Remark on the Normal Forms of Diversors of Second Order Differential Equations of Normal Hyperbolic Type

M. Burkhardt

Dedicated to the memory of Professor Paul Ginther (1926 - 1996)

Abstract. With respect to the monograph of P. Günther "Huygens' Principle and Hyperbolic Equations" this paper contains a supplement to diversors of second order differential equations of normal hyperbolic type [3: Chapter IV]. We construct a "normal form" of a diversor and consider the coefficients of this form in a certain neighbourhood of the characteristic backward conoid $C_{-}(\xi)$ of a point ξ .

Keywords: *Diversors, Riesz distributions*

AMS subject classification: 35 L 10, 35 A 30, 35 A 08, 58 G 16

Let (M,g) be a pseudo-Riemannian manifold with finite dimension $m = \dim M > 2$ AMS subject classification: 35 L 10, 35 A 30, 35 A 08, 58 G 16

Let (M, g) be a pseudo-Riemannian manifold with finite dimension $m = \dim M >$

whose metric g has Lorentz signature $\{+,-,\ldots,-\}$. It is always assumed that M is
 whose metric g has Lorentz signature $\{+, -, \ldots, -\}$. It is always assumed that *M* is of on M . ∇ denotes the Levi-Civita connection of (M, g) . **a** pseudo-Riemannian manifold with finite dimension $m = \dim M >$

has Lorentz signature $\{+, -, ..., -\}$. It is always assumed that *M* is

ected and satisfying the second axiom of countability; *g* is of class C

ices the Levi-Ci

Let $\Omega \subseteq M$ be a geodesically normal domain and $\Omega_0 \subseteq \Omega$ any causal domain in Ω (see also [3: p. 15]). We consider any domain Ω and choose in Ω any coordinate system $\rho: \Omega \to \mathbb{R}^m$, where $\Omega \subseteq M$ is open. We denote the second order differential operator of normal hyperbolic type of *(M, g),* acting on scalar functions *u,* by *P:*

$$
P[u] = g^{ij} \nabla_i \nabla_j u + A^i \nabla_i u + Cu
$$

= $\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} \left(\sqrt{g} g^{ij} \frac{\partial u}{\partial x^j} \right) + A^i \frac{\partial u}{\partial x^i} + Cu$ $(i, j = 1, 2, ..., m)$ (1)

and the invariant measure associated to the metric g by μ which is given in these coordinates $\{x^1, ... x^m\}$ by and the invariant measure associated to the metric g by μ which is given
coordinates $\{x^1, ...x^m\}$ by
 $\mu = \sqrt{g} dx^1 \wedge ... \wedge dx^m$.
Let the point $\xi \in \Omega$ be fixed. We denote the characteristic conoid by $C(\xi)$ give
equati

$$
\mu=\sqrt{g}\,dx^1\wedge\ldots\wedge dx^m.
$$

Let the point $\xi \in \Omega$ be fixed. We denote the characteristic conoid by $C(\xi)$ given by the equation $\Gamma(\xi, x) = 0$ where $\Gamma(\xi, x)$ is the quadratic geodesic distance function.

ISSN 0232-2064 / S 2.50 © ileldermann Verlag Berlin

M. Burkhardt: Math. Institut der Universität, Augustuspl. 10/11, D - 04109 Leipzig

.
108 M. Burkhardt

The notion "diversor" is due to L. Asgeirsson [1]. He defines a diversor *D of P* as a differential operator *D,* such that *D o P* can be written as divergence expression on the characteristic conoid $C(\xi)$, the vertex ξ excluded. The notion "diversor" is due to L. Asgeirsson [1]. He defines a diverse
differential operator *D*, such that $D \circ P$ can be written as divergence experatoristic conoid $C(\xi)$, the vertex ξ excluded.
Now we consider the due to L. Asgeirsson [1]. He defines a diversor *D* of *P* as a
that $D \circ P$ can be written as divergence expression on the
e vertex ξ excluded.
aracteristic backward conoid $C_{-}(\xi)$. Let $\Omega'_{0} \subseteq \Omega_{0}$ be a
 $= (C_{-}(\xi$

