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Abstract. In 1955, Berger [4] gave a list of irreducible reductive representations which can 
occur as the holonomy of a torsion-free affine connection. While this list was stated to be 
complete in the case of metric connections, the situation in the general case remained unclear. 
The (non . rnetric) representations which are missing from this list are called exotic. In recent 
years, it has been determined that exotic holonomies do exist. Thus, Berger's classification is 
yet to be completed in the non-metric case. In this paper, we investigate certain holonomy 
representations of reductive Lie groups whose semi-simple part is not simple. 
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1. Introduction 
An affine connection is one of the basic objects of interest in differential geometry. It 
provides a simple and invariant way of transferring information from one point of a 
connected manifold M to another and, not surprisingly, enjoys lots of applications in 
many branches of mathematics, physics and mechanics. Among the most informative 
characteristics of an affine connection is its (restricted) holonomy group which is defined, 
up to conjugacy, as the subgroup of GI(TM) consisting of all automorphisms of the 
tangent space TM at t E M induced by parallel translations along i-based loops in M. 

Which reductive Lie groups G can be irreducibly acting holonomies of affine con-
nections? 

By a result of Hano and Ozeki [13], any (closed) Lie group representation G c Gl(V) 
can be realized in this way. The same question, if posed in the subclass of torsion-free 
affine connections, has a very different answer. Long ago, Berger [4] presented a very 
restricted list of possible holonomies of a torsion-free affine connection which, as he 
suggested, is complete up to a finite number of missing terms. His list is separated 
into two parts. The first part corresponds to the holonomies of metric connections, the 
second part to the non-metric ones. While Berger gave detailed arguments for the proof 
of the metric part, the proof of the second part was omitted. 
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The list of metric connections has been studied extensively in the intervening years. 
Most of the entries of this list are by now known to occur as holonomies of torsion-free 
connections. Especially for Riemannian manifolds, the possible holonomies and their 
relation to both the geometry and the topology of the underlying manifold have been 
the subject of tremendous research efforts during the past decades (see [1, 6, 7, 14, 19] 
as well as the surveys in (5, 18)). 

On the other hand, the classification of non-metric holonomies is far from being 
complete. In fact, it turns out that Berger's classification in this case is incorrect. 
Examples of exotic holonomies, i.e. holonomies which are missing from Berger's list, 
were first found in [8]. Further exotic holonomies were discovered in [10, 11]; the former 
reference even establishes an infinite family of exotic holonomies. 

These results necessitate a more thorough investigation of the possible candidates 
for exotic holonomies. In this article, we restrict our attention to representations of 
reductive Lie algebras whose semi-simple part is not simple. This subclass already 
embraces many interesting geometries. In the metric case, conformal 4-manifolds and 
quaternionic Kähler manifolds are included as well as the Grassmannians. In the non-
metric case, this class contains the paraconformal geometries, for example connections 
with holonomy Sp(1)Gl(n, 11-il), Sl(2, R)GL(n, R) or S1(2, C)GL(n, C), which have been 
studied by many authors (see the fundamental papers [3, 17], the books [5, 18], and the 
references cited therein). Finally, the exotic holonomies discovered in [10, 11] are both 
of this type. 

All these representations have in common that they (or at least their complexifica-
tions) are tensor products of irreducible representations, in the sense that there are Lie 
algebras g i which act irreducibly on V1 (z = 1,2) such that the holonomy representation 
is equivalent to the induced representation of the Lie algebra 91 ED 92 on V V1 ® V2 
via the tensor representation. Moreover, in all of these representations, dim Vi = 2. 

In this paper, we investigate the-irreducible tensor representations which can occur 
as holonomies under the additional condition that dim V1 ^! 3. It turns out that, in 
this case, there are no exotic examples; in fact, the only possible irreducible representa-
tions are the "generic" and the symmetric ones. More precisely, our main result is the 
following theorem (cf. Proposition 3.1, Theorem 3.3 and Corollary 3.4). 
• Main Theorem. Let V, (i = 1,2) be two finite-dimensional vector spaces over F, 
where F = R or F = C, with dim V1 >3. Let V= V1 ®V2 , and leigC IFEDs1(V1)ED(V2)C 
l(V) be an irreducibly acting Lie subalgebra. Suppose that g occurs as the holonorny 

algebra of a torsion-free affine connection on a manifold M. Then one of the following 
must hold. 

