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On the 
Capillary Surface in a Wide Circular Tube 

E. Miersemann 

Dedicated to the memory of Paul Gunther 

Abstract. An explicit asymptotic formula for the wide circular tube is proved. The leading 
term defines the capillary surface over the half plane with the given boundary contact angle. 
An explicit estimate of the remainder uniform with respect to the boundary contact angle and 
the radius of the tube is given. This uniform behaviour is caused by the strong non-linearity of 
the problem and has no counterpart for linear problems. The proof of the main result is based 
on a maximum principle and on a mapping which brings the right parameter of development 
onto the right place of the equation. 
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1. Introduction and main results 

The equilibrium free surface S: u u(x 1 ,x 2 ) of a liquid inside a circular tube of radius 
R E (0, oo) satisfies (see Finn [3: Chapter 1]) the nonlinear elliptic equation 

divTu=icu±A 

in the disk BR = {x = ( XI,x2) E R2 : x + X1 <R2 } and the boundary condition 

v . Tu=cos7	on 9BR 

where
Vu 

Tu =  
J1-i-lVuI2 

and K= (with p the density change across free surface, g the gravitational accel-
eration and a the surface tension) is the (positive) capillary constant. It is assumed 
that the gravity field is non-zero and directed downward. Further, E [0,7r] denotes 
the constant contact angle between the capillary surface and the cylinder. The vector 
ii is the exterior unit normal on ÔBR in the (x 1 , x 2 )-plane and ) denotes a Lagrange 
parameter. 
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for 0 < r < R (1.3) 

and
WI lim =cos-y 

r-.R	+ '2
and	w'(0) = 0.	 (1.4) 
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When the lower end of the tube is immersed in an infinite reservoir, then A = 0, 
and if the tube is closed at the lower end by the base domain BR, then the Lagrange 
parameter is defined by	

1 
A=— (I OB RI COS -y_,cV) 

BRI 

where V is the given volume of the fluid (see Finn [3: Chapter 1]) provided there are 
no dry spots on the bottom. 

The transformation
A 

U = V - - 
k 

converts the above equation and boundary condition into the problem 

divTv=,cv	in BR	 (1.1) 

vTv=cos 7	on OB R .	 ( 1.2) 

We can assume that
0<y< 

holds. The case	reduces to that one under the transformation v '.- —v. 
No explicit solution of problem (1. 1), (1.2) is known except u 0 in the case ^/ =

 The existence of a radially symmetric solution w E C°° in the open unit disk B1 was 
shown by Johnson and Perko [6]. The comparison principle of Concus and Finn [2) 
implies that this symmetric solution is the only one. Existence of a solution, not only 
in the case of the capillary tube, follows from a more general argument (see Finn (3: 
Chapter 7]). 

Since v is radially symmetric, the problem (1.1), (1.2) reduces to that to find a 
function w = w(r), r = /x + x, such that 

In 1806 Laplace (8] obtained a formal approximation for the height rise of the capillary 
surface. For example, he calculated an expression for the height u 0 at the center of a 
(narrow) circular tube of radius R, namely 

2 COS y	
( 1
	21— sin 3_y\ 
y3 cos'y )R. frcR	cos 

The first proof of asymptotic correctness of this formula as R - 0 was given by Siegel 
(14). Then, Finn [4] and Siegel [15] obtained explicit bounds that hold throughout the 
trajectory, and are not merely asymptotic. The existence of the complete asymptotic
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expansion of the solution to problem (1.1), (1.2) or, equivalently, to problem (1.3), (1.4) 
as VfWR - 0 was proved by Miersemann [9]. This expansion is uniform with respect 
to the boundary contact angle despite the fact that IVwI becomes unbounded if - 0 
or - 7t. The reason for this behaviour is the strong non-linearity of the problem. 
Such expansions exist also for capillary tubes with more general cross sections (see 
Miersemann [10]), in particular for annular domains. 

