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Abstract. We ask for the converse of Gauss' theorema egregium. Because in general isocurved 
manifolds are not isometric we ask stronger for isocurved, geodesic equivalent manifolds. For 
these we give a local criterion from which there follows that two-dimensional manifolds M2 
and of that type essentially are isometric, or both are Euclidean with an affine mapping 
in the ordinary sense. 
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0. Introduction 

In [5: p. 1591 M. P. do Carmo considers a diffeomorphism I : M -* M between 
Riemannian manifolds (M, g) and (M,) which preserves the corresponding (0,4)- Rie-
mannnian curvature tensors R and R. Referring to R. S. Kulkarni [8) and S. T. Yau 
[16] he poses the problem of deciding whether f is an isometry. In two dimensions 
this problem can be viewed as the question for the convertibility of Gauss' theorema 
egregium. This converse is false: The surfaces 

M2:	x(u 1 , u 2 ) = (u' cosu 2 ,u 1 sin u2, log u') 
-2	1. 2	1	2 1	2 2 x(u ,u ) = (u cosu ,u sinu 

in the Euclidean space lR 3 have the same Gauf3 curvature, but the mapping  = x ox 
is not an isometry (see [6: p. 180]). For the compact case the so-called "dumbell spaces" 
give essential knowledge about this question (see [5: p. 159] or [8: p. 327]). 

It is well-known that Riemannian manifolds of the same constant curvature are lo-
cally isometric; two diffeomorphic manifolds of that kind are isocurved but need not be 
globally isometric. For sectional curvatures K const and n = dim M > 4 Kulkarni 
[8] proved that all curvature preserving diffeomorphisms are isometries. For n = 3 Yau 
constructed examples of Riemannian manifolds which permit non-isometric curvature 
preserving diffeomorphisms [16]. Furthermore, he proved that if M, M are nowhere 
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constantly curved compact three manifolds, then any curvature preserving diffeomor-
phism is an isometry. B. Ruh [12] showed that Yau's examples are the only ones of this 
kind. He determines all Riemannian and pseudo-Riemannian manifolds, which permit 
non-trivial curvature preserving diffeomorphisms. The different behaviour of curvature 
preserving diffeomorphisms f : M -t M obviously depends on the dimension n of M, 
namely n = 2, n = 3 or n > 4. To the reason for this appearance it should be mentioned 
that the higher the dimension the more conditions the diffeomorphism has to satisfy. 

In this paper we investigate curvature preserving geodesic diffeomorphisms and give 
a local criterion about such mappings with the intention to find an isometry. Using 
the fact that (for n = 2) M C R3 is a Liouville surface, if there exist a geodesic 
diffeomorphism f: M -* M between the surfaces M and M (see [3: pp. 168 and 213]), 
we find that a curvature preserving geodesic diffeomorphism essentially is isometric or 
M. and )q are Euclidean and we have an affine mapping in the ordinary sense. 

Observe that the notion "curvature preserving" is used not uniformly in different 
publications. Here we use the (1,3)-curvature operators R and R of the Riemannian 
manifolds (M, g) and because earlier on in the investigations we started firstly 
with linear connected isocurved manifolds, i.e. we used f,R = Rf. or (mappings by 
means of the same coordinates x assumed) we defined equation (5) as curvature preserv-
ing condition. That is just what we need advantageously in formula (3) when we study 
curvature preserving geodesic mappings. We have to be carefully because, in general, 
from Rh	_h 

jkl(x) = R kj (x) it does not follow that R1jk,(x) = Rjk,( x ) as used in [5] for 
a curvature preserving mapping. Kulkarni and Yau make use of the invariance of the 
sectional curvature. 

1. Curvature preserving and geodesic mappings 

Let (M, g) and (T, ) be n-dimensional Riemannian manifolds and f : M -+ a local 
diffeomorphism - throughout the whole paper. We consider two arbitrary cards (, U) 
in M and (, U) in M with U = f(U) and yo:= p of -1 because geodesic and curvature 
preserving mappings will be formulated in the following as mappings by means of the 
same coordinates 

x= (X i , ... ,x") where x=(p)=ç?i) (=f(p)eU,peU). 

f is a geodesic mapping (i.e. M and M are geodesic equivalent) if and only if the 
corresponding Christoffel symbols transform according to 