1. g = 
2. g = s((llll') 635((IFilm) 
3. g = IF ED s(( Vi ) ED s((V2 ) and the associated C-structure is locally flat. 
4. g = RED s((IFiI) (D sl(IHlm ) and the associated G-structurc is locally flat. 
5. The connection is locally equivalent to the symmetric connection on the Grass-

rnannian
SO(p, q)/ (SO(p i ,q )SO(p2 , q2))
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with p = p ' + P2 and q = qi + q. 

6. The connection is locally equivalent to the symmetric connection on the Grass-
mannzan

Sp(n + rn)/(Sp(ri)Sp(rn)). 
In Section 2, we introduce the notion of G-structures on an n-dimensional (real 

or complex) manifold, where C c Gl(n, IF) is a Lie subgroup with corresponding Lie 
subalgebra g ç g((n, IF). We give a brief account of the Spencer complex of g and use it 
to introduce the notions of intrinsic torsion, intrinsic curvature, and local flatness (for 
a more detailed exposition we refer the interested reader to [9, 12, 13]). In Section 3, 
we calculate the Spencer cohomologies for the tensor representation, and then prove the 
results that lead to the Main Theorem. 

2. G-structures and intrinsic torsion 

Let Mn be a (real or complex) manifold of dimension n. Let ir F -4 M be the coframe 
bundle of M, i.e. each u E F is a linear isomorphism u : T,r(u)M_*V, where V is a 
fixed n-dimensional (real or complex) vector space. Then .77 is naturally a principal right 
GI(V)-bundle over M, where the right action R9 :.77 - F is defined by R9 (u) = g' ou. 
The tautological 1-form 8 on F with values in V is defined by letting 9(e) = u(ir,()) 
for E TF. For 0, we have the Gl(V)-equivariance R;(0) = g9. 

Let C c GI(V) be a closed Lie subgroup and let g c g((V) be the Lie algebra of G. 
A C-structure on M is, by definition, a G-subbundle F c F. For any G-structure, we 
will denote the restrictions of ir and 8 to F by the same letters. Given A E 9 we define 
the vector field A. on F by

(A.) = 	(Re (tA)(U)) L= 
which is called a fundamental vertical vector field on F. It is evident that 7r. (A.) = 0 
and thus 8(A,) = 0 for all A E 9; in fact, {A.IA E g} = ker(ir,). Moreover, for A, B E 9 
it is well-known that [A., B.) = [A,BI -

Let x E M and u E ir(x). The Lie algebra 9z = U 1 9u c gI(TM) is independent 
of the choice of u, and the union 9F = U	is a vector subbundle of TM ® TM. 

Given a Lie algebra 9 C gf(V), we define the k-th prolongation of g by the formula 
9(k) = ( ® 5k( t/)) n (V ® S'1(V')) 

where both spaces are regarded as subspaces of V® V 0 Sk (V*) . The Spencer complex 
g(C'(g),S) is then defined by setting 

= 9(p1) ® MV C V ® SP (V) ® A(V*) 

and 6P,7 : Cp,q _+ Cp—1,q+l is given by the restriction of the composition 
idd®id 

V® SP Y* ® AV	V® S''V ® V® 
-+ v®5P—lv.®A+IV*
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Here d : Sk (V*)	S'V' 0 V refers to the exterior derivative of a polynomial
map of degree k. Note that d o z : Sk y. — S k y, with the symmetrization map 

S1V 0 V'	5kv* is a multiple of the identity. We leave it to the reader to verify 
that 5P(CP) ç p—Iq+l and that o 8P,q = 0 for all p and q. As usual, we 
denote the cycle groups and the cohomology groups of the Spencer complex by ZP(g) 
and HP(g), respectively. 

If we consider the Spencer complex of 9x C TM 0 TI M, then we get a corn- 
plex of vector bundles over M, and in particular, we obtain the vector bundles 2	= 
u 1 zr(g1 ) and	=	 respectively. We denote the natural projec-



tiori map by pr: Zp,q — H. 

We shall continue to denote points in M by x and points in F by u. Moreover, 
and ' denote tangent vectors on F and we let	= 7r,(),	= ir.() etc. 