Now we consider the characteristic backward conoid $C_-(\xi)$. Let $\Omega'_0 \subseteq \Omega_0$ be a

Definition 1. Let $\phi \in C_0^{\infty}(\Omega_0')$ be any test function. A differential operator *D* is said to be a *diversor* of P with respect to $C_-(\xi)$ if

$$
\int_{C_{-}(\xi)} (D \circ P)[\phi](x)\nu(x) = 0, \qquad (2)
$$

i.e. the distribution $v \in \mathcal{D}'(\Omega'_0)$ with

function
$$
\zeta
$$
 characteristic backward conoid $C_{-}(\xi)$. Let $\Omega'_{0} \subseteq \Omega_{0}$ be a $= (C_{-}(\xi)\setminus\{\xi\}) \cap \Omega_{0}$, i. e. the vertex $\xi \notin \Omega'_{0}$.

\n $\int_{0}^{100} (\Omega'_{0})$ be any test function. A differential operator D is h respect to $C_{-}(\xi)$ if

\n
$$
\int_{C_{-}(\xi)} (D \circ P)[\phi](x)\nu(x) = 0,
$$
 (2)

\n $\int_{0}^{100} \int_{0}^{100} \int_{0}^{100} |\phi|(x)\nu(x)$ (3)

\n $\int_{0}^{100} \int_{0}^{100} |\phi|(x)\nu(x)$

is a solution of $P^*[v] = 0$ in Ω'_0 with supp $v \subseteq C_-(\xi)\setminus\{\xi\}$ where $v(x)$ denotes the Leray form of the submanifold $C_{-}(\xi)$ (see also [3: Chapter II, §2]), P^* denotes the (invariantly) formally adjoint operator of *P.* $P^*[v] = 0$ in
manifold $C_-($
t operator of
entity (2) is o
the submani
2. Two div
 $D_1[\phi](x)$
 (ξ)
 $[\phi]$ is a diver $\begin{aligned} \n\mathcal{L}(\ell) &= \mathcal{L}(\ell) \cdot \math$

Such an identity (2) is only possible if $(D \circ P)[\phi]$ can be written in divergence form with respect to the submanifold $C_{-}(\xi)$ in Ω'_{0} . **Definition 2.** Two diversors *D*₁ and *D*₂ in Ω'_0 are called *equivalent* if $D \circ P$ is only possible if $(D \circ P)(\phi)$ can be written in diverse to the submanifold $C_{-}(\xi)$ in Ω'_0 .
Definition 2. Two diversors *D*

Definition 2. Two diversors D_1 and D_2 in Ω'_0 are called *equivalent* if

in identity (2) is only possible if
$$
(D \circ P)[\phi]
$$
 can be written in div-
t to the submanifold $C_{-}(\xi)$ in Ω'_{0} .
\n**bin 2.** Two diversos D_{1} and D_{2} in Ω'_{0} are called *equivalent* if
\n
$$
\int_{C_{-}(\xi)} D_{1}[\phi](x)\nu(x) = \int_{C_{-}(\xi)} D_{2}[\phi](x)\nu(x) \qquad (\phi \in C_{0}^{\infty}(\Omega'_{0})),
$$

i.e. $D_1[\phi] - D_2[\phi]$ is a divergence expression on the characteristic semiconoid $C(\xi)$.

Proposition 1. Let $\{\bar{x}^1, \bar{x}^2, \ldots, \bar{x}^m\}$ be a local coordinate system in Ω'_0 , such that $C_{-}(\xi)$ is given by $\bar{x}^{1} = 0$, i.e.

$$
\bar{x}^1 = \Gamma(\xi, x) \bar{x}^\alpha = x^\alpha \quad (\alpha = 2, 3, \ldots, m)
$$

For each diversor D there exists an equivalent linear differential operator which is called DN of the form

\n
$$
c_1(x)
$$
\n \n $c_2(x)$ \n \n $c_3(x)$ \n \n $c_4(x)$ \n \n $c_5(x)$ \n \n $c_6(x)$ \n \n $c_7(x)$ \n \n $c_8(x)$ \n \n $c_9(x)$ \n \n $$

