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Abstract. Let I be a left ideal of a group ring C[G] of a finite group C, for which a decom-
position I = e;-1 Ik into minimal left ideals IA; is given. We present an algorithm, which 
determines a decomposition of the left ideal I . a, a E C[G], into minimal left ideals and a 
corresponding set of primitive orthogonal idempotents by means of a computer. The algorithm 
is motivated by the computer algebra of tensor expressions. Several aspects of the connection 
between left ideals of the group ring C[S,.] of a symmetric group 8,., their decomposition and 
the reduction of tensor expressions are discussed. 
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1. Introduction 
Investigations in differential geometry, tensor analysis and general relativity theory re-
quire often very extensive conversions of tensor expressions according to the rules of 
the Ricci calculus. There are many efforts to develop computer programs which can do 
such calculations by means of symbolic computation. Examples of such programs are 
the Mathematica packages MathTensor [4] and Ricci [13), the Maple package GRTensor 
16) and the REDUCE package REDTEN [5]. 

A fundamental and unsolved problem of the manipulation of tensor expressions by 
a computer algebra system is the effective determination of a normal form for tensor 
expressions. Let us consider sums

T =	 ( 1.1) 

with real or complex coefficients cs, where the T( ,) are products of certain tensor coor-
dinates such as

AiabcA'jkdBC".	 (1.2) 
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Free indices and contractions are allowed. If the tensors A, B, C,... possibly possess sym-
metries relating to permutations of indices and/or fulfil linear identities, then there is 
a possibility to express some of the T(1) in(1.1) by the others. This is a hard problem 
foi a tensor manipulating system. We need an efficient algorithm to detect such trans-
formability and to carry out transformations in a defined way. 

It is well-known that the determination of normal forms of tensor expressions is 
connected with the representation theory of the symmetric group Sr. Littlewood made 
use of the Richardson-Littlewood rule and plethysms to find out the types of concomi-
tants of a set of ground forms, the coefficents of which are coordinates of symmetric 
tensors (appendix of (14]). Applying the same methods, Fulling, King, Wybourne and 
Cummins [6] have calculated lists of normal form terms of polynomials of the Riemann 
curvature tensor and its derivatives by means of a program package Schur [23]. 

Stimulated by [6), we have worked out a way to reduce tensor expressions (1.1) to a 
sum over a subset { T() I k = 1, ...,m} of linearly independent T(1) , appearing in (1. 1), 
with the help of group ring methods. In this paper we restrict ourselves to expressions 
(1.1), in which the T(1) do not have any contractions2). Neglecting a possibly existing 
product structure of the T() , we consider sums 

=	lip Tc (j) a () , P ç Sr , 13p E C,	(1.3) 
PEP 

which run over a certain permutation set P c Sr . The tensor T can be associated with 
group ring elements Tb, which lie in a certain left ideal C[Sr] a of the group ring C[Sr], 
if T possesses a tensor symmetry and/or fulfils linear identities. If this ideal is known, 
then identities for the reduction of (1.3) can be obtained from the solutions of a linear 
equation system

a(p' Op')Xp = 0 , p E Sr,	 (1.4) 
p'ES, 

the coefficient matrix of which is derived from the generating element a of C[Sr] a. 
Two constructions are important for an efficient handling of (1.4). We decompose 

C[ST] a into minimal left ideals by an algorithm, which is practicable by a computer. 
The decomposition allows us to change to the smaller equation systems of type (1.4), 
which belong to the minimal left ideals. Further, a fast construction of bases of the 
minimal left ideals by means of Young tableaux makes it possible for us to find quickly 
linearly independent equations of (1.4). 

The decomposition of C[S,.] a into minimal left ideals yields us a decomposition of 
the tensor T into parts with special symmetries. 

Recently, Ilyin and Kryukov have published a program for tensor simplification 

1) Even different names of indices lead to trouble. For instance, the two expressions 
T0b TCd, T e1 0 T"1 and T. Td,' T1 T'' are equal, which becomes visible, if we rename the 
indices according to the rule a -4 c, b - f , c —* d, d — e , e -4 a , f -+ b and raise or lower 
suitable indices. The determination of such transformations is non-trivial. 

2) In a forthcoming paper we will treat the case of contractions.
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called ATENSOR [7], which bases on the connection between tensor expressions and 
the group ring C[Sr], too. But they do not use ideals and ideal decompositions. They 
consider a subspace AC of the group ring which corresponds to a given set of linear 
identities being valid within a set of tensor expressions and construct a basis of AC 
by means of Gaussian eliminations which can be used for the simplification of tensor 
expressions. 

