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Characterization of the Exponential Distribution 
by Properties of the Difference Xk+3, - Xk:n

of Order Statistics 
H.-J. Rossberg, M. Riedel and B. Ramachandran 

In rncmoriam Paul G'änthcr (1926 - 1996) 

Abstract. Let X 1 , X2 , ..., X,. be independent and identically distributed random variables 
subject to a continuous distribution function F, let X 1 ,,X2 ,., ...,X,, be the corresponding 
order statistics, and write 

P(Xt+, - Xk, ? x) P(X,_k ^! x)	(x ^! 0)	 (0) 

where n.k and s are fixed integers with Ic + s n. It is an old question if condition (0) implies 
that F is of exponential type. In [8] we showed among others that condition (0) can be greatly 
relaxed; namely, it can be replaced by asymptotic relations (either as x - oe or x j 0) to derive 
this very result. Using a theorem on integrated Cauchy functional equations and in essential 
way a result of [8] we find now a more elegant and deeper theorem on this subject. The case 
of lattice distributions is also considered and some new problems are stated. 
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1. Introduction 
Let Xi,X2,...,X, be independent and identically distributed random variables with 
common distribution function F, and let Xi,, X2:n, ..., Xn:n be the corresponding order 
statistics. Throughout the present paper we keep integers k,n and .s with 1 < k < ri 
and k + s ri fixed and put 

d3(x) = P(Xk+, - Xk n > x) - P(Xs:n _ k ^! x)	(x >— 0)	(1.1) 

and
&(x,p) = P(Xk + sn - Xk . > x) - cp YC)Z	(x > 0).	(1.2) 

Then we can formulate the two following problems. 
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Problem 1. Does -
d3(x) = 0	(x > 0)	 (1.3) 

for some s > 1 imply that F is of exponential type on (0, +oo)? 

Problem 2. Does

6,(x,p)=0	(x>0)	 (1.4) 

for some s > 1 imply that F is of exponential type on (0, +) with parameter p? 

Essential steps in solving Problems 1 and 2 are the following ones. 

Case s = 1: Rossberg [9] tackled both problems for continuous F. He applied 
two analytic function theory methods that are radically different. Also the results 
have different characters: It is only in the solution for Problem 2 that an impleasant 
assumption on the zeros of f - the characteristic function of F - proves to be necessary. 
Ramachandran [6] developed the first method. His result could later be derived by 
means of the integrated Cauchy functional equation (1.9) (see [7: Theorem 2.5.5]; the 
result is reformulated in the Appendix of the present paper). 

Case .s > 1: Ahsanullah [2) showed that (1.3) together with F having increasing 
failure rate is a characterizing property of the exponential distribution function. A 
very lucky idea came even still earlier: Ahsanullah [1] assumed (1.3) for two different 
values 1 < .s <82 <n - k and derived the exponential distribution function under the 
assumption that F has a Lebesgue density, which is strictly positive on (0, +) and 
under the additional implicit condition that F satisfies either 

(x + y) ç (x)F(y)	 (1.5) 

or
+ y) ^! (x)T(y)	 (1.6) 

where F = 1 - F. 

Ahsanullah's problem was treated by Gather [4] without the additional condition 
and under the weaker assumption that F is continuous and strictly increasing for x > 0. 
From her proof it follows also that the answer to Problem 1 with just one value .s > 1 
is positive provided that the distribution function F satisfies (1.5) or (1.6). 

A new idea was elaborated in [8] where we assumed 1 <s <n - k and noticed the 
following: 

(i) Strict equality in (1.3) and (1.4) is not needed in any point. Instead we can 
modify Problems 1 and 2 imposing an asymptotic condition (either as x -i oo or x -, 0) 
on d or 53 to be sufficient, provided that F shares some general properties (see, for 
instance, Propositions 1.1 and 1.2). 

(ii) Contrary to the fact that in [9] very different methods had to be found it is now 
the same elementary method that allows to treat both modified problems corresponding 
to (1.3) and (1.4). 