A connection on F is a g-valued 1-form w on F satisfying the conditions 

w(A,)=A	for all AEg
(1) 

R;(w) = gwg	for all g E G. 

Given a connection w, its torsion 0 is the V-valued 2-form given by 

0=dO+A9.	 (2)

From (1) and (2) it follows that there is a section Tor of A2 TM 0 TM satisfying 

= u(Tor(,C))	for all	E TF and u E F.	(3) 

The connection w is called torsion free if 0 = 0. Note that Tor is a section of Z.'2 
2 •	 induces	 2 A T M ® TM and thus induces a section T = pr(Tor) of H0F 

Now let w' be another connection on F, and let 0' and Tor' represent its torsion. 
From (1) it follows that there is a section a of the bundle T'M 0 OF such that 

(w' —")() = uci(ç)u 1 .	 ( 4)

From (2) - (4) we obtain for the torsion 

(0' — 0)(,) = u () C —. 

and hence
(Tor' —Tor)(,') = a(e) -_' —c') .= 5"(ci)(,6') 

for all	' E T1 M. Thus, we conclude that 

Tor' = Tor + ö"(ci).	 (5) 

This implies that the section r of H 2 defined above is independent of the choice of c 
and therefore only depends on the G-structure F.
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Definition 2.1. Let ir F — M be a G-structure. 
1. The vector bundle H° 2 is also called intrinsic torsion bundle of F. 

2. The section r of H. 2 is called intrinsic torsion of F. 

3. F is called torsion free or 1-flat if its intrinsic torsion r vanishes. 

The following proposition is then immediate from (5). 

Proposition 2.2. Let ir : F — M be a C-structure and let T be its intrinsic 
torsion.

1. If or is any section of A2 TM ® TM such that pr(a) = T, then there is a 
connection on F whose torsion section Tor equals a. 

2. There is a torsion-free connection on F if and only if F is torsion free. 

3. If F is torsion-free, then there is a one-to-one correspondence between torsion-
free connections on F and sections of g. In particular, if g ( ' ) = 0, then the torsion-free 
connection on F is unique. 

Example 2.3. 1. Let C = 0(p, q) c Gl(V) with V R' and n = p+q. A C-
structure on Mn is equivalent to a pseudo- Riemannian metric on M of signature (p, q). 
One can show that 51,I : V®o(p,q) —* A 2 V®V is an isomorphism. Thus, g(1) = 0 and 
H° 2 (g) = 0. Then Proposition 1.2 implies that there is a unique torsion-free connection 
on such a C-structure. Of course, this reproves precisely the existence and uniqueness 
of the Levi-Civita connection of a (pseudo-)Riemannian metric (see [15]). 

2. Suppose n = 2m and let C = Gl(m,C) c Gl(n,R). A C-structure on M' is 
equivalent to an almost complex structure on M. A calculation shows that H° 2 (g((rn, 
C)) = { q E A 2 (C') OR C"I(zx , y) = —z(x,y)}. Moreover, the intrinsic torsion is 
given by the Nijenhuis tensor. It is well known that the vanishing of this tensor, i.e. 
the torsion freeness of the C-structure, is equivalent to the integrability of the almost 
complex structure (see [151). 

3. Suppose n = 2m and let C = Sp(m) ç Cl(n,R). A C-structure on Mn is 
equivalent to an almost symplectic structure, i.e.. a 2-form W on M satisfying m 54 0. 
One can show that H°'2(sp(m)) = A 3 R n and that the intrinsic torsion is represented by 
the 3-form dw. Thus, the C-structure is torsion free if and only if the almost symplectic 
2-form w is symplectic. 

From these examples it should become evident that for many naturally arising C-
structures the vanishing of the intrinsic torsion implies, in some sense, the "most natural 
integrability condition" of the underlying geometric structure. 

Suppose now that F is torsion free and let w be a torsion free connection on F, i.e. 

dO + w A 9 = 0. 

Exterior differentiation yields the first Bianchi identity 

clAo=0	 (6)
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where ci = dw + w A w is the curvature 2-form of w. It follows that there is a section R 
of A 2 TM 0 OF called the curvature of w which satisfies 

= 

arid (6) implies 6 1,2 (R) = 0. Therefore, R is a section of Z.' 2 and induces a section 
P = pr(R) of HF 

Now let w' he another torsion free connection on F, i.e. w and w' are related by (4) 
with a section a of TM® 9  satisfying 8'"(a) = 0. If we denote the curvature 2-form 
of w' by ci' and the curvature by R', then a calculation shows that 

(ci - cl')(,) = u((da + a A 

for all	E TF and hence

= R + dcx + a A a. 

