Conformal Completion of $\mathbb{U}(n)$ -invariant Ricci-Flat Kähler Metrics at Infinity

W. Kühnel and H.-B. Rademacher

Dedicated to the memory of Professor Paul Günther

Abstract. For every $n \geq 2$ we give an example of a complete $\mathbb{U}(n)$ -invariant cohomogeneity one metric on \mathbb{R}^{2n} which is not conformally flat and which carries twistor spinors with zeros. The construction uses a conformal completion at infinity of a $\mathbb{U}(n)$ -invariant Ricci-flat Kähler metric on $\mathbb{R}^{2n} \setminus \{0\}$ given by Calabi [2] and by Freedman and Gibbons [4]. This extends our results in [6] for n=2 to all even dimensions.

Keywords: Ricci-flat Kähler metrics, conformal completion, twistor spinor, cohomogeneity one metric, asymptotic locally Euclidean metric

AMS subject classification: 53 C 25, 83 C 60

1. Introduction

Twistor spinors are solutions of a conformally invariant field equation on a Riemannian spin manifold (cf. [1, 5, 7]). A simply-connected four-dimensional manifold carries a twistor spinor if and only if it is half conformally flat, i.e. if the canonical almost complex structure on the twistor space is integrable. In our recent paper [6] we constructed a conformal completion at infinity of the Eguchi-Hanson metric given on the complement of the unit ball in \mathbb{R}^4 (cf. [3]). This was the first example of a Riemannian spin manifold which is not conformally flat and which carries twistor spinors with zeros. After the conformal change the two linearly independent parallel spinors of the Eguchi-Hanson metric become twistor spinors with zero at infinity. Note that by a result of Lichnerowicz [7: Theorem [7] a compact Riemannian spin manifold carrying a twistor spinor with zero is conformally equivalent to the standard sphere.

In this note we extend our results in [6] to all even dimensions. We use $\mathbb{U}(n)$ -invariant Ricci flat Kähler metrics on $\mathbb{C}^n \setminus \{0\}$ which in this form were given first by Calabi [2] and Freedman and Gibbons [4].

Theorem. For every $n \geq 2$ there is a complete $\mathbb{U}(n)$ -invariant cohomogeneity one metric on \mathbb{R}^{2n} which is not conformally flat and which carries a two-dimensional space of twistor spinors with common zero point.

W. Kühnel: Math. Institut B der Universität, D - 70550 Stuttgart; e-mail: kuehnel@mathematik.uni-stuttgart.de

H.-B. Rademacher: Math. Institut der Universität, Augustuspl. 10/11, D - 04109 Leipzig; e-mail: rademacher@mathematik.uni-leipzig.de

2. $\mathbb{U}(n)$ -invariant metrics on \mathbb{R}^{2n}

On $\mathbb{C}^n \setminus \{0\}$ with complex coordinates z^{α} ($\alpha = 1, ..., n$) and their conjugates \overline{z}^{α} we consider the Kähler metric

$$g = 2 \sum_{\alpha,\beta=1}^{n} g_{\alpha\overline{\beta}} dz^{\alpha} dz^{\overline{\beta}}$$

where $g_{\alpha\overline{\beta}} = \partial_{\alpha}\partial_{\overline{\beta}}F$ and F is a potential function of the Kähler metric. Let $r^2 = \sum_{\alpha=1}^n z^{\alpha}z^{\overline{\alpha}}$. Now we consider the case of a radially symmetric potential function F, i.e. $F(z) = \tilde{F}(r^2)$, and we choose for a real parameter a > 0

$$\tilde{F}(s) = \int_{1}^{s} \frac{(a^n + \xi^n)^{\frac{1}{n}}}{\xi} d\xi.$$

Then

$$g = 2 \frac{(a^n + r^{2n})^{\frac{1}{n}}}{r^2} \left\{ \sum_{\alpha=1}^n dz^{\alpha} dz^{\overline{\alpha}} - \frac{1}{r^{2n} (a^n + r^{2n})} \sum_{\alpha=1}^n \overline{z}^{\alpha} dz^{\alpha} \sum_{\beta=1}^n z^{\beta} d\overline{z}^{\beta} \right\}$$
(1)