The coefficients $w_{K-\nu}$ are of class C^{∞} in Ω'_0 and are uniquely determined on $C_{-}(\xi)$. *The form (4) of a diversor is said to be normal form* D_N *of D of order* κ *.*

Proof. The proof is obvious. The derivates of highest order in $D[\phi]$ are not all interior derivates $\partial^{\alpha}/\partial \bar{x}^{\alpha}$ with respect to the manifold $\bar{x}^1=0$, consequently, the order of *D* cannot be reduced with the help of integration by parts [3: pp. *270, 271] 1*

Proposition 2. To each diversor D of order κ of P with respect to $C_{-}(\xi)$ there exists an equivalent diversor in normal form (4) whose "modified coefficients" W_{ν} with

$$
W_{\nu} := \frac{\partial_1 \Gamma(\xi, x)}{\sqrt{g}} w_{\nu} \qquad (\nu = 0, 1, 2, \dots \kappa)
$$
 (5)

in Ω_0' are given by

$$
g^{ij}\nabla_i \Gamma \nabla_j W_0 + (M^* + n - 4 - 2\kappa)W_0 = 0
$$

$$
g^{ij}\nabla_i \Gamma \nabla_j W_\nu + (M^* + n - 4 - 2\kappa + 2\nu)W_\nu = \frac{1}{2} P^*[W_{\nu-1}] \quad (\nu = 1, 2, ..., \kappa)
$$
 (6)

$$
L^*[W_\kappa] = 0 \quad on \quad C_-(\xi)
$$

with

$$
M^*(\xi, x) = \frac{1}{2} g^{ij} \nabla_i \nabla_j \Gamma - \frac{1}{2} A^i \nabla_i \Gamma - n
$$

Proof. Let $\Omega_0'' \subseteq \Omega_0'$ be a neighbourhood of $C_{-}(\xi)$ with the condition $\partial_1 \Gamma \neq 0$. $(\Delta_2 = g^{ij}\nabla_i\nabla_j$ denotes the 2. Beltrami operator.) In Ω_0'' we obtain by the (regular) transformation to the coordinates \bar{x}^i

$$
\bar{g}^{11} = 4\Gamma, \qquad \bar{g}^{1\beta} = g^{i\beta}\partial_i\Gamma, \qquad \bar{g}^{\alpha 1} = g^{\alpha j}\partial_j\Gamma, \qquad \bar{g}^{\alpha \beta} = g^{\alpha \beta}
$$

$$
\sqrt{g} = |\partial_1\Gamma|\sqrt{\bar{g}}, \qquad \sqrt{\bar{g}} = \frac{\sqrt{g}}{|\partial_1\Gamma|}
$$

$$
\bar{\Gamma}^1 = -\Delta_2\Gamma, \qquad \bar{\Gamma}^{\alpha} = \Gamma^{\alpha} \qquad (\Gamma^i = g^{kj}\Gamma^i_{kj})
$$

$$
\bar{A}^1 = A^i\nabla_i\Gamma, \qquad \bar{A}^{\alpha} = A^{\alpha}
$$

$$
\frac{\partial}{\partial \bar{x}^1} = \frac{1}{|\partial_1\Gamma|} \frac{\partial}{\partial x^1}, \qquad \frac{\partial}{\partial \bar{x}^{\alpha}} = -\frac{\partial_{\alpha}}{|\partial_1\Gamma|} \frac{\partial}{\partial x^1} + \frac{\partial}{\partial x^{\alpha}}
$$

$$
\bar{g}^{1j} \frac{\partial}{\partial \bar{x}^j} = g^{ij}\nabla_i\Gamma\nabla_j
$$

and by explicit calculations the expression

$$
D \circ P[\phi] = \frac{1}{\sqrt{\overline{g}}} \sum_{\nu=0}^{\kappa} \frac{\partial^{\nu}}{\partial \Gamma^{\nu}} (w_{\kappa-\nu} \cdot P[\phi])
$$