	

t(x) = ['(x) -	(x)8 + I(x) k	 (1)

where the gradient (v',) is given by 

	

1	8	(x)	=det gij  

2(n+	n 

	

1) ox'	g(x)	(g=detgij)
(2) —I---
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Furthermore, it is well-known that the coordinates of the (1,3)-type curvature tensor at 
the same time transform according to 

R,k( x ) = R k (x) - b t(x )8 + 71'(X ) 6	 (3) 

where
b(x) =	- (x)(x)	(,= V)	 (4) 

(see [13]). 
The diffeomorphism f above is said to be a curvature preserving mapping if 

Rhijk@) = R', k (x)	 (5) 

and as far as f additionally is geodesic, (i,. . ,	have to solve the partial differential 
equation system iJ = 0. 

Remark 1. For a geodesic line -y : I - M it is pointlessly to use an affine 
parametrization here because only the affine among the geodesic mappings preserve 
the affine parameter. So we define -y by means of a certain function o E C°(I) with 
the property

V.y = py.	 (6) 
If f is a geodesic mapping, then the curve := f o y C M is the image geodesic line 

2. Criterion for curvature preserving geodesic mappings 

Now we deal with the problem of deciding whether M and M are locally isocurved 
and geodesic equivalent Riemannian manifolds. So, in regard to (2) - (5), for curvature 
preserving geodesic mappings we have to investigate the differential equation system 

= aj(x) - r(x) -	(x)(x) = 0	(i,j = 1,...,n)	(7)

in the unknown functions 

Let N C M be a normal neighbourhood, U E N a coordinate neighbourhood of 
po E M and, in U,

= X, (S) 

the arc length parametrization of the geodesic line y 0 C N, which passes through 

PO =p 1 (x 0 )	where x 0 =(x1(0),...,x'(0)) 

in direction of the tangential unit vector 

	

X0 = x"(0) 
7I
po E M 0 .	 (8) 

We consider equation (7) on	and contract (7) byx"(s)x2'(s). Using x2'- =dj
we obtain

- X"(S)X'(S)r(X(8))k(X(S)) - (xu1(s)(x(s)))2 =0.
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With respect to the differential equation system 

	

x (s) + r,(x(s))x1'(S)xi'(S)	0 

of Yx0 (where o = 0 for an affine parameter .s in (6)), and considering the relation 

= xt",b + 

	

ds	 ds 
along	relation (9) leads to 

d _(xI (s)(x(s))) — (x(s)(x(s)))2 =0. 
ds	 (10) 

Naturally, now we have to introduce the new function 

Fx 0 (s) = x(s)b(x(s)) (11) 

which is a -y 0 -corresponding one. Equation (10) can be written as ordinary differential 
equation

	

F.0 (s) — F 0 (s) = 0.	 (12)

We investigate the initial value problem to this equation with initial condition 

F 0(0) = x'(0)(x). (13) 

The form of the solution of (12) - (13) depends on the direction of X 0 relative to the 
direction of 

•	

0	 1 •	 Yo := grad 0 1N,with ,b =	ln -. 

	

2(n+1)	g 
We will consider the following two cases. 

(I) Trivial case: Yo = 0. Then we have Fx0 (0) = 0 for all X0 with 1X01 = 1 
(because of (8)) and F 0 (s) = 0 is the solution of (12) - (13) for all these X 0 . This 
leads by (11) to the integration of	

_ 
In	g(x) along the geodesic line throughout Po 

in an arbitrary direction X0 . We obtain 

	

(x) = -g(x) •	 (14)
g(xo) 

in a neighbourhood of x 0 = p(p). It follows from (14) that 1 (x) = 0. Therefore 
the mapping f is trivial (as a geodesic mapping) and because of j(x) = 10,(x) (see 
(1)), f is an afline mapping. Conversely, any affine mapping is always geodesic and also 
curvature preserving. 

