Remark on the Normal Forms of Diversors of Second Order Differential Equations of Normal Hyperbolic Type

M. Burkhardt

Dedicated to the memory of Professor Paul Günther (1926 - 1996)

Abstract. With respect to the monograph of P. Günther "Huygens' Principle and Hyperbolic Equations" this paper contains a supplement to diversors of second order differential equations of normal hyperbolic type [3: Chapter IV]. We construct a "normal form" of a diversor and consider the coefficients of this form in a certain neighbourhood of the characteristic backward conoid $C_{-}(\xi)$ of a point ξ .

Keywords: Diversors, Riesz distributions

AMS subject classification: 35 L 10, 35 A 30, 35 A 08, 58 G 16

Let (M,g) be a pseudo-Riemannian manifold with finite dimension $m = \dim M > 2$ whose metric g has Lorentz signature $\{+, -, \ldots, -\}$. It is always assumed that M is of class C^{∞} , connected and satisfying the second axiom of countability; g is of class C^{∞} on M. ∇ denotes the Levi-Civita connection of (M,g).

Let $\Omega \subseteq M$ be a geodesically normal domain and $\Omega_0 \subseteq \Omega$ any causal domain in Ω (see also [3: p. 15]). We consider any domain Ω and choose in Ω any coordinate system $\rho: \Omega \to \mathbb{R}^m$, where $\Omega \subseteq M$ is open. We denote the second order differential operator of normal hyperbolic type of (M, g), acting on scalar functions u, by P:

$$P[u] = g^{ij} \nabla_i \nabla_j u + A^i \nabla_i u + C u$$

= $\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} \left(\sqrt{g} g^{ij} \frac{\partial u}{\partial x^j} \right) + A^i \frac{\partial u}{\partial x^i} + C u$ (i, j = 1, 2, ..., m) (1)

and the invariant measure associated to the metric g by μ which is given in these coordinates $\{x^1, \dots x^m\}$ by

$$\mu = \sqrt{g} \, dx^1 \wedge \ldots \wedge dx^m$$

Let the point $\xi \in \Omega$ be fixed. We denote the characteristic conoid by $C(\xi)$ given by the equation $\Gamma(\xi, x) = 0$ where $\Gamma(\xi, x)$ is the quadratic geodesic distance function.

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

M. Burkhardt: Math. Institut der Universität, Augustuspl. 10/11, D - 04109 Leipzig

108 M. Burkhardt

The notion "diversor" is due to L. Asgeirsson [1]. He defines a diversor D of P as a differential operator D, such that $D \circ P$ can be written as divergence expression on the characteristic conoid $C(\xi)$, the vertex ξ excluded.

Now we consider the characteristic backward conoid $C_{-}(\xi)$. Let $\Omega'_{0} \subseteq \Omega_{0}$ be a domain such that $C(\xi) \cap \Omega'_{0} = (C_{-}(\xi) \setminus \{\xi\}) \cap \Omega_{0}$, i. e. the vertex $\xi \notin \Omega'_{0}$.

Definition 1. Let $\phi \in C_0^{\infty}(\Omega'_0)$ be any test function. A differential operator D is said to be a *diversor* of P with respect to $C_{-}(\xi)$ if

$$\int_{C_{-}(\xi)} (D \circ P)[\phi](x)\nu(x) = 0,$$
(2)

i.e. the distribution $v \in \mathcal{D}'(\Omega'_0)$ with

$$(v,\phi) = \int_{C_{-}(\xi)} D[\phi](x)\nu(x)$$
 (3)

is a solution of $P^*[v] = 0$ in Ω'_0 with $\operatorname{supp} v \subseteq C_-(\xi) \setminus \{\xi\}$ where $\nu(x)$ denotes the Leray form of the submanifold $C_-(\xi)$ (see also [3: Chapter II, §2]), P^* denotes the (invariantly) formally adjoint operator of P.

Such an identity (2) is only possible if $(D \circ P)[\phi]$ can be written in divergence form with respect to the submanifold $C_{-}(\xi)$ in Ω'_{0} .

Definition 2. Two diversors D_1 and D_2 in Ω'_0 are called *equivalent* if

$$\int_{C_{-}(\xi)} D_{1}[\phi](x)\nu(x) = \int_{C_{-}(\xi)} D_{2}[\phi](x)\nu(x) \qquad \big(\phi \in C_{0}^{\infty}(\Omega_{0}')\big),$$

i.e. $D_1[\phi] - D_2[\phi]$ is a divergence expression on the characteristic semiconoid $C_{-}(\xi)$.

Proposition 1. Let $\{\bar{x}^1, \bar{x}^2, \dots, \bar{x}^m\}$ be a local coordinate system in Ω'_0 , such that $C_{-}(\xi)$ is given by $\bar{x}^1 = 0$, i.e.

$$ar{x}^1 = \Gamma(\xi, x)$$

 $ar{x}^lpha = x^lpha \quad (lpha = 2, 3, \dots, m)$

For each diversor D there exists an equivalent linear differential operator which is called D_N of the form

$$D_N[\phi] = \frac{1}{\sqrt{g}} \sum_{\nu=0}^{\kappa} \frac{\partial^{\nu}}{\partial \Gamma^{\nu}} (w_{\kappa-\nu} \cdot \phi).$$
(4)

The coefficients $w_{\kappa-\nu}$ are of class C^{∞} in Ω'_0 and are uniquely determined on $C_{-}(\xi)$. The form (4) of a diversor is said to be normal form D_N of D of order κ .