It is now straightforward to verify that the map 

	

: TM	g(l)	X i-* Vxa + a(X)a	 (7) 

is well defined and satisfies
62"(0)=da+aAa	 (8) 

and thus the section p = pr(R) of H .: 2 is independent of the choice of the torsion-free 
connection. 

Definition 2.4. Let F he a torsion-free G-structure on M. 

1. The section p of H" 2 defined above is called the intrinsic curvature of F. More-
over, if p 0, then F is called 2-fiat. 

2. F is called locally flat if there exists a torsion-free connection on F whose curva-
ture vanishes. 

Evidently, local flatness implies 2-flatness. The converse is not true in general, as 
the following proposition illustrates. 

Proposition 2.5. Let F be a torsion-free G-structure on M and let p be its intrinsic 
curvature. Let R be a section of Z 2 such that p = pr(R). Then for each x M there 
is a torsion-free connection on M whose curvature at x equals R 1 . In particular, if F 
is 2-flat, then for each x E M there is a torsion free connection on F whose curvature 
at x vanishes. 

Proof. It is easy to see that we can choose a section cx of TM 0 g(l) such that 
a 1 = 0 and (Vxa)7 = — 1 (X) for all X E TM. Then the statement follows from (7) 
and (8)1
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3. The Spencer complex for tensor representations 

We begin our discussion with the following 

Proposition 3.1. Let V, (i = 1,2) be vector spaces over iF' with IF' = IR or IF' = 
C of dimension at least 3, and let V = V1 ® V2 . Let g be the image of the natural 
tensor representation p	F	51(V1 ) ED s1(V) —* gt(V), and let I) = g fl s((V), i.e. 

s1(Vi )EDs1(V2 ). Then 

1. g(1)	V, with an explicit isomorphism given by p E V — cs' E (1) with 

ap = ci'' + cs 

a(e i 0u i )e2 = p(e 2 ®ui)ei 

c4(el ®ui)u2 = p(ei ®u2)uI. 

2. Z12(g) V* ® V, with an explicit isomorphism given by T E V* ® V* 	q5 T E 
Z" 2 with

or = 

4(ei 0ui,e20u2)e3 =T(ei, III, e3,1L2)e2 —r(e2,u2,e3,ui)ei 

q5(c 1 (9ui,e2042)u3 =r(ei,ui,e2,u3)u2—r(e2,u2, el, u3)ui. 

3. H'(g) = 0 (indeed, every C-structure F with OF g is locally flat). 

4. )() = 0. 

5. H1 2(0)	Z''2 (4)	S2 V, with an explicit isomorphism given by the restriction 
of r in statement 2 to S2V. 

Proof. We shall begin by showing statement 2, as the proof of statement 1 works 
analogously. We denote elements of V1 and 1/2 by e- and u 1 , respectively. Let 
A 2 V — g be an element of Z"2 (g). We use the decomposition 0 = A + B into the 
gl(V1 )- and g((V2 )-component. For given elements e 1 E 17 and ui E V2 (i = 1,2,3) we 
shall abbreviate cb(e 1 ®u 1 ,e3 (9u3 ) = Ak + Bk where (i,j,k) is an even permutation of 
(1, 2,3), Ak E g((V1 ) and Bk E 91(1/2 ). Then the first Bianchi identity for 0 reads 

(A i e i ) 0 u + (A2 e 2 ) 0 u 2 + (A 3 e 3 ) ® U3 

+ e 1 0 (B i u i ) + e2 0 (B2 11 2 ) + e3 0 (B3 y 3 ) = 0. 