2. Tensors and left ideals of C[Sr] 

In our considerations we make use of the following connection between tensors and 
elements of the group ring of a symmetric group. We denote by C[Sr] the group ring of 
the symmetric group Sr over the field of complex numbers C, which we identify with 
the set .TS of all complex-valued functions on Sr. Further let TrV be the space of 811 
complex-valued, covariant tensors of order r on the vector space V over a field K. We 
suppose K = R or K = C. The tensors T € TV are multilinear mappings of the r-fold 
cartesian product of V onto C, 

	

T: V x V x ... x V -4 C	,	(Vi, ...r)	T(v i , ...Vr) 
r factors 

Definition 2.1. Any tensor T € 7V and any subset b : {Vi,...,Vr} C V of r 
vectors from V induce a function Tb € .TSr according to the rule 

T6 (p) := T(v (l) , ...Vp()) , p € Sr ,	 (2.1) 

which we identify with the group ring element EPES, Tb (p)p € C[Sr] . For this group 
ring element we use the notation T6 , too. 

The question whether the full group ring C[Sr) may be generated by elements of 
the kind T6 is settled by the following 

Lemma 2.1. Let b = {v i , ..., V,.} C V be a fired vector set and let 

.TbSr{fEFSrlTETrV:fTb} 

be the set of all functions from .FSr which are induced by b and arbitrary tensors T € 
7V. Obviously, .FbSr is a linear subspace of .TSr. If dimV r, then there exists such 
a subset b={vi,...,vr}CV that F6Sr=.Sr. 

Proof. In the case dim V > r we can choose a set b = {e 1 , .. . er} of basis vectors of 
V and assign to every permutation q € Sr a tensor Tq € 7V with the property 

Tq(eq(1),eq(2),...,eq(r)) = 1, 
Tq (e ij ,e i2 ,...,e i2) = 0 in all other cases. 

These tensors Tq fulfil
(1 if p=q


	

(Tq)6(p) =
	0 if pq 

such that the functions (Tg)b, q € S, form a basis of TSr I

Definition 2.2. We use the following two operations.
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1. Let I >Jp f(p)p E C [Sr] and T E 7.V. Then we denote by f  E 7V that 
tensor, the coordinates of which are obtained from the coordinates of T by 

(fT)ajcx2 ... a,	f(p) TQ9(1)Q(2)...()	 (2.2) 
P Es, 

2. We denote by * : C [Sr] 4 C [Sr] the mapping 

I =	f(p)p	f :=	f(p)p1 .	 (2.3) 
pES,	 pES, 

Many of our calculations are based on 

Lemma 2.2. Let.f = >I E s,f(P)P E C ESrI, T E TrV and b = {Vl,V2,...,Vr} C V 
a set of r vectors from V. Then there holds true 

(1 T)b = EPES, 1(p) T6 p	= Tb Jr* .	 (2.4) 

Proof. Equation (2.4) follows from the calculation 

(fT)b =	( fT)(Vp(l),Vp(2),...,Vp(r))P 
p ES, 

- -	Qi	 ••Vp( )•	r)f(P)Tap(i)Qp(2)...ap(,)P p1)	P('
p,p'ES,

0p'(')	0p'(2) 
=	i 

p,p'ES, =E	f(p')Tb (pojI)p =	>	f(p')T,,(p")p,, op
-i 

p,p'ES, p'p"ES, 

=	>	f(p')T,.p'' = Tb. Jr. I 
p'ES,

Now we consider tensors with certain symmetries. 

Definition 2.3. We call a pair (C, e) a tensor symmetry, if C c Sr is a subgroup of 
the symmetric group Sr and e : C -+ S 1 is a homomorphism of C onto a finite subgroup 
of the group of the unimodular numbers S 1 {z E C I Izi = 1}. We say that a tensor 
T E TrV possesses the symmetry (C, e), if 

Vc E C : cT = e(c)T .	 (2.5)


If we form the group ring element

E e(c)c EC[ST] ,	 (2.6) 
cEC 

then a simple calculation shows that e	= ICI € with the cardinal number ICI of C. 
Thus e is essentially idempotent. Further it can be seen easily that the 1-dimensional 
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complex vector space U	{z e I z E C} is invarinat under the action a(u) := c u of C

on U and that the function 1/e is the character of the representation a : C -4 GL(U). 