is a Ricci-flat Kähler metric, since $\det \partial_{\alpha} \partial_{\overline{\beta}} F = 0$ (cf. [4]). This metric is invariant under the canonical $\mathbb{U}(n)$ -action on \mathbb{C}^n , hence the induced metrics on the distance spheres $S_c^{2n-1} = \{z \in \mathbb{C} | r = c\}$ for positive c are homogeneous with respect to the $\mathbb{U}(n)$ -action, i.e. as homogeneous spaces they are of the form $S_c^{2n-1} = \mathbb{U}(n)/\mathbb{U}(n-1)$. There is a one-parameter family $\{h_t\}$ of these metrics which are also called Berger metrics or canonical variation of the standard metric on S^{2n-1} with respect to the Hopf fibration $S^{2n-1} \to \mathbb{C}P^{n-1}$.

More precisely, if $S^{2n-1} = \{z \in \mathbb{C}^n | r = 1\} \subset \mathbb{C}^n$, then

$$y \in S^{2n-1} \longmapsto V(y) = i\partial_r = i \frac{y}{\|y\|}$$

is the Hopf vector field. Then $h_t(V, V) = t$, and on the orthogonal complement of V the metric h_t coincides with the standard one. For $t \to 0$ the metric h_t on S^{2n-1} collapses (with bounded curvature) to the Fubini-Study metric on the (n-1)-dimensional complex projective space $\mathbb{C}P^{n-1}$.

Fix $z^* = r(1, 0, ..., 0) \in \mathbb{C}^n \setminus \{0\}$ with $r \in \mathbb{R}^+$. Then

$$\partial_r(z^*) = \frac{\partial}{\partial r}(z^*) = \frac{1}{2} \left(\frac{\partial}{\partial z_1} + \frac{\partial}{\partial \overline{z}_1} \right) (z^*).$$

We conclude from equation (1) that

$$g_{z^{\bullet}}(\partial_r, \partial_r) = \frac{a^n - 1 + r^{2n}}{r^2(a^n + r^{2n})^{1 - \frac{1}{n}}}.$$

The Hopf vector field V on $\mathbb{C}^n \setminus \{0\}$ is generated by the $\mathbb{U}(1)$ -action $(\exp(i\phi), z) \mapsto \exp(i\phi) \cdot z$, i.e. at z^*

$$V(z^*) = V((r,0,\ldots,0)) = \left. \frac{d}{dt} \right|_{\phi=0} (\exp(i\phi)r,0,\ldots,0) = ir \frac{\partial}{\partial r}.$$

At z^* the vectors

$$X_{\alpha} = \frac{1}{2} \left(\frac{\partial}{\partial z_{\alpha}} + \frac{\partial}{\partial \overline{z}_{\alpha}} \right) \quad (\alpha \ge 2) \quad \text{and} \quad X_{\alpha+n} = \frac{1}{2} i \left(\frac{\partial}{\partial z_{\alpha}} - \frac{\partial}{\partial \overline{z}_{\alpha}} \right) \quad (\alpha \ge 2)$$

form a basis of pairwise orthogonal vectors spanning the orthogonal complement of the complex plane spanned by ∂_r and $i\partial_r$. With respect to the Euclidean metric they form an orthonormal basis. Since $z_2 = z_3 = \ldots = z_n$ in $z^* = r$ we obtain

$$g(X_{\alpha}, X_{\alpha}) = \frac{(a^n + r^{2n})^{\frac{1}{n}}}{r^2}.$$

Therefore we can write down the metric in the form

$$g = \frac{a^n - 1 + r^{2n}}{r^2 (a^n + r^{2n})^{1 - \frac{1}{n}}} dr^2 + (a^n + r^{2n})^{\frac{1}{n}} h_{\frac{a^n - 1 + r^{2n}}{a^n + r^{2n}}}.$$
 (2)