The above asymptotic formula makes no sense for large radius R. On the other 
hand, by matching asymptotic expansions on adjoining annular subdomains one obtains 
a comparison surface for the problem over the entire domain also for large R. This 
consideration leads to a new numerical method for solving the capillary tube problem. 
Moreover, an explicit a priori error estimate uniform with respect to the boundary 
contact angle can be shown (see Miersemann [11]). This uniform behaviour is caused 
by the strong non-linearity of the problem and has no counterpart for linear problems. 
This method applied to a disk and an adjoining annular domain leads to a boundary-
layer approximation of the solution. We will not discuss this method in this note. 

A formal asymptotic solution of problem (1.3), (1.4) for large /R was calculated 
by Concus [1] by using a boundary-layer technique which goes back to Laplace [8]. The 
idea is to assume that there is a central core region covering most of the base domain in 
which w is small, and a boundary layer region near the wall in which w' increases rapidly 
to its given boundary value. Matching the core and the boundary-layer solutions in the 
transition circle determines the thickness of the boundary layer. This method was used 
by Perko [12] to prove that a certain boundary-layer approximation is assymptotically 
correct. More precisely, it is shown that for each given boundary contact angle 7 away 
from the critical angle = 0 the relative error in the ordinate and slope of this boundary-
layer approximation is uniform of order 1 In as R - - for 0 < r < R. A formal 
second order boundary-layer approximation was calculated by Rayleigh [13). 

It was shown by Siegel [14] that near the boundary the solution approaches the 
one-dimensional solution defined by formula (1.8) below. We will prove that there is an 
asymptotic expansion in powers of -hg as	- no. This result is of interest near 
the boundary. Away from the boundary there is a much faster exponental decay (see 
Siegel [14]). 

Let w(r;R,7,) be the solution of. the boundary value problem (1.3), (1.4) and 
v(s; 7 , tc) the solution of the following boundary value problem (1.6), (1.7), which defines 
the capillary surface over a half plane with the same boundary contact angle. We will 
prove, in particular, that

lit.	 I	 1 
w(r;R,y,i) —v(R—r;7,c)l <2.1	 (1.5) 

uniformly in r E [0, R] and y E [0, ir], provided that /R > 6.4. This uniformity in is 
caused by the strong non-linearity of the problem. Thus, one can use this formula for 
measurements, for example of the unknown boundary contact angle. 

The function v(s)	v(s; y, k) is defined by the solution of the boundary value 
problem (1.1), (1.2), where B R has to be replaced by the half plane S2	{(x 1 ,x 2 ) E
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R2 : x 1 > 01. The assumption that the solution of this problem depends on x 1 only 

leads to the boundary value problem 

/ V 1 (S)	 __ 
icy (s)	for 0 < s < ::	 (1.6) 

and
v'(s) 

lim =cosy.	 (1.7) S-0 Ji + v'(s)2 

Under the growth assumptions v —* 0 and v' —* 0 as .s — oo one obtains the well-known 
solution v v(s) defined by 

= ln.(	
I	

+	
— v —	- h 2	(1.8) 

where

h=v(0)=	Vii —sin 7	 (1.9) 

defines the rise of the fluid at the vertical wall. From the comparison principle of Concus 
and Finn in the case of unbounded domains (see Finn and Hwang [5]) it follows that 
this solution is the unique solution of the original problem (1.2) over the half plane Q. 
We emphasize that for thisresult one makes neither the above growth assumptions nor 
the assumption that the solution is independent of x2. 

•	Inequality (1.5) and (1.9) yield an explicit estimate for the rise w1	w(R; R,-y, ic)

of the capillary surface on the boundary of the tube: 

to1 -	i—sin7 <2.1	 ,	 (1.10) 

uniformly in y E [0, 7r], provided that /R > 6.4. In the case of water (200 C) in 
an acrylic plastic tube with radius R(cm] one has approximately tc = 134[cm 2 ] and 

= 80°. Thus the outer height wi[cm] is bounded by 1 w, — 0.0151 < 03 when 
R> 0.56[crn]. 

Theproofoftheabove asymptotic formula (1.5) is based on the comparison principle 
of Concus and Finn and on the construction of an approximate solution in the sense of 
the following section. The-method is, in principle, the same one we used in Miersemarin 
191, where the existence of a complete asymptotic expansion as — 0 was shown. 
The additional idea is now to map the boundary r = R, where the surface rises much 
more then in regions far from the boundary, onto the origin. This transformation brings 
the right parameter of expansion onto the right place of the equation (see formula (2.4) 
below). This method leads also to a complete asymptotic expansion (see the related 
remarks in the next section). For simplicity, we restrict ourselves to the leading term 
given by v (see formula (1.5)). 