As examples we quote the following two known results.
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Proposition 1.1 (see [8]). Let the distribution function F with F(0) = 0 have 
continuous and bounded density p on [0, +oo). Then F is of exponential type provided 
that

d5(x) = o(F 8 (x))	(x - 0).	 (1.7) 
The counterpart where x- + 00 runs as follows. 
Proposition 1.2 (see [8]). Let F be a continuous distribution function and assume 

	

that we have regular variation, i.e. for every u > 0 there exists	 - 

urn	+ u) = Q(u).	 (1.8) X 0 F(x) 

Then F is of exponential type on (0, +00) provided that 

d3 (x) = o((x)n_k_1)	(x - +00)	 (1.9) 

and (u) - Q(u) does not change the sign for u > 0. 

To our opinion the formulation of Proposition 1.2 is not satisfactory since assump-
tion (1.8) is comparatively strong; it immediately implies that Q is of exponential type. 
But in spite of that we need Proposition 1.2 as a tool in the present note. We underline 
that our Theorem 2.2 is not a generalization of Proposition 1.2 because the speed of 
convergence in assumption (2.1) is somewhat higher and we assume s = 1. Note that 
Theorem 2.2 is by far more elegant since assumption (1.8) is completely omitted; it is 
also essentially deeper because in the proof we need also a remarkable theorem on "in-
tegrated Cauchy functional equations" before we can apply . Proposition 1.2 to conclude 
that F is of exponential type. 

To finish the introduction we remind the reader of the following fact. If the function 
F is continuous, then the Markov property of order statistics holds (see [3]). Then 
condition (1.3) for .s = 1 can easily be rewritten as 

(n) T-	+ u)dFk(u) = F' -k(X)	(x > 0)	(1.10) 

whence F(0) = 0 trivially follows. Putting 

rn-k 
= f	and	a(x) = 	Pk(X) (x > 0) 

we obtain.the integrated Cauchy functional . equation 

1(x) = ff(x.+u)(u) -	> 0)	 - (141) 

whose theory is presented in [7]. In Section 2 we will use this equation modified by an 
error term.
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2. Results for s = 1 

Our first statement is a stability theorem. It is nothing but an immediate application 
of Theorem 4.4.1 in connection with Remark (1) of [7]. By a stroke of good fortune it is 
possible to combine it with Proposition 1.2 so that we easily obtain Theorem 2.2. Note 
that it is the assumption "F strictly increasing on (0,17)" that greatly simplifies formula 
(2.2). 

Proposition 2.1. Let a continuous distribution function F < 1 be strictly increas-
ing on [0, ij), with ij > 0, and assume, moreover, F(0) = 0 and 

jpn—k ( 
+ u)da(u) = '(x)(1 + O(e))	(x	+)	(2.1) 

for some E > 0. Then there exists a unique a > 0 such that 

Ie `Y da(y) = 1 

and
—n - k 
F	(x) = e	(1 + O(e"))	(x -* +).	 (2.2) 

Now we see at once that under the above suppositions condition (1.8) is satisfied 
with Q_ c (u) = Hence we can apply Proposition 1.2 and obtain our main result, 
the desired characterization theorem. 

Theorem 2.2. Let the above suppositions be true and assume either 

n_k() 2 eZ	(x > 0) 

or
—n - k 
F	(x) < e -oz	(x 2 0). 

Then F is of exponential type. 

Problem 2.3. The above considerations seem to be of interest also in view of the 
ideas which they stimulate. For instance: 

(i) Is it possible to modify Theorem 2.2 (or the corresponding Theorem 4.4.1 of 
[7]) such that in the assumption di (x) -+ 0 not as x - +oo but as x 10 with a certain 
speed?

(ii) Problem 2 has not been treated by other authors in the long period from 1972 
- 1994. Will it be possible to improve the results of [8] concerning Gather's problem? 
The question makes sense since this paper shows the intimate connection of Problems 
1 and 2 and their modifications.
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3. Results for 1 < s <n - k 

We are now able to carry the above results over to the case 1 < s n - k. Our 
considerations are similar and so are the results but we need the additional assumption 
(3.3). It will prove useful to introduce the measures 

	

( In) Fk	(O<r<n—k) 

with
(11 

(	
U r) - 

To begin with we take from 18] the representation 

s-i 
d3(x) = (_i)3	_iy (n - k) (n - k 

r0	

_1_r) 

+00	 (3.1) 

- k - r 
X	(x) - ar J n_k_r( 

+ u)dKr(u)] 
0 

where
F(u) 

Kr(u)(') j 
+ k	(1 _ W)rdWk	(0rn—k-1,n?0) 

are distribution functions and

	

ar= (+k) >l	(r>o). 