It is defined for $a \in (0,1)$ only for $r^{2n} > 1 - a^n$. One can show that after dividing out a free \mathbb{Z}_n -action and by adding a $\mathbb{C}P^{n-1}$ at r=0 one obtains a complete Ricci flat Kähler metric on a complex line bundle over $\mathbb{C}P^{n-1}$, which is for $r \to \infty$ asymptotic to $\mathbb{C}^n/\mathbb{Z}_n$, i.e. it is asymptotic locally Euclidean (cf. [4]).

Remark. If n = 2 and a = 1, we obtain

$$g = \frac{1}{\sqrt{1 + \frac{1}{r^4}}} dr^2 + \sqrt{1 + r^4} h_{\left(1 - \frac{1}{1 + r^4}\right)}.$$

If we let $\rho(r) := (1 + r^4)^{\frac{1}{4}}$, we get

$$g = \frac{d\rho^2}{1 - \frac{1}{\rho^4}} + \rho^2 h_{\left(1 - \frac{1}{\rho^4}\right)} \tag{3}$$

which is the form of the Eguchi-Hanson metric outside the unit ball in \mathbb{R}^4 for the parameter a=1 as given in [3] (cf. also [6: Chapter 2]).

3. Conformal completion at infinity

Now we choose in equation (2) the parameter a = 1:

$$g = \frac{1}{\left(1 + \frac{1}{r^{2n}}\right)^{1 - \frac{1}{n}}} dr^{2} + \left(1 + r^{2n}\right)^{\frac{1}{n}} h_{\left(1 - \frac{1}{1 + r^{2n}}\right)}.$$
 (4)

We change the radial coordinate $R = \frac{1}{r}$ and obtain on $\mathbb{R}^{2n} \setminus \{0\}$ the following metric for $(R, y) \in \mathbb{R}^+ \times S^{2n-1}$:

$$g_1(R,y) = g\left(\frac{1}{R},y\right) = \frac{dR^2}{R^4(1+R^{2n})^{1-\frac{1}{n}}} + \frac{(1+R^{2n})^{\frac{1}{n}}}{R^2} h_{\frac{1}{1+R^{2n}}}.$$

Then we consider the following conformally equivalent metric on $\mathbb{R}^{2n} \setminus \{0\}$:

$$g_2(R,y) = R^4(1+R^{2n})^{1-\frac{1}{n}}g_1(R,y),$$

hence

$$g_2(R;y) = dR^2 + R^2(1 + R^{2n})h_{\frac{1}{1 + R^{2n}}}. (5)$$

Now we use the following

Lemma (cf. [6: Lemma 3.1]). Let $\alpha, \beta : \mathbb{R} \to \mathbb{R}$ be C^{∞} -functions. The metric

$$g = dr^2 + r^2 \alpha(r^2) h_{\beta(r^2)}$$

on $\mathbb{R}^{2n} \setminus \{0\}$ given in polar coordinates $(r,y) \in \mathbb{R}^+ \times S^{2n-1}$ extends to a C^{∞} -metric on \mathbb{R}^{2n} if and only if $\alpha(0) = \beta(0) = 1$.

Proof. h_1 is the standard metric on S^{2n-1} , we denote by σ the dual 1-form on S^{2n-1} with respect to h_1 of the Hopf vector field V. Then we can write the difference $g-g_0$ of the metric g and the Euclidean metric $g_0=dr^2+r^2h_1$ as

$$q - q_0 = r^2 (\alpha(r^2) - 1) h_1 + r^2 \alpha(r^2) (\beta(r^2) - 1) \sigma^2$$