Combining a comparison principle of Siegel [14] for domains and the above boundary 
estimates for the circular tube, one obtains a boundary estimate for general domains 
(see Siegel [141):
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Let ci CR2 and u be a solution of divTu = nu in ciand zi . Tu = cos 7 on aQ. By 
ui we denote solutions of the same boundary value problem over a disk DR c ci. If ci 
satisfies a uniform inner sphere condition with radius R> 0, then u R > u in DR. 

From this theorem and the estimate (1.10) there follows immediately the explicit 
estimate 

where 0 < y < f, provided that /R > 6.4. From another comparison principle for 
domains (see Finn [3: p. 122]) one obtains the lower bound 

	

minu>	- sin7 an - 

under the assumption that ci is convex. This follows by comparison of the solution over 
ci with solutions over half planes which contact ci at boundary points. 

2. Proof of the asymptotic formula 

Instead of problem (1.3), (1.4) we consider the normalized problem 

()' = pu(p)	for 0< p '< M	 (2.1) 

lim	U	
= Cos -Yand u'(0) = 0.	 (2.2) p 	/i + u'(p)2 

These problems are related through the formulas 

M =	p = V r. 	u(p) = /w(r).	 (2.3) 

Let u(p;M,'y) be the solution to problem (2, 1), (2.2). Then v(s) = u(M - s;M,-y) 
solves the boundary value problem 

1	((M—s)v'(s)V = v(s)	for 0 < s < M	 (2.4) M - s	—1+ v'(s)2 ) 

lim V	= - cos y and v'(M) 0.	(2.5) 
3-0 \/-J-+ v'(s)2 

This boundary value problem becomes singular ifs =M. 

Definition. A function va (s) = v(s; M, 'y) is said to be an approximate solution 
to problem (2.4), (2.5) of order n if 

(i) Al
S 

((M - s)v(s)) 
1 + v(s)2	

- v a (s) = R+1
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where I R+iI	-i- with a constant Cn1 independent of ME [Mo,c) with M0 >0 
andof -yE [0,] and 

(ii) urn	-
"(S) 	cos -y and v 1 (M) = 0. ° ,/i + v(s)2 

Note. The crucial point here is that the estimate of R 1 is uniform with respect 
to -y and M. 

The formal Ansatz

n 1 v(s;M,-y) =
kr:O 

and the equation

1	((M—S)V,',(S)), 
M - s	+ v(s)2 - va (s) = 

0 (M+') 

with the boundary conditions 

V, urn 
_-VI

	= — cos-y and v,(M) 0 
° /i + ( s)2 

lead to a recurrent system of one nonlinear boundary value problem for 0 0 and n linear 
boundary value problems for Ok (k  

The leading term 0 0 is defined by the boundary value problem (2.6) and (2.7) below, 
is the solution of

	

çb'	 ______ 

((1+2)'112	forO<s<M 

with the boundary conditions 

urn 01, 0	and	(M) = 0, .9—.° (1 + 

and 02 is defined by the boundary value problem 

,	\'

for0<s<M 

with the boundary conditions 

lirn	012 = 0	and	4(M) = 0. —.o(1 ±2)
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When k ? 3, then Ok is given by 

/	4k	 I	( 
(i+ 2)) k=	(1+2) +fk-1(...2)) 

—(fk( ......	 _i))'	for O<s<M 

with the boundary conditions 

urn	., = 0	and	(M) = 0. 
3-0 (1	i2) 

The functions
( 00, i  

are analytic in their arguments and satisfy f ( yo,. , y_ = 0 if one of the coordinates 
y, vanishes. These functions f (2 <j <n) are defined by the identity 

En 0 yj/.L 1	-	Yo	+	Yi 

	

1+(E 0 y, 1 ) 2 - 1+y	(1+y 

U 
+	yl 3 +fi(o...i_i)) '+o(') ( 

1=2 (1 + yo) 

as p - 0. For example, one has

f2— 
3 yoy 

- 2(1+y)F 

From the non-linearity of the problem one concludes that v defines an approximate 
solution in the sense of the above definition and that the functions are analytic on the 
interval [0, M) and bounded on the closed interval. Then the comparison principle of 
Coricus and Finn [2] implies a complete asymptotic expansion of v in powers of 
(see Miersemann ( 9 1 for this method in the case of a narrow tube). To simplify the 
presentation, we will restrict ourselves to the case n = 0. 