By means of the above measures a 1. (note that dt7r(U) = a,- dKr(U)) this formula can 
be written as

+00 

d3(x)=
( s
n - k"	n—k—s+1 (x) - J n_k_s+1( +u)das_i(u)] 

0 

+o(	(x)) 

/n - k\ 1cn_k_s+1	 (3.2) 

=	')	
(x)(1 + O((x)) 

ar(x)=

 

+00 

- f	(x + u)das _ i (u)]	(x .. +oo). 
0
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Proposition 3.1. Let a continuous distribution function F < 1 be strictly increas-
ing on [0, ,7) (i > 0) with F(0) = 0. Assume 

(x) = O(e)	(x	+)	 (3.3) 

for some e > 0 and, further, 

	

d3(x) = O(fl_k_$+l(x)e_ez)	(x	+).	 (3.4) 

Then there exists a unique c > 0 such that 

Ie
-" Y dcr,- j (y) = 1 

and
n_k_s+1() = e -"' (I + O(e))	(x	+).	(3.5) 

Proof. Using (3.2) and assumptions (3.3) and (3.4) we get 

fn_k_s+I( + u)d,_i(u) =	 + O(e))	(x .. 

Accordingly, Theorem 4.4.1 of [7] permits to draw the conclusion (3.5)1 
By the same arguments as in Section 2 we obtain now the result corresponding to 

Theorem 2.2. 
Theorem 3.2. Let the above suppositions be true and assume further that 

—n–k–H-I F	(x)>e-	(x>0). 

Then F is of exponential type. 

4. Lattice distribution functions as solutions 
We assume now that F < 1 is a lattice right continuous distribution function.' In this 
case we need the above formula (3.1) for s = 1; but it was derived under the assumption 
of continuity. We show therefore first that it is true also for lattice distribution functions. 

We start with a remark on the tail function of the difference of two order statistics 
in lattice case. Consider a linear transformation 

}=aX+b(j=1,2,...,n;0<aeR) 

of the random variables X3 . Then we have for the corresponding order statistics Xj:n 
the same transformation, i.e.

= aXin + b	( = 1,2,...,n). 

Hence we may restrict ourselves to lattice distribution functions concentrated on the set 
Z of integers.
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Proposition 4.1. Let F be a lattice distribution function concentrated on Z. Then, 
for all real x	0,

+00 
P(Xk+ I :n - Xkn > i) 

= 
(n)

	
n_k(x + i)(Fk (i) - Fk(_))	(4.1) 

which can be rewritten as the Lebesgue-Stieltjes integral 

+00 

- Xk : fl > x) = 
(n) 

J 
n_k + u)Fk(du). 

-00 

Proof. We note that F and F are constant over every open interval of the form 
(m, m + 1) with rn e N. This is also true for the left-hand side of (4.1). Hence it suffices 
to prove (4.1) for all non-negative integers x = in. For this purpose, using the general 
joint distribution function of (Xkfl ,X k + 3n ) given in (5) for the special case s = 1, we 
obtain

	

P(Xk+I.fl - Xkn = j) =	P(Xk:n = j, Xi:. = i + j) 

= 
(n)
kJA, du  d(1 - v) 

where we denoted 

Aij = {(u,v): u <v, F(i—)< u < F(i), F((i +j)—) <v <F(i +}. 

Hence, we get for in 0 

	

P(Xk+ I .n -	> in) = E P(Xk+ I :n - Xk:fl = j) 
j=m-4-1

F(i)	 F(i+j) 

	

=()•	J du 	J d(1—v) 
100F()	)=m+IF((.+.)) 