Proof. The proof is obvious. The derivates of highest order in $D[\phi]$ are not all interior derivates $\partial^{\alpha}/\partial \bar{x}^{\alpha}$ with respect to the manifold $\bar{x}^1 = 0$, consequently, the order of D cannot be reduced with the help of integration by parts [3: pp. 270, 271]

Proposition 2. To each diversor D of order κ of P with respect to $C_{-}(\xi)$ there exists an equivalent diversor in normal form (4) whose "modified coefficients" W_{ν} with

$$W_{\nu} := \frac{\partial_1 \Gamma(\xi, x)}{\sqrt{g}} w_{\nu} \qquad (\nu = 0, 1, 2, \dots \kappa)$$
(5)

in Ω'_0 are given by

$$g^{ij} \nabla_i \Gamma \nabla_j W_0 + (M^* + n - 4 - 2\kappa) W_0 = 0$$

$$g^{ij} \nabla_i \Gamma \nabla_j W_{\nu} + (M^* + n - 4 - 2\kappa + 2\nu) W_{\nu} = \frac{1}{2} P^*[W_{\nu-1}] \quad (\nu = 1, 2, ..., \kappa) \quad (6)$$

$$L^*[W_{\kappa}] = 0 \quad on \quad C_{-}(\xi)$$

with

$$M^*(\xi, x) = \frac{1}{2}g^{ij}\nabla_i\nabla_j\Gamma - \frac{1}{2}A^i\nabla_i\Gamma - n$$

Proof. Let $\Omega_0'' \subseteq \Omega_0'$ be a neighbourhood of $C_-(\xi)$ with the condition $\partial_1 \Gamma \neq 0$. $(\Delta_2 = g^{ij} \nabla_i \nabla_j \text{ denotes the 2. Beltrami operator.})$ In Ω_0'' we obtain by the (regular) transformation to the coordinates \bar{x}^i

$$\begin{split} \bar{g}^{11} &= 4\Gamma, \qquad \bar{g}^{1\beta} = g^{i\beta}\partial_i\Gamma, \qquad \bar{g}^{\alpha 1} = g^{\alpha j}\partial_j\Gamma, \qquad \bar{g}^{\alpha \beta} = g^{\alpha \beta} \\ &\sqrt{g} = |\partial_1\Gamma|\sqrt{\bar{g}}, \qquad \sqrt{\bar{g}} = \frac{\sqrt{g}}{|\partial_1\Gamma|} \\ \bar{\Gamma}^1 &= -\Delta_2\Gamma, \qquad \bar{\Gamma}^\alpha = \Gamma^\alpha \qquad (\Gamma^i = g^{kj}\Gamma^i_{kj}) \\ &\bar{A}^1 = A^i\nabla_i\Gamma, \qquad \bar{A}^\alpha = A^\alpha \\ &\frac{\partial}{\partial\bar{x}^1} = \frac{1}{|\partial_1\Gamma|}\frac{\partial}{\partial x^1}, \qquad \frac{\partial}{\partial\bar{x}^\alpha} = -\frac{\partial_\alpha}{|\partial_1\Gamma|}\frac{\partial}{\partial x^1} + \frac{\partial}{\partial x^\alpha} \\ &\bar{g}^{1j}\frac{\partial}{\partial\bar{x}^j} = g^{ij}\nabla_i\Gamma\nabla_j \end{split}$$

and by explicit calculations the expression

$$D \circ P[\phi] = \frac{1}{\sqrt{g}} \sum_{\nu=0}^{\kappa} \frac{\partial^{\nu}}{\partial \Gamma^{\nu}} (w_{\kappa-\nu} \cdot P[\phi])$$

$$= \frac{1}{\sqrt{g}} \cdot \text{Div} [\phi]$$

$$+ \frac{1}{\sqrt{g}} \phi \left[P^{0}[\phi] + \sum_{\nu=1}^{\kappa+1} \frac{\partial^{\nu}}{\partial \Gamma^{\nu}} (P^{0}[w_{\kappa-\nu}] + (N+4\nu+4)[w_{\kappa-\nu+1}]) \right]$$

$$+ \frac{1}{\sqrt{g}} \sum_{r=1}^{\kappa} \frac{\partial^{r} \phi}{\partial \Gamma^{r}} \left[\sum_{\nu=r}^{\kappa+1} {\nu \choose r} \frac{\partial^{\nu-r}}{\partial \Gamma^{\nu-r}} (P^{0}[w_{\kappa-\nu}] + (N+4\nu+4)[w_{\kappa-\nu+1}]) \right]$$

$$+ \frac{1}{\sqrt{g}} \frac{\partial^{\kappa+1} \phi}{\partial \Gamma^{\kappa+1}} \cdot (N+4\kappa+8)[w_{0}]$$