Let us choose the e 1 's and u 1 's linearly independent. Then (9) implies that A 3 e3 e 
span(e j , e 2 , ea), and hence we get 

A(e i 0u 1 ,e2 (9112)e3 
=A(ea,e I ,u I ,e2 ,u 2 )ea+r(e 2 , el, ul,e3,u2)e2—r(el,e2,u2,ea,ul)eI
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for some real-valued functions A and T. From here it is straightforward to verify that 
A and r are independent of the first slot and linear in the remaining entries. In other 
words, we get 

A(e i 0u1,e20u2)e3	
(10) 

=A(eI,uI.e2,u2)e3+T(el,UI,e3,u2)e2—r(e2,u2,e3,u1)el 

for all e 1 E V1 and ui E V2 , where A E A 2 V* and T E V ® V. Analogously, we find 
that there is a it E A 2 V and a a E V ® V such that, for all e i E V1 and u 1 E V2, 

B(e i (9u 1 ,e2 0u2)u3	
(11) 

=p(el,ul,e2,u2)u3+a(eI,ul,e2)us)u2—a(e2,u2,e1,u3)ui. 

Substituting (10) and (11) into (9), we conclude that A + it = 0 and T = a. Finally, 
note that there is a 1-dimensional kernel of the tensor representation which can be used 
to achieve A = p = 0. Then it is evident that 0 = ' from above. 

To show statement 3, one calculates that the boundary map	V ® g() 
Z 12 (g) is precisely the combination of the isomorphisms of both spaces with V ® V 
given in assertions 1 and 2. 

Finally, for statements 4 and 5, note that &' E lj ( ' ) if and only if p = 0, and 
gY E Z"2 (Ij) if and only if r E S2 	c V* ® V I 

Lemma 3.2. Let W be a finite-dimensional vector space and g c g((W) an irre-
ducibly acting Lie subalgebra. Let W = W1 W2 with W1 , W2 0 be a decomposition 
which induces a decomposition 

91(W) = W11 ED W21 W12 e W22	 (12) 

with W = W ® W3 (i,3 = 1,2). If c g[(Wi )	W11 is an irreducibly acting Lie
subalgebra, and if l e W21 c g, then 51(W) C g. 

Proof. We denote the projections given by (12) by ir : 91(W) —s W, and write for 
short A 1, = 7r 13 (A) for any A E g((W). From the irreducibility of g it follows that there 
is an A E g with A l2 54 0. Then for any B11 E 1, we calculate that [B 11 , A1 12 = B11 Al2. 
Thus, the image of 7r12 is 1)-invariant, and hence, using the irreducibility of both 1) and 
g, it follows that 7r 12 is surjective. 

Now, let B21 E W21 and A E g be given. We then calcutate that 

= A l2B21 ,	[B21,A]12 = 0,	[B21,A]22 = B21Al2. 

From the surjectivity of 7r 12 and W21 c g it now follows that Al2 and B21 can be chosen 
arbitrarily, and from there we conclude that st(W) ç g as claimed I 

Theorem 3.3. Let V, (i 1,2) be two vector spaces over F with F = R or F = 
C with dim Vi ^! 3, and let V = V1 ® V2 . Let g ç 9((Vi)9((V2) ç gI(V) be an 
irreducibly acting Lie subalgebra. If g occurs as the holonorny algebra of a torsion-free 
affine connection, then one of the following must hold:
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1. g=FEB5(Vi)ED$((V2). 

2. g = s1(V1 ) 051(V2). 

3. g = so(g i , VI) EDso(g2 , V2 ) where g 1 E	(i = 1,2) are non-degenerate. 

4. g = sp(w i , Vi ) ED SP(-2, V2 ) where wi E A 2 Vi* (i	1,2) are non-degenerate. 

Proof. Let us write g = gi ED g2 with q j c g((V1 ) (i = 1, 2). If g occurs as the 
holonomy algebra of a torsion-free connection, then by the Ambrose-Singer Holonomy 
Theorem [2] and Proposition 3.1 it follows that there is a subspace T c V ® V such 
that

g = ({irn( T )I T E T})	 (13) 
with qY : A 2 V - g((V). Obviously, g is irreducible if and only if g 1 is for i = 1, 2. 

Let us first discuss g 1 . We decompose a given r E V ® V	V1 ® %/* ®	® V 
as T = T+ + r with T+ E V1* ® V ® 52 %fj and 	E V 0 V1' 0 A 2 V2* . That is, 

7 ±(eI,e2,uI,t22) =	(T(ei ) ui,e2,u2) ± r(e1,u2,e2,u1)). 