Theorem 2.1. Let vn (s;M,y) be an approximate solution in the sense of the above 
definition and let u(p; M,-y) be the solution of the boundary value problem (2.1), (2.2). 
Then

u(p; M,y) - v(M - p; M,y)I 

for p E [0, M], where c,+i is the constant in the above definition. 

Proof. Set U(x) = v(M - I x I; M , y ) . Then 

IdivTUn - U,, Cflf I in BM(0)	and	lim ziTU = cos 7 on OBM(0). - Mn+l	 IxI—M
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Using the comparison function U+ U,, +	we obtain 

	

divTU - U <0 in BM(0)	and	
Ix 

u 
I M 
rn ii TU = cosy on ÔBM(0). 
— 

Since the function U(x) = u (I x I; M,7), where u defines the solution of the boundary 
value problem (2.1), (2.2), satisfies 

	

divTU - U = 0 in BM(0)	and	urn v TU = cos -y on OBM(0) 
zI—M 

the comparison principle of Concus and Finn [2] implies that U(x) < U(x) in BM(0). 
Analogously, the comparison function U = U,, -	-r yields a lower bound of U(x) 
in BM(0)U 

Let o(s; M, -y) be the solution of the boundary value problem 

	

( ____ =u	for 0<s<M	 (2.6)

\. /i + u '2 I 

and

	

lim	U	= - cos y	and	u'(M) = 0.	 (2.7) 
s-.O /i + ? 112 

This solution 00 determines the capillary surface between two parallel walls with the 
distance M and the boundary contact angles -y and on the walls over the line x 1 = 0 
and x 1 = M, respectively. Set

1 ((M - 

	

N(v) =	_________ 
M_s1+v()2) 

Then
N(q5o)—c50=-- 

1 M(2.8) 
MMs 

The following two lemmas are shown in the Appendix. 

Lemma 2.1. The function 00 satisfies 

	

M	c(s)I	<2 
M - s /i + (s)2 - 2 

uniformly with respect to s E (0, M) with M E [6.4 1 oc) and to E [0, in 

Note. An inspection of the proof of this lemma shows that the constant 2 on the 
right-hand side of the above estimate can be replaced by 1 + E for each E > 0 when 
M(c) <M <00. 

Let Oo(s;7) be the solution of the boundary value problem (1.6) with K = 1 and 
(1.7). This function defines the capillary surface over a half plane (see Section 1).
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Lemma 2.2. The functions 00 and	satisfy 

cbo(s; M,7) - o(s; -i)l <7.1 

	

7r	 M 
 - 

uniformly with respect to s E (0, M) with M E [6.4, oz) and to E [0, 7r]. 

Combining Theorem 2.1, Lemma 2.1 and Lemma 2.2 we are lead to the following 

Theorem 2.2. The difference between the solution u of problem (2.1), (2.2) and of 
the function 0 0 which defines the capillary surface over a half plane with the boundary 
contact angle can be estimated by

1-2
iT	Ii 

u(p;M,7)_i4'o(M_p;7)l2.1_7M 

uniformly with respect to p E (0, M) with ME [6.3,) and to e [O,ir]. 
From the transformation formulas (2.3) one obtains the estimate (1.5) of Section 1 

for the solution w of the original problem. 

3. Appendix 

In this section we prove Lemmas 2.1 and 2.2. The solution of the boundary value 
problem (2.6), (2.7) can be defined by an elliptic integral (see, for example, Landau and 
Lifschitz 17: p. 272)). We need some explicit, estimates on 00 for the proof of these 
lemmas. For the convenience of the reader, we will give these easy calculations in .this 
Appendix. 