110 M. Burkhardt

with

$$N[\phi] := -2 \frac{\partial (\bar{g}^{1j}\phi)}{\partial \bar{x}^{j}} + (\bar{A}^{1} - \bar{\Gamma}^{1})\phi$$

$$= -2 \frac{\sqrt{g}}{|\partial_{1}\Gamma|} g^{ij} \nabla_{i}\Gamma \nabla_{j} \left(\frac{|\partial_{1}\Gamma|}{\sqrt{g}}\phi\right) + (-\Delta_{2}\Gamma + (\nabla_{i}\Gamma)A^{i})\phi$$
(7)

$$(N+k)[\phi] := N[\phi] + k\phi \qquad (k \in \mathbb{N})$$
(8)

$$P^{0}[\phi] := \sqrt{\bar{g}} P^{*} \left[\frac{\phi}{\sqrt{\bar{g}}} \right] = \frac{\sqrt{\bar{g}}}{|\partial_{1}\Gamma|} P^{*} \left[\frac{|\partial_{1}\Gamma|}{\sqrt{\bar{g}}} \phi \right].$$
(9)

Because (2) we obtain that the coefficient w_0 satisfies the equation

$$(N+4\kappa+8)[w_0] = 0 \tag{10}$$

at first on $C_{-}(\xi)$. Now (10) (and w_0) can be extended to Ω'_0 . (It is a transition to an equivalent diversor.) Successively, in Ω'_0 we obtain that the coefficients $w_1, w_2, \ldots, w_{\kappa}$ are solutions of

$$(N+4\kappa-4\nu+8) = -P^0[w_{\nu-1}], \tag{11}$$

and, finally,

$$P^{0}[w_{\kappa}) = 0$$
 on $C_{-}(\xi)$. (12)

Consequently, from (10), (11), (12) and with respect to (7), (8), (9) the assertion follows \blacksquare

In the case of order $\kappa = \frac{n-4}{2}$ a comparison of (6) with the equations for the Hadamard coefficients V_{ν} of the Riesz distributions (see also [5, 7, 8])

$$g^{ij} \nabla_i \Gamma \nabla_j W_0 + M^* V_0 = 0$$

$$g^{ij} \nabla_i \Gamma \nabla_j W_{\nu} + (M^* + 2\nu) V_{\nu} = -P^* [W_{\nu-1}] \qquad (\nu = 1, 2, ...)$$
(13)

shows the relations

$$W_{\nu}(\xi, x) = (-1)^{\nu} \frac{1}{2^{\nu}} V_{\nu}(\xi, x).$$
(14)

Consequently, in $\Omega_0'' \subseteq \Omega_0'$ the coefficients w_{ν} are smooth.

Now we consider (2), respectively (3), but $\phi \in C_0^{\infty}(\Omega_0)$ (vertex $\xi \in \Omega_0$!):

$$\int_{C_{-}(\xi)} (D \circ P)[\phi](x)\nu(x) = 0 \qquad \left(\phi \in C_{0}^{\infty}(\Omega_{0})\right)$$
(15)

with D in normal form (4) with (5) and (6). However, because these singularities of w_{ν} (for $x \to \xi$ on $C_{-}(\xi)$) are algebraic, it is possible to show (see [2: pp. 21, 22, 53]) that the integral (15) exists or can be regularized (in the sense of distributions). Consequently, the distribution $v \in \mathcal{D}'(\Omega'_{0})$ in (3) can be extended to a distribution $v \in \mathcal{D}'(\Omega_{0})$ over Ω_{0} . Then the results about diversors in [3: Chapter IV, §3] of P. Günther are applicable.

ł,

References

- Asgeirsson, L.: Some hints on Huygens' principle and Hadamards conjecture. Comm. Pure Appl. Math. 9 (1956), 307 - 326.
- [2] Gelfand, I. M. and G. E. Schilow: Verallgemeinerte Funktionen (Distributionen). Band I. Berlin: Dt. Verlag Wiss. 1967.
- [3] Günther, P.: Huygens' Principle and Hyperbolic Equations (Perspectives in Mathematics: Vol. 5). Boston: Academic Press 1988.
- [4] Günther, P.: Über die Darbouxsche Differentialgleichung mit variablen Koeffizienten. Math. Nachr. 22 (1965), 285 - 321.
- [5] Günther, P. and V. Wünsch: Maxwellsche Gleichungen und Huygenssches Prinzip. Part I. Math. Nachr. 63 (1974), 97 - 121.
- [6] Hadamard, J.: Lectures on Cauchy's Problem in Linear Partial Differential Equations. New Haven: Yale University Press 1923.
- [7] Riesz, M.: L'intégrale de Riemann-Liouville et le probl'eme de Cauchy. Acta Math. 81 (1949), 1 - 223.
- [8] Schimming, R.: Das Huygenssche Prinzip bei linearen hyperbolischen Differentialgleichungen zweiter Ordnung für allgemeine Felder. Beitr. Anal. 11 (1978), 45 – 90.
- [9] Schwartz, L.: Theorie des distributions. Tome 1 et 2. Paris: Hermann 1951 1957.

Received 06.06.1996