= -
 

+00 
(F k(i) - Fk(i_)) 

	

d(1 - v) 
F(+m) 

and this is equivalent to the assertion I 

Now we assume (2.1) with a = () Fk . Then Theorem 4.4.1 of [7] tells us that the 
step function nk satisfies for a certain a > 0 

n_k() = j(x) e°(1 + k(x)) = c > 0	(1 < x <I + 1, 1 E No)	(4.2)
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with some sequence cj 10 and some function k such that 

	

k(x) = O(e)	(	+oc)	 (4.3) 

where p has period 1. In other words, the function p fulfils 

C" 

	

P(X)C11+k()	(l<x<l+1) 

and
ea(z+I) 

	

p(x+l)=c,+i	 (1<x<l+1). 1 + Ic(x + 1) 

Hence

	

=e(1+k+1	(1<x<l+1) 
•	 Cl 1+k(x) 

follows from periodicity so that c+
'--, e rn " < 1 as 1 —+ +. For k = 0 we obtain 

= e"Cl (1 > 0) with	
C' 

ECI=C0(1+e"+...)= 

in accordance with Theorem 2.5.5 of [7] a correct version of which is given in the 
Appendix below; it tells us that a mixture of the degenerate and a geometric type 
distribution function is a solution of (1.10) in the lattice case. 

We wish now to derive k = 0 from appropriate conditions. For this purpose we 
check the proof of the above Proposition 1.2 given in [8) step by step and find that the 
following counterpart to this proposition holds. 

Proposition 4.3. Let F < 1 be lattice supported on 0, 1,... with F(-0) = 0. 
Assume that (1.8) is true and that (u) — Q(u) does not change the sign for u > 0. 
Then (1.9) implies that there exists c > 0 such that 

= 1	(u E N0 ).	 (4.4) 

Since (1.8) is an obvious consequence of (4.2), (4.3) and the periodicity of p we 
obtain now the following desired counterpart to Theorem 2.2. 

Theorem 4.2. Let F < 1 be lattice supported on No with F(-0) = 0. If it satisfies 
(2.1), then there exists a > 0 such that (4.2) and (4.3) are true. In case that, moreover, 

	

(x) > e'	(x > 0) 

we have the condition (4.4).
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5. Appendix 
We turn to a reformulation of Theorem 2.5.5 in [7] which is not quite in order since 
order statistics do not necessarily have the Markov property, if F is discontinuous (see 
[3]). Denote the degenerate distribution function concentrated at i by 6. 

Theorem A.I. Let X1,X2,...,X,, be independent and identically distributed ran-
dom variables subject to a non-degenerate distribution function F. Suppose, for some 
k <n, that X, 1 .,, - Xk has the same distribution function as Xi n_t. Then we have 
the following assertions: 

(i) If F is continuous, it is necessarily an exponential distribution function. 

(ii) If F is a lattice distribution function, then either 

(a) it is a two-point distribution function concentrated at 0 and some a > 0, i.e. 

FpS0 +(1p)&z	(O<p<l) 

or
(b) it is a mixture of the form 

F=p5o ±(1 —p)>--6na	(0 <p< 1,0< a, 0<9<1). 

Proof. Our assumption is that, for all x, 

P(Xk+ln Xk. 
> x) = n_k()	 (A.1) 

Hence F(0—) = 0, and the X, are necessarily non-negative random variables. Case 
(i) was settled in [9]. Therefore, we focus attention on the case that F is a lattice 
distribution function. By Proposition 4.1 we have the formula 

P(Xk+I .	Xk . n > x)= () I pn—k(X + ) dF k (U)	 (A.2) 

Hence (Al) is equivalent to

+00 

I 
1fl'	—n-k 
(\k)	

F	(x + u) Fk(du) = n_k()	 (A.3) 
0 

Consider the case ()F'(0) > 1. Then (A.3) implies that we must have (x) = 0 for 
x > 0, ruled out by assumption that F $ 80• Hence () F lc (0) < 1. 

Suppose firstly that () F lc (0) = 1. Then it turns out that F is of the type (ii)/(a), 
as shown in [6]. Secondly, consider the case ()Fk (0) < 1. Then (A.3) is solvable using 
the information we have on solutions of the integrated Cauchy functional equations on 
[0, +oo) (as presented, for instance, in [7: Chapter 2]) and we conclude that F must be 
of the form (ii)/(b) I
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