(II) Non-trivial case: Yo 54 0. 
a) Firstly, consider all directions in (8) with X 0 I Yo. That means we have to 

consider the subset

V = {x0 e M 0 I F,0(0) =00 and IXol = 1 
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in M 0 . For Xo e V the initial value problem gives once more Fx 0 (s) = 0 as trivial 
solution of (12). With regard to case (1) the relation (14) is also valid here - but only 
for all x = co(7x0 (s )) with Xo e V and s so that 7(s) E U. 

b) Now consider the remaining part of directions X0 , non-orthogonal to Y0 . That 
means

	

{x0 E M 0 F 0 (0) 0 and IX0 I = i}	 (15)

is to be investigated. For Xo E W it follows from (12) - (13) that 
1 

F 0 (s) = -

	

	(s 54 —c(Xo))	 (16)
S + c(Xo) 

where the integration constant c depends on X0 and 

c(Xo) = -	1	0.	 (17)F.(0) 
Now we have to integrate (16) with respect to s: 

(x(s)) = K(s + c) 2	. g(x(s))	(0 < K = const). 
For s=Owehave

K = (c(Xo))2'1) .
g(x0) 

Because po and p E U C N are connected by a unique geodesic line 'y. 0 , we have, using 
still (17) for X0 E W, the relation 

xo) (x) = g((1	
g(x) 

xo) 1 - 5FX0(0)) 
	 (18) 

for all x = p ( y 0 ( s )) and s not so great. 
c) To include now the solution case (11)/a) in that of b) (i.e. to understand (14) for 

all x = (yxo(s)) with X0 E V and 7x 0 (s) E U as a special case of (18)), we observe 
the fact that Fx 0 (0) - 0 if W Xo - V (or, by (17), c(Xo) -* ±oo). Doing this, we 
see that the relation (18) changes into (14) for (II) a), as was to be expected. Therefore 
(18) alone describes already the solution of (12) - (13) for all IX0I = 1 in the non-trivial 
case (II). In (18) the term

q5(x):=s.Fx0(0)	 (19) 
is a differentiable function as can be seen using Riemannian normal coordinates x t = 

p' with respect to the origin xo (p' = x"(0) in (13)). Then we obtain namely 
(x)

For curvature preserving geodesic mappings I : M - Xi (because of (2), (18) and 
(19)) it has to be necessarily

1 	= ô.	 (20) 

From here there follows - carry out simple differentiations - that from (20) fulfils 
indeed the equation O(x) = 0, as far as we assume still that Oi is a parallel gradient 
field in a neighbourhood of x 0 . So case (II) is finished. 

=

 

Putting together cases (I) and (II), we get now the following
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Theorem. Let f : M — * M be a local geodesic diffeomorphi3m between C'- 
Riemannian manifolds M and M. Then around each point Po E M we find a neighbor- 
hood U C M which is isocurved to U	1(U) C M if and only if there is a C'-function

, for which g = det gij and = det g jj enter into the relation 

	

(x) =	(1 -	 g(x)	 (21)
g(xo) 

where 4, = i9i o has to be a parallel gradient field (x E p(U),(xo) = 0; mappings by 
means of the same coordinates assumed). 

Remark 2. (I) For (x) = const (i.e. by (21) inevitably q(x) = 0), we are situated 
in the trivial case Yo = 0 and f is an affine mapping (see (20); from there b 1 (x) = 0 
follows). Conversely, affine mappings are always geodesic and also curvature preserving. 
(II) For 0 0 const we have (because of (20) and (21)) the non-trivial case YO 54 0 and 
f can not be an affine mapping. 

3. Isocurved geodesic equivalent surfaces in R3 

Let us consider the Theorem especially for 2-dimensional surfaces M 2 and M 2 in R3 
instead of ri-dimensional Riemannian manifolds M and M. Then, according to the 
proof given below, we have the following local 

Corollary. Let G, C and A be the classes of geodesic, curvature preserving and 
affine local diffeomorphisms f: M 2 -* M 2 , respectively. Then A = G fl C. 

This corollary delivers still more detailed informations about afflne local diffeomor-
phisms f : M 2 - if we take into account the following well-known assertion (see 
[9: Satz 13.4]): 

An affine mapping between 2-dimensional Riemannian manifolds M 2 and M 2 is 
either a homoihety or the spaces are Euclidean, and then the affine mapping is affine 
in the ordinary elementary sense. 

Really this assertion is valid only for n = 2, unless the holonomy group of the common 
parallel displacement in M and M is sufficently large. Such a result also follows directly 
from the Theorem for n = 2 if, more general, f is used as a curvature preserving geodesic 
mapping. Finally we can formulate the wished 

Proposition. A local diffeomorphism f : M 2 -	between the C'-surfaces M2 
and	is a curvature preserving geodesic mapping if and only if either 

a) f is essentially an isometry 
or

b) the intrinsic geometry of M 2 and M 2 is Euclidean and then f is an affine 
.mapping in the ordinary elementary sense. 