\n
$$
= \frac{1}{\sqrt{\overline{g}}} \cdot \text{Div}[\phi]
$$

\n
$$
+ \frac{1}{\sqrt{\overline{g}}} \phi \left[P^0[\phi] + \sum_{\nu=1}^{\kappa+1} \frac{\partial^{\nu}}{\partial \Gamma^{\nu}} (P^0[w_{\kappa-\nu}] + (N+4\nu+4)[w_{\kappa-\nu+1}]) \right]
$$

\n
$$
+ \frac{1}{\sqrt{\overline{g}}} \sum_{r=1}^{\kappa} \frac{\partial^r \phi}{\partial \Gamma^r} \left[\sum_{\nu=r}^{\kappa+1} { \nu \choose r} \frac{\partial^{\nu-r}}{\partial \Gamma^{\nu-r}} (P^0[w_{\kappa-\nu}] + (N+4\nu+4)[w_{\kappa-\nu+1}]) \right]
$$

\n
$$
+ \frac{1}{\sqrt{\overline{g}}} \frac{\partial^{\kappa+1} \phi}{\partial \Gamma^{\kappa+1}} \cdot (N+4\kappa+8)[w_0]
$$

110 M. Burkhardt $\frac{1}{2}$

with

Butkhardt

\n
$$
N[φ] := -2 \frac{\partial(\bar{g}^{1j}φ)}{\partial \bar{x}^{j}} + (\bar{A}^{1} - \bar{\Gamma}^{1})φ
$$
\n
$$
= -2 \frac{\sqrt{g}}{|\partial_{1}\Gamma|} g^{ij} \nabla_{i}\Gamma \nabla_{j} \left(\frac{|\partial_{1}\Gamma|}{\sqrt{g}} φ\right) + (-\Delta_{2}\Gamma + (\nabla_{i}\Gamma)A^{i})φ \qquad (7)
$$
\n
$$
(N + k)[φ] := N[φ] + kφ \qquad (k ∈ ℕ)
$$
\n
$$
P^{0}[φ] := \sqrt{\bar{g}} P^{*} \left[\frac{\phi}{\sqrt{\bar{g}}}\right] = \frac{\sqrt{g}}{|\partial_{1}\Gamma|} P^{*} \left[\frac{|\partial_{1}\Gamma|}{\sqrt{g}} φ\right]. \qquad (9)
$$
\n2) we obtain that the coefficient w_{0} satisfies the equation

\n
$$
(N + 4κ + 8)[w_{0}] = 0 \qquad (10)
$$
\n
$$
C_{-}(\xi)
$$
. Now (10) (and w_{0}) can be extended to Ω'_{0} . (It is a transition to an
\ndiversor.) Successively, in Ω'_{0} we obtain that the coefficients $w_{1}, w_{2}, \ldots, w_{s}$.

$$
(N+k)[\phi] := N[\phi] + k\phi \qquad (k \in \mathbb{N})
$$
 (8)

$$
P^{0}[\phi] := \sqrt{\bar{g}} P^* \left[\frac{\phi}{\sqrt{\bar{g}}} \right] = \frac{\sqrt{g}}{|\partial_1 \Gamma|} P^* \left[\frac{|\partial_1 \Gamma|}{\sqrt{g}} \phi \right]. \tag{9}
$$

Because (2) we obtain that the coefficient w_0 satisfies the equation

$$
(N+4\kappa+8)[w_0]=0\tag{10}
$$

at first on $C_-(\xi)$. Now (10) (and w_0) can be extended to Ω'_0 . (It is a transition to an equivalent diversor.) Successively, in Ω'_0 we obtain that the coefficients $w_1, w_2, ..., w_8$

are solutions of
 $(N + 4\kappa - 4\nu + 8) = -P^0[w_{\nu-1}],$ (11)

and, finally,
 $P^0[w_8) = 0$ on $C_-(\xi)$. (12)

Consequently from (10) (1 are solutions of ow (10) (and w_0) can be extended to

Successively, in Ω'_0 we obtain that t
 $(N + 4\kappa - 4\nu + 8) = -P^0[w_{\nu-}$
 $P^0[w_{\kappa}) = 0$ on $C_{-}(\xi)$.