It follows that

((e1 ®u i ,e2 ®u2 )±(ei 0u2,e20ui))e3 
=2(T±(e1,c3,uI,u2)e2:fT±(e2,e3,ul,u2)eI). 

If we denote by g c V1 ® V1 the Lie algebra generated by all endomorphisms of V1 
given by

e3___7±(el,e3,u1,u2)e2F7±(e2,e3,u1,u2)el,	 (14) 
with T E T, then (13) implies that g i is generated by g + g. 

Let us regard r± as maps 

52 V2 —* V ® V	and	T— : A 2 V2 - V 0 

and regard an element a E V 0 V as a map a V1 - V1 , using contraction in the 
first entry. Under these conventions, it follows from (14) that 

= ({e i 0 a(e2 ) e2 ® a(el) ei E V1 and a E im(T ±)}).	(15)

Now, in order to determine g, there are several cases to be considered. 

1. The case r A2 V1 0 A2 V. In this case, we may choose 2 E A 2 V2 such that 
a = r(s2) E V 0 V1 is not skew-symmetric, i.e. the symmetric 2-tensor a+(e i , e 2 ) = 
a(e i , e2 ) + a(e 2 , e i ) is not zero. Now, let e 1 , e2 e V1 be such that a+(e i e2 ) j4 0. Then 
we calculate 

[e 1 0 a(e i ), e2 ® 01(e2)] 
=a+(ei,e2)ei 0a(e 2 )—a(e2 ,e i )(e i 0a(e2)+e20a(el))
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and therefore, by (15), e 1 ® a(e 2 ) E g for all such e 1 and e2. From there it follows 
that V1 ® a(VI ) c c i . Let e 1 E Vi such that a(e i ) 54 0, and apply Lemma 3.2 to 
a decomposition V1 = W1 W2 with W2 (a(e))'. It follows that 5((V) c 91. 

2. The case T E A 2 V 0 A 2 V. In this case, it follows that ç c st(V1 ). Let 
o w E im(T) c A 2 V1 , and write V1 = W1 e W2 , where W2 is the null space 
of w. Note that wlw, is non-degenerate. It is then easy to verify that the Lie algebra 
generated by all elements of the form (15) for this particular a is 5p(wIw, )eW21 c gi(Vi) 
using the decomposition as in (12) and where 5 p (w Iw1) 9 g((W1 ) is the Lie algebra of 
endomorphisms which leave wlw, invariant. 

But then Lemma 3.2 implies that either W2 = 0 or 51(V1 ) c . In the first case, 
w is non-degenerate and the elements of the form (15) generate sp(w). If there is a 
(non-degenerate) w' E im(r) independent of w, then sp(w') 54 5p(w), and since both 
are maximal subalgebras of s((Vi ), it follows that in this case again, s((V1 ) c gl. 

Finally, it is well known that there are no non-zero elements of sp(w) of the form 
0 a(e 2 ) - e 2 ® a(c i ) with a : V1 —* V1* . Hence, because of (15), we must have that 

either r	0 or st(Vi ) c gi. 

Summarizing, we have the following possibilities: 

(a) sI(V1)cg1,or 

(b) r+ = 0, and r(e i ,e2 ,u i ,u2 ) =w i (e i ,e2 )w2 (u i ,u2 ) for some wi E A 2 V* , where 
is non-degenerate and w 2 54 0. In this case, g = sp( 1 ), or 

(c) T = 0 and	= 0. 

3. The case T —  0 and y E S2 V®S2 V. In this case, it follows that g' c 
The investigation of this case is completely analogous to the previous one. As a result, 
we get the following possibilities: 

(a) gi =1(Vi),or 

(b) 7(c j ,e 2 ,u i ,u2 ) = 91 (c 1 ,c2 )92 (u i ,u 2 ) for some g, e S2 Vi* (i = 1, 2), where g i is 
non-degenerate and 92 54 0. In this case, g = so(g). 

4. The case T = 0 and y+ S2 V1 ® S2V. In this case, we may choose 
S2 E S2 V2 such that a = 7-+(s 2 ) E V1*OVI is not symmetric, i.e. the 2-form a(e i , e2 ) = 
a(e i , c 2 ) — a(e2 , e 1 ) is not zero. Without loss of generality we assume that S2 was chosen 
such that a has maximal rank. 