From the identity
-	I 

f	u	\	11	1 

v'l-+ U 12 ) = u' V1 _+U12 

and equation (2.6) there follows

1	12 

	

/1+uI2	
+C	 (3.1) 

with a constant C. The boundary conditions (2.7) imply 

	

1 = _ u(M)2 + C	 (3.2) 

	

sin -Y = _ u(0)2 + C.	 (3.3) 

Since u(M) 54 0 when < f, there follows 

C = C(M, 1 ) > 1.	 (3.4)
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We recall that we assume 0 ^ - y < and that the case - <y < 0 reduces to that one 
under the mapping u —* — ii. The substitution 

cos(=C_u2	(0<(<) 
2 

and the boundary conditions (3.2) and (3.3) lead to the parametric representation (see, 
for example, Landau and Lifschitz (7: p. 2711) 

u)=v'/C—cos(	 (3.5) 
—.y 

s)	
cosT	

dT	 (3.6) 

	

=	J VC—cosT 
e 

where 0 < ( < — y and C = C(M, ) > 1 is the constant from (3.4). The equation 

f--v 
f  

M	
COST	

dT	 (3.7) 
=J IC —cosT 

0 

implies that for fixed y E (0, ) the function C(M,) is monotonically decreasing with 
M - oo and

lim C(M,-y) = 1.	 (3.8) M -00 

Then,  from (3.2) we obtain limM.... u(M) = 0. 
Lemma 3.1. Set 8	- -y. For - E [0, ) and M E (1.3,) there exists a


constant b(M, 8) uniformly bounded by Ib(M, 6) < 0.8 such that 

e6t(M,5HM


	

C(M,y) = 1 + --	where e = 26 
e 2 — e25(M,6) 

Proof. This lemma follows from the following decomposition. Let ç e (0, — 
Then

I	COST 
________ dT 

J \/C—cOsT 
0

( 

	

dr	P CosT—i 

	

1+ 
r2	IC_COST 
To 

(

	

+	(1	

1	
2	 dr. 

—

	

	COS T1+


- c_1+z3.2  

This implies

COS T 
(

 1 

	

i VC — COST 
dT	

dT 

= I C —1 + +
	(b(C,()	(3.9) 

0	 0
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where
b(M,I <0.8	 (3.10) 

uniformly in -ye [0,) and ME [Mo,c,) with M0 >0. Set C—i = . Then 

I	dr
'

(c+ 

/1(ç2\• 

Ic - i+ 
=	

C 

Thus, this equation, (3.7) and (3.9) conclude the proof I 

From (3.6) we see that s(() is strictly increasing when ( decreases. Set 5 = - 
and 8=L. 

Lemma 3.2. When M > 5.1, then there exist constants b(M,5) and . b(M,5) such 
that

(M'\	M e 66 ( Mâ )(1 - e26t(MM_M) 
(l—l=Se 2 

\ 2 )	e(M -) (1 - e256(M6)_2M) 

and the constants b satisfy inequality (3.10). 

Proof. From (3.5) and (3.7) we obtain 

M1 f cosT 
=	________

—cos -r 
d7-.	 (3.11) --	VC 

0 

Analogously to the proof of the above Lemma 3. 1, we conclude from (3.11) that


- 1 e M - 
— 2 e66(M,)+(M12) 

where e is defined through the formula given in Lemma 3.1 I 

Formula (3.5) implies that u(*) <C + /(() and together with Lemma 3.1 and 
Lemma 3.2 we have

u

	

(M) <7.5( —) e 2	 (3.12) 

Integration of the differential equation (2.6) from s E (, M) to M yields 

M 
u'(s)	

= _fudT.	 (3.13) 
/i ± u'(s)2

S 

Thus
u'(s)I	 /M\ 

V1 + u'(s)2
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Together with (3.12) there follows 

M	Iu'(s)I	<75r	
)	

L 

	

--	Me 2	 (3.14) 

	

M — S  —+ u I (	
c 

s) 2 — 

On the other interval (0, -) one has 

J4	Iu'(s)I	< 2	WWI	< 2 lim	Iu'(s)I	— 2 cos y	(3.15) 
M — s 1 + u'(s) 2	+ u'(s) 2 — s—O 1 + u'(s) 2 — 

since lu	
2 

is strictly increasing when s — 0. This monotonicity property follows 
/1+u (3) 

from (3.13) since u is strictly increasing with .s -* 0 (see (3.5) and (3.6)). 