(10), (11), (12) and with respect to (

order $\kappa = \frac{n-4}{2}$ a comparision of

$$
(N+4\kappa-4\nu+8)=-P^{0}[w_{\nu-1}], \qquad (11)
$$

and, finally,

$$
P^{0}(w_{\kappa}) = 0 \qquad \text{on} \quad C_{-}(\xi). \tag{12}
$$

Consequently, from (10), (11), *(12)* and with respect to (7), (8), (9) the assertion fol $lows$

In the case of order $\kappa = \frac{n-4}{2}$ a comparision of (6) with the equations for the amard coefficients V_{ν} of the Riesz distributions (see also [5, 7, 8]) Hadamard coefficients V_{ν} of the Riesz distributions (see also [5, 7, 8])

(13 ⁹ ¹ v1 rvw *+ (M +2v)V = _P*[W_ ¹] (v* = 1,2,...) *W,x)* ⁼(-i'1 V(,x). *(14) '*

shows the relations

$$
W_{\nu}(\xi, x) = (-1)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
 (14)

Consequently, in $\Omega_0'' \subseteq \Omega_0'$ the coefficients w_{ν} are smooth.

Now we consider (2), respectively (3), but $\phi \in C_0^{\infty}(\Omega_0)$ (vertex $\xi \in \Omega_0!$):

$$
g^{ij}\nabla_i \Gamma \nabla_j W_0 + M^* V_0 = 0
$$
\n
$$
\nabla_j W_{\nu} + (M^* + 2\nu)V_{\nu} = -P^*[W_{\nu-1}] \qquad (\nu = 1, 2, ...)
$$
\n
$$
W_{\nu}(\xi, x) = (-1)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (1)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (14)
$$
\n
$$
V'_{\nu}(\xi, x) = (12)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (15)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (14)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (14)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (14)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (14)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (14)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (14)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (14)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (14)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (12)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).
$$
\n
$$
V'_{\nu}(\xi, x) = (13)^
$$

with *D* in normal form (4) with (5) and (6). However, because these singularities of w_{ν} (for $x \to \xi$ on $C_-(\xi)$) are algebraic, it is possible to show (see [2: pp. 21, 22, 53]) that the integral (15) exists or can be regularized (in the sense of distributions). Consequently, the distribution $v \in \mathcal{D}'(\Omega_0')$ in (3) can be extended to a distribution $v \in \mathcal{D}'(\Omega_0)$ over Ω_0 . Then the results about diversors in $[3: Chapter IV, §3]$ of P. Günther are applicable.

ł,

References

- [1] Asgeirsson, L.: *Some hints on Huygens' principle and Hadamards conjecture.* Comm. Pure AppI. Math. 9 (1956), 307 - 326.
- [2] Gelfand, I. M. and G. E. Schilow: *Verallgemeinerte Funktionen (Distributionen).* Band I. Berlin: Dt. Verlag Wiss. 1967.
- [3] Günther, P.: *Huygens' Principle and Hyperbolic Equations* (Perspectives in Mathematics: Vol. 5). Boston: Academic Press 1988.
- *[4) Gunther, P.: Ober die Darbouzsche Differentialgleichung mit variablen Koeffizienten.* Math. Nachr. 22 (1965), 285 - 321.
- [5] Gunther, P. and V. Wünsch: *Mazwellsche Gleichungen und Huygenssches Prinzip.* 'Part I. Math. Nachr. 63 (1974), 97 - 121.
- *[6] Hadamard, J.: Lectures on Cauchy's Problem in Linear Partial Differential Equations.* New Haven: Yale University Press 1923.
- *[7] Riesz, M.: L' intégrale de Riemann-Liouville et le probl'eme de Cauchy.* Acta Math. 81 (1949) , 1 – 223.
- [8] Schimming, R.: *Das Huygenssche Prinzip bei linearen hyperbolischen Differentialgleichungen zweiter Ordnung fur allgemeine Felder.* Beitr. Anal. 11(1978), 45 - 90.
- [9] Schwartz, L.: *Theórie des distributions.* Tome 1 et 2. Paris: Hermann 1951 1957.

Received 06.06.1996