(a) Suppose that rank(a) > 1. In this case, we can pick elements e 2 , e3 E V1 such 
that a(e i , e2 ) = a(ei , e3 ) = 0 and a(e2 , e 3 ) = 1. Then we calculate 

le i ® a(e2 ) - e2 ® a(e i ), e 1 0 a(e3 ) — e 3 0 a(ei)] 
= —e 1 Oa(e i ) — a(ea,e i )(e j 0a(e2 ) — e 2 (9a(ei)) 

+ a(e i , e2 )(e i 0 a(e3 ) — c3 0 a(e i )) — a(e i , e 1 )(e2 ® a(e3 ) —e3 0 a(e2)) 

and therefore, by (15),
e1 Oa(e i ) E 9	 .	 (16)
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for all e 1 with c(e i ,_) 54 0. But then (15) and (16) imply that in this case V1 ® 
c(Vi ) c 91, and then, applying Lemma 3.2 to a decomposition V1 = Wi W2 with 
W2 = (a(e i ))', we conclude that s((V1 ) ç g. 

(b) Suppose that rank() = 1 for any choice of S2 E S2 V2 . Let V' ç Vi be 
the anihilator of a, let e2 E V1 such that a(e i ,e2 ) = 1, and let e3 E V'. Then we 
calculate 

[e i 0 a(e2 ) - e2 0 a(e i ), e 1 ® a(e3 ) - e3 0 
= —e 1 0a(e3 ) - ( e3 ,e i )(e i ®a(ez) - e2 Oa(ei)) 

+c(e i ,e 2 )(e i Oa(e 3 ) - e3 Oc(e i )) —cl(e I ,e i )(e2 0( e 3 ) - e3 0a(e2)) 
and therefore, using (15), we conlude that 

(V1 ®(V'))U(V'Oa(Vi)) c 0+1 -	 ( 17) 
(i)3 2 E S2 V2 can be chosen such that cl(V') 54 0. Pick e 1 E V' such that (e i ) 54 0. 

Then applying Lemma 3.2 to the decomposition Vi = Wi W2 with W2 = ((ei))1 
and using (17), it follows that s((V1 ) c 9i. 

(ii) For any choice of S2 E S2 (V2 ), a(V 2 ) = 0, where V3'2 is the ariihilator of c 
with c = 7- (32) 54 0. Let Gr(n - 2,V1 ) with n dim V1 denote the space of planes of 
codimension 2 in V1 , and let P C Gr(n - 2, V1 ) be the set of all subspaces V' = V2 
which can occur. If V, + V, = V1 , then it would follow that rarik(r(s 2 ) + T(S)) > 1 
which was excluded. Thus, any two V', V" E P are not transverse. It follows easily 
that either 

• there is a V0 c V1 ofcodimension 1 such that Pc {V' E Gr(n-2,Vi) I V c V} 
or

• there is a V0 c V1 of codimension 3 such that P = {V' E Gr(n-2, V1 ) I Vo ç V'}. 
But in either case, V0 would be invariant, which is impossible except if the latter holds 
and dim V1 = 3. However, in that case, it is easy to check that any Lie subalgebra of 
g((V1 ) for which all 1-dimensional subspaces occur as V' must contain s((V1). 

The Theorem now follows from combining all these cases and performing an analo-
gous investigation for 92 U 

Corollary 3.4. Let V V1 ®V2 , and g ç g(V1 )eg(V2 ) c g((V) be as in Theorem 
3.3, suppose that g occurs as the holonomy algebra of a torsion-free affine connection 
on a manifold M, but g does not contain ((V1 ) e5((V2 ). Then the connection is locally 
equivalent to one of the Grassmannians 

SO(p, q)/(SO(p 1 , q i )SO(p, q))	or	Sp(n + rn)/(Sp(n)Sp(m)) 
with p=p i +p2 and q=qi+q2. 

Proof. In the proof of Theorem 3.3 we gave an explicit description of the curvature 
for the cases where g does not contain s((Vi ) sl(V2 ). From this description it is clear 
that the curvature is invariant under the holonomy, and hence the connection is locally 
symmetric. Moreover, the curvature coincides with that of one of the symmetric spaces 
listed above, and this in turn suffices to conclude that M is locally equivalent to one of 
these spaces (see [15]) 1
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