Proof of Lemma 2.1. The proof follows from (3.14) and (3.15) when M > 6.4 I 

Proof of Lemma 2.2. We see from (3.5) and Lemma 3.1 that the solution u of 
the boundary value problem (2.6), (2.7) satisfies 

0<u(M) <E 7.i(_y)e_M	 (3.16) 

if M > 6.3. The unique solution b of the boundary value problem (1.6), (1.7) over the 
unbounded interval is defined by (3.5), (3.6) when C = 1, that is, 

M

cos T 

= v'/i — cos(	and	s(() =	f v'i — cost 
di- 

C 

where 0 < ç < 11 — -y. Set ç = ( (M). One obtains analogously to the proof of Lemma 
3.1

M = J	+c(M,7)(	) 

where Ic(M,7)I < 0.8 uniformly with respect to M > 6.4 and to E [0, fl. Con-2 
sequently, ((M) = ( --y) e(f_(M,_M which implies ((M) < 3.6( —y) e. 
Hence since (M) ((M), one has 

0 <(M) 3.6 ( — -) <	 (3.17) 

Finally, one obtains Lemma 2.2 from the comparison principle and (3.16), (3.17) I 

Acknowledgement. This paper was supported in part by the Deutsche For-
schungsgemeinschaft (DFG).	 .



On the Capillary Surface in a Wide Circular Tube	143 

References 
(1] Concus, P.: Static menisci in a vertical right circular cylinder. J. Fluid Mech. 34 (1968), 

481 -485. 
(2) Concus, P. and R. Finn: On capillary free surfaces in a gravitational field. Acta Math. 

132 (1974), 207 - 223. 
[3] Finn, R.: Equilibrium Capillary Surfaces. New York: Springer-Verlag 1986. 
[4] Finn, R.: On the Laplace formula and the meniscus height for a capillary surface. Z. 

Angew. Math. Mech. (ZAMM) 61(1981), 165 - -173. 
[5] Finn, R. and J.-F. Hwang: On the comparison principle for capillary surfaces. J. Fac. 

Sci. Univ. Tokyo 36 (1989), 131 - 134. 
[61 Johnson, W. E. and L. M. Perko: Interior and exterior boundary value problems from the 

theory of the capillary tube. Arch. Rat. Mech. Anal. 29 (1968), 125 - 143. 
[7) Landau, L. D. and E. M. Lifschitz: Flydrodynamik. Berlin: Akademie-Verlag 1974. 
(8) Laplace, P. S.: Traité de mécanique céleste, Tome 10/Supplement. Paris: Courcier 1805. 

In: Oeuvres ComplCtes de Laplace, Tome 4. Paris: Gautiers-Villars 1880. 
[9] Miersemann, E.: On the Laplace formula for the capillary tube. Asymptotic Anal. 8 

(1994), 393 - 403. 
[10] Miersemann, E.: On the rise height in a capillary tube of general cross section. Asymptotic 

Anal. 7 (1993), 301 - 309. 
[11] Miersemann, E.: An asymptotic method for solving the capillary tube problem. Submitted. 
[12] Perko, L. M.: Boundary layer analysis of the wide capillary tube. Arch. Rational. Mech. 

Anal. 45 (1973), 120 - 133. 
[13] Lord Rayleigh: On the theory of the capillary tube. Proc. Roy. Soc. London (Ser. A) 92 

(1915), 184 - 195. 
[14] Siegel, D.: height estimates for capillary surfaces. Pacific J. Math. 88 (1980), 471 - 516. 
[15] Siegel, D.: Explicit estimates of a symmetric capillary surface for small Bond number. In: 

Continuum Mechanics and Its Applications (eds.: G. A. C. Graham and S. K. Malik). 
New York: hemisphere Pub]. Corp. 1989, pp. 497 - 506. 

Received 17.05.1996