If (x_1, x_2, \ldots, x_n) are Cartesian coordinates on \mathbb{R}^{2n} , then

$$r\,dr = \sum_{j=1}^{2n} x_j dx_j.$$

We conclude that dr^2 is not continuous in 0, but r^2dr^2 is a smooth 2-form on \mathbb{R}^{2n} , where *smoothness* means C^{∞} -differentiability. Since $r^2h_1=g_0-dr^2$ the 2-form r^2h_1 is not continuous in 0 but the 2-form r^4h_1 is a smooth one on \mathbb{R}^{2n} . Then it follows from equation (6) for directions orthogonal to ∂_r and $i\partial_r$ that $\alpha(0)=1$, provided g is smooth on \mathbb{R}^{2n} . Since

$$\sigma = \frac{1}{r^2} \sum_{j=1}^{2n} \left(-x_{2j} dx_{2j-1} + x_{2j-1} dx_{2j} \right)$$

we conclude that $r^2\sigma^2$ is not continuous in 0 but $r^4\sigma^2$ is a smooth 2-form on \mathbb{R}^{2n} . Then it follows from equation (6) that the smoothness of g in 0 implies $\beta(0) = 1$. On the other hand it follows that g is smooth on \mathbb{R}^{2n} if $\alpha(0) = \beta(0) = 1$

Proof of the Theorem. We conclude from the Lemma that

$$g_2 = dR^2 + R^2(1 + R^{2n})h_{\frac{1}{1+R^{2n}}}$$

given in equation (5) is a complete metric on \mathbb{R}^{2n} which outside 0 is conformally equivalent to a Ricci flat, non-flat Kähler metric. The function

$$u(R) = R^2 (1 + R^{2n})^{\frac{n-1}{n}}$$

is smooth on \mathbb{R}^{2n} and $u(R)^2g(R,y)$ is the Ricci flat Kähler metric g_1 for R>0. Since a Ricci flat Kähler metric carries two linearly independent parallel spinors ψ_1 and ψ_2 the metric g carries two linearly independent twistor spinors $u(R)^{\frac{1}{2}}\overline{\psi_1}$ and $u(R)^{\frac{1}{2}}\overline{\psi_2}$ with 0 as common zero point where $\psi\mapsto\overline{\psi}$ is the canonical bundle isometry between the spinor bundles of the conformally equivalent metrics g_1 and g_2 . This follows from the conformal invariance of twistor spinors (cf. [1])

We also conclude that u is a solution of the partial differential equation

$$-u\operatorname{Ric}^0=(d-2)(\operatorname{Hess} u)^0$$

where Ric⁰ is the tracefree part of the Ricci tensor of the metric g_2 , Hess u^0 is the tracefree part of the Hessian of the function u with respect to the metric g_2 , and $d = \dim M = 2n$ (cf. [5: Proposition 2.1]).

References

- Baum, H., Friedrich, T., Grunewald, R. and I. Kath: Twistors and Killing Spinors on Riemannian Manifolds (Teubner-Texte zur Mathematik: Vol. 124). Leipzig und Stuttgart: B.G. Teubner 1991.
- [2] Calabi, E.: Métriques kähleriennes et fibrés holomorphes. Ann. Ecol. Norm. Sup. 12 (1979), 269 294.
- [3] Eguchi, T. and A. J. Hanson: Asymptotically flat self-dual solutions to Euclidean gravity. Phys. Lett. 74B (1978), 249 251.
- [4] Freedman, D. Z. and G. W. Gibbons: Remarks on supersymmetry and Kähler geometry. In: Superspace and Supergravity. Proc. Nuffield workshop, Cambridge 1980 (eds.: S. W. Hawking and M. Roček). Cambridge: Univ. Press 1981.
- [5] Kühnel, W. and H. B. Rademacher: Twistor spinors with zeros. Int. J. Math. 5 (1994), 877 - 895.
- [6] Kühnel, W. and H. B. Rademacher: Twistor spinors and gravitational instantons. Lett. Math. Phys. (to appear).
- [7] Lichnerowicz, A.: Killing spinors, twistor spinors and Hijazi inequality. J. Geom. Physics 5 (1988), 2 - 18.

Received 24.05.1996