Proof. a) May be that f a priori is essentially an isometry (homothetic mapping), 
because such a mapping by itself is curvature preserving and geodesic.
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b) Assume now f is a curvature preserving geodesic, but non-homothetic mapping: 
for each U and constant k there are i,j with kgii on U. Then and gzj are 
constants. 

In order to prove that, we use the Liouville parametrizations (22) arid (23) for 
M 2 and T2 . Dini (4] determined all pairs of geodesic equivalent surfaces M 2 and 
insofar as M 2 and	are non-homothetic even. They all are pairs of Liouville surfaces,
i.e. with respect to a common orthogonal parameter system (u' , u 2 ) the coordinates of 
the metric fundamental tensors of M 2 and M 2 are 

9jj (u',u 2 ) = (U1 - U2 )6	 (22) 
U2) = (U 1 U2 U)' g,,(u' , u 2 )	 (23) 

Here the function U, = U1 (u') depends only on u' (i = 1,2), and because of g(u',u2), 
j (u',u 2 ) > 0 it has to be

Ui(u') > U2 (u 2 ) > 0. 
Observe that in the homothetic case a) (	= Icg) equations (22) and (23) would lead 
to jij =	0. For this reason a) is considered separately. 

Before the proof of the Proposition will be continued, we give the following two remarks. 
Remark 3. As a Liouville surface it will be considered sometimes stronger only the type 

of surfaces M 2 , which allows a parametrization with property (22) (s. (3)). Then in different 
place, for M 2 of type (23) we can read also "the other Liouville surface" [10]. The Liouville 
surface (22) is a generalization of the rotation surfaces; these and for example also the helicoids 
are Liouville surfaces of type (22). 

Remark 4. It is easy to see that the metric fundamental tensors g., and j ij from (22) 
and (23) satisfy criterion (1) for geodesic mappings; a straightforward calculation, starting at 
r by means of (26) - (28), leads to the right-hand side of (1). 

Continuing the proof we look at the assumption b). There is a function 0 with 
property (21). In order to determine the function (u',u 2 ) from (21) and to use that 

= 3,(tt',u 2 ) shall be a parallel field, we need for these next steps on the whole the 
quantities g12, g hl j,j ,

 h1, g, j, r, i j and, to serve Remark 4, also 7k i . From (22) 
and (23) there follows

=

	

	
and	') = U1 U2 U1	 (24)

U1 . u2  

(no summation over i) 

g = det(g) = (U1 - U2 ) 2	and	=det() -	 (25)
- (U1 U2)3 

and, if we set U: = 4d4' furthermore

1 
= r2	 U, 

12 = r22 
= 2(U1 - U2)	

(26) 

U	 j1
'22 = r21 1 =	

= 2(U2 - U1)
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and
2U2 U1 2	2U2 - 1	2U2 - U 1	, r1, =	 -	U 1	2U1 (U1 - U2)U1 t (27) 

2	2U1 - U2	2U1 - u2	- 2U1 - U2	, ( r22 =	 = - U2	- 2U2 (U2 —U1) U2• 

Let us observe that one gets the second lines of (26) and (27), respectively each of them, 
by exchanging the indices 1,2 in the first lines. For ibj = 2(n+I) ai in 2 from (25) we 
obtain

(28) 

Now, by means of (25) and for n = 2 and xo = (tLI,t12) condition (21) delivers 

=/U+i	with 

The corresponding gradient has the components q5j = u- and because it has to 
be a parallel field, we can evaluate V 3 çb = 0. Using (27), only two conditions for the 
determination of U1 and U2 will be essentially: 

V11 = 0	and	V202 = 0	 (29) 

(V102 and V2 01 are identically zero). Because of the fact that Ui depends on u' only, 
this differential equation system can be transformed into a separably written system for 
U, (u') > U2 (U2) > 0. In connection with (29) this leads to U = U = 0 and by (22) 
and (23) to

g1j(u',u2) = const	and	jiAu',u2) = const. 

That means, the coordinates of the Christoffel symbols and then also those of the 
curvature tensor vanisli, just as the GauB curvatures of M 2 and M2 . The intrinsic 
geometry of M 2 and M 2 is Euclidean, f is a non-homothetic affine mapping U 
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