,L‘U(§'l’) 4+ V.‘lvi,Uép) + V.'1V.',€(P)].

By virtue of
TS(V:,V,UP) = %TS(R.-”-,)I(”)
LUl =0, V(LU =0
TS(V,, Vi, [L"UP)) = —617)

(see [5, 18, 19]) we obtain the assertion (3.19) B

From (3.8), (3.9), (3.11) and (3.20) we obtain the following result:
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Corollary 3.2. One has
i 1 1
Vi Vi TO = —— % . *Rap — — - )
(H ‘2)T 12OC 132 R b 72R[TS(‘R'1'2)] (3 21)
and, for Capea = 0,

1 1
Vi, Vin T = _ER(i,kalRi,)kla + @gmszsale’z"

1 1 i (3.22)
- ETS(Vi‘VigLaa) - ETS(R,'“‘,,)LQO - gg,'],'zRakLka
and
1 1
Vi Vi T, = = = Riiuua, 000 Ri) ¥ 11857 + S RTS(Ri,i,)8(0 627

12 72 (3.23)
1 cged ks as] 1 ay caz P2 ’

+ 5gili2Rk’[°1[ 60]2R C[015d2 + mgi‘i"'&[aléaz]R :

Proposition 3.7. If R = 0 and Vg Ry = 0, then the condition d(,)d(y)T(O)(z,y) =
0 implies that g is conformally flat or a plane wave metric.

Proof. From (3.12) there follows T(®) = 0 and, by virtue of Lemma 3.1, the condi-
tions

TS(Vi,--- Vi, T =0 (0<r<6) (3.24)
imply the assertion (see [21, 22]) I
The following two propositions were proved in [20].

Proposition 3.8. If the relations
1
v[u}zb]c =0, R # 0, Cabcdec =¢R (Rad - ZRgad) (325)

hold with an € € R\ {—3%,0, 3}, then one has TS(Rqq4) = 0.

Proposition 3.9. If in a non-conformally flat Einstein space-time the relations
£
24
hold with an € € R and R # 0, then € € {0,-26}.

Corollary 3.3. Assuming R # 0 and V(R = 0 the conditions (3.18) imply that
g 138 conformally flat.

Proof. The relations (3.25) with ¢ = ——g follow from (3.18) and (3.21). Conse-
quently, because of Proposition 3.8, one has TS(R,s) = 0. Furthermore, under consi-

deration of Ul(o) = — R (see (3.12)), TS(Ras) = 0 and (see [16])

TS (Vacbi,igcvacbi;,i.c - RCai,iszai3i4b> =0 (3.26)

TS[Vi, ---V;(OT - 8)] = =16TS(V,, - -- V;, UY)

” ' (3.27)
- =-5TS(C iviz’ Caisigh)
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we obtain from (2.8) and (2.9)

TS(Vi, -+ Vi, TO = TS(V,, - V,,UY)

- —;—OTS[V;l Vi (T - U :
_ 11_0TS ViV LU 4 %Vﬁ VU@ (3.28)
=10, - %RTS(V;I Vi, USY)
where 1 .
I = =5 TS(Vi, - Vi LUE) (3.29)

1
T 252

is the moment of order 4 with respect to L* : A® — A® (see 19, 21, 22]). Now, (3.28),
(3.29) and (3.18) imply

TS (QV"C!’ ‘VaChizisc + 4RCY, bCa-'aiqb)

11z iz

TS(Vi, -~V T)
1. a e [ '
= WTS (45V Cbgl.‘z VaCb,'S,"c + 13RC .'l.'zbca,'s,"b) = 0 )

Consequently, because of Proposition 3.9, one has Capcqg =0 B

Summarising the results of Propositions 3.4 - 3.7 and of Corollaries 3.1 and‘ 3.3 we
obtain the following

Proposition 3.10. For L® : AP — A? (p = 1,2) to be a Huygens’ operator it is
necessary that

(i) Vu,R=0
(ii) g is conformally flat or a plane wave metric.

Because of Proposition 3.3 it remains to investigate the case Cypcq = 0.

4. Conformally flat space-times

In this section we assume Cgpcd = 0. Our aim is the determination of all Huygens’
conformally flat metrics with respect to the operator L(P). To this end we employ the
"two-component” spinor calculus [5, 11, 15, 19]. Let 0®, 4 be the complex connection
quantities, e4p the Levi-Civita spinor and ® , 54y the spinor equivalent of the tensor
3TS(Ray).

It is useful to introduce a spinor dyad {xa,ua} satisfying x4u? =1 (see [11, 20]).
Associated to the spinor dyad there is a null tetrad {{*,n%, m®, Mm%} defined by

AzX A-X A-X
1" =0% 4Kk, n® =0 Gu”a’t, m® =0 4k 0", (4.1)
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The metric tensor can be expressed in terms of the null tetrad by (see [11])
Jab =2 (l(an(,) - ﬁl(arﬁb)) . (4.2)

In particular, the spinor equivalent to a bivektor Fyy = Figy is given by (see [15])

Fapip =€ipbaB +€aBS,p (4.3)

where )
#4B = $(aB) = §FABXX

Then the spinor equivalent of the dual F}, is given by

-

apap = —1(€ipaB —€aBdip). (4.4)
Furthermore, we have (see [14])
VieFog =0 <= V°F3 =0. (4.5)

Using (3.18), (3.22), (3.10), (3.23) and the spinor calculus, especially the relations (4.3)
- (4.5), we obtain after a extensive calculation the following result:

Proposition 4.1.

(i) The condition

Vgl(d(z)T(l))nlaza = VﬁV[ﬂthf:])o = 0
13 equivalent to
R[TS(Ra)} =0
RITS(Rur) (46)
TS[TS(R.*)TS(Rsx)] = 0.
(i1) The condition
V.’, (d(z)T(2))ﬂlﬂzdaaxf!: = VilvlalTiflS]al"ﬁ =0
1s equivalent to
R[TS(Ra)] = 0. ' 4.7

Remark 4.1. The spinor equivalent to the second equation in (4.6) is given by

¢K1'(A(A¢B)BKK =0. = (4.8)

Proposition 4.2. From R = 0 and (4.8) it follows there ezists a real function o
and a spinor dyad {Ka,pa} such that ® , ;55 has one of the forms

baipp = OKAKBR iR g ‘ (4.9)
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or
PaiBp = OR(ABB)R 4k g)- (4.10)

Proof. If {I*,n®% m® m?} is a complex null tetrad and m® = %(z“ + 1y°), then
{12,n% 2%y} is a real null tetrad. By means of the classification theory of the Ricci
tensor (see (8, 11]) it is easy to show that T'S(R,s) has the canonical form

(a) TS(Ras) = 200l(ansy + 01(lals + €nans) + 022aZs + 03yays

or
(B) TS(Rap) = 2041(ans) + 2l(azs) + 05(Zazs + Yays)

where € € {1,—1,0} and 209 — 02 — 035 = 0. The condition TS(TS(RN)TS(Ru)] =0

implies one of the forms
(a) TS(Ras) = alals
(b) TS(Ras) = o(4k(ams) — gus)
(c) TS(Ras) = o(lals + nanp £ mamy £ mamy).

Using the relations (4.1), we obtain the result for the cases (a) and (b). In the case (c)
we have

¢aipp =0|(ra+vpa)(nB —vuB)(R4i +¥A4)Rp — Thp)

with vy € {1,i}. Putting

1
K'IA =kKa+ YA and /.l'A = _EY-(KA - ’Y#A)7
we get 'y’ = 1 and obtain the representation (i) B
Proposition 4.3. The conditions

Papas = OR(ABBIR (Al p)

411
V[a}zb]c =0 ( )

imply V Ry = 0.
Proof. On account of n,;pA‘= 1 there are spinors A 45, B, x and C, i with (see
(20])
Vaxre=Auxrp+ Bayus

(4.12)
Vaxps=Cuxrp = Ayxps.

The spinor equivalent to VieRse = 0 is given by VX(}S sexy = 0. Consequently, one
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obtains for ¢ # 0
2oy
0= ;VA¢chY
1oy - AV C
= (;VXUW + QCXW) K(BHC)R x
l . B Y _ ’ _
+ (;VX”"Y + QBXI‘Y) K(BHC) i x
Y- . Y. -

+ (CA.”Y) KBKCKx + (CA ﬂy) KBKCH x
+ (B}a/ﬁy) HBUCR x + (B}{Ry) HBUCH

hence V , 30 = B, x = C,x = 0 and the assertion is proved il

Corollary 4.1. A metric with the properties
R =0, Cabea = 0, baBib = OK(AMB)R(4H g)

18 flat.

Proof. From Proposition 4.2 it follows that (M,g) is symmetric. A symmetric
space-time with R = 0 and Cascq = 0 is flat (see {6, 20]) B

In [14] there was proved the following

Proposition 4.4. A metric with the properties
R =0, CabchO, ¢ABAB ;IUKAKBI_CAI_C.B

i3 a plane wave metric. .
Propositions 4.1 - 4.4 and Corollary 4.1 imply the following

Corollary 4.2. A conformé!ly flat metric with d(,)T(’)(z,y) =0and V,R=0 1s
esther a plane wave metric or ¢ metric with TS(R4) = 0.

The following proposition is a consequence of the relation TP (z,y) = A(p)yP)(z, y)
with A(p) = const and d(,)'y(”) = 0, which was proved for space-times of constant
curvature in (1, 3]. . : '

Proposition 4.5. In a space-time of constant curvature one has

dTP(z,) =0  (p=1,2).

Finally, we prove Theorem 1.1.
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Corollary 4.3.

(i) LM . A} — A} is a Huygens’ operator if and only if g is either a plane wave
melric or a metric unth Cabed =0 and Rgp = 4-Rga(,.

(ii) L® . A2 — A? is o Huygens’ operator if and only if g is either a plane wave
metric or a metric wzth Cabed = 0 and R(Rap — %Rgab) =0.

Proof. If g is a plane wave metric or a metric of constant curvature, then
d(z)T(p)(xxy) =0,

ie. LM s a Huygens’ operator (Propositions 3.3 and 4.5). If Caped = 0 and R = 0,
then T(®(z,y) = 0 (Propositions 3.1 and 3.2). Consequently, d(,)T(2)(:z:,y) =0.

Conversely, if LP (p = 1,2) is a Huygens" operator; then g is a plane wave metric
or conformally flat with V,R = 0 (Proposition 3.10). The assertion () follows from
Collorary 4.2. Finally, Proposition 4.1 implies R(Ras — 3 Rgas) =0 1
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