	

Because of (2.4) equation (2.5) turns into Tb . c	e(c)Tj, for every vector set 

b = {vi, ..., v,.} C V. That means that every Tb of a tensor T with the tensor symmetry 
(C, e) is an element of the subspace 

W	{fEC[S] I VcEC:f . c' =E(c)f}	 (2.7)


of CESrI. 
Proposition 2.1. Let (C, E) be a tensor symmetry for tensors from 73V. Then the 

vector space W according to (2.7) fulfils 

W = C[Sr]C 

Proof. First we show e c 1 = e(c)e for c E C by 

c 1 =	e(c')c' . c = E e(c" c)c" =E E(c)e(c")c" = 
c'EC	 c"EC	 c"EC 

Thus every f = g c E C[Sr] . e, where g E CESrI, satisfies f c = e(c)f, such that 
C[Sr] . ç W. 

On the other hand, there is valid f = e(c')f c for every f E W. The sum over 
all c E C yields

Cu = E e(c')f . c' = 1 (e(c)c) = f•e 
cEC	 cEC 

i.e. f =	E C(Sr] . U 

A similar proposition holds true for the T6 of tensors T, which satisfy certain linear 
identities. Let u 1 , u 2 , ..., u E C[S] be given group ring elements and let T E YrV be a 
tensor, which meets the rn linear identities 

u 3 T = 0 , j = 1,2,...,m.	 (2.8)


On account of (2.4) relation (2.8) is equivalent to 

Vb	{Vl,V2,...,Vr} C V :	Tb u = 0	, j = 1,2,...,m .	(2.9)


More generally, we consider the set of all I E C[SrJ, which satisfy (2.9). 

Proposition 2.2. Let u 1 ,u2 , .... u m E C[Sr] be given group ring elements and let 

J := If E C[Sr] I fu = 0, j = 1,2,...,m} .	 (2.10)


Then there holds true: 

1. J is a left ideal of the group ring C[Sr].
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2. There exists one and only one right ideal K of C [Sr], with the following two 
properties: 

(a) An  E C [SrJ lies in K if and only if f 	0 for all  E J. 
(b) An  E C[Sj lies in J if and only if f 	=0 for all u E K. 

The proof is trivial. If T is a tensor, for which linear identities hold true simultane-
ously with a tensor symmetrie, then its T6 are contained in the intersection W fl J of 
two left ideals W, J of type (2.7), (2.10). 

An example of such a tensor is the Riemann curvature tensor. For this tensor cha-
racterizing left ideals are known. If R1kI and VmRijkl are the coordinates of the curva-
ture tensor and its first covariant derivative, then the corresponding group ring elements 
Rb, (VR) , b, b C V, lie in the left ideals 

Rb E C[S4] yAi , (VR) E C[S5] yA2 

where y ,\, 
,y A2 denote the Young symmetrizersl) of the Young tableaux 

TAI .	13	
T2 .
	135 

24	'	24 
The proof, given in [6]2), needs the symmetry properties of Rik, and the Bianchi iden-
tities. 

In contrast to the left ideals (2.7) we do not know no general method to construct a 
generating idempotent for a left ideal (2.10) at the moment. If we are able to determine 
a generating element of the characterizing left ideal W, J or W fl J of a given tensor 
T E 7V, then the tensor T may be handled within the scope of the following line of 
action. 

We return to our main concern and consider tensor expressions, which are complex 
linear combinations of certain isomers of a tensor T E 7V, 

T 1•••, = E 3pT9(1)...c(,) , / P EC , PC S,,	(2.11) 
pEP 

where the sum runs over a subset P of the symmetric group Sr. We assume that all 
Tb , belonging to T, lie in a left ideal I C[Sr] a with known generating group ring 
element a. 

Lemma 2.3. A relation (2.11) exists between T,T E7V if and only if there holds 
true with the identity permutation id 

Vb	{v i ,.. . vr} C V :	7-6(id) = >/3p Tb(p) .	 ( 2.12) 
pEP 

Proof. (2.11) is equivalent to 

Vb	{Vi,...Vr} C V	Ti...OrV'••V	=
pEP 

which can be written as (2.12). 

' The definition of a Young symmetrizer gives (2.17). 
2) Moreover, the above statements are extended in [6] to the higher derivatives of the curvature 

tensor by means of the Ricci identity.
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The elements of the left ideal I are characterized by linear identities, the knowledge 
of which could be used to simplify (2.12) by eliminating suitable terms Tb(p). 

A set of complex numbers {x I p E Sr} determines a linear identity for all elements 
of I if

Vf E I:	x9f(p) = 0.	 (2.13)

pES, 

If we know a non-trivial identity (2.13) with x, = 0 for all p E Sr \ P, we can eliminate 
a term Tb(p) in (2.12) by means of it and get reduced variants of (2.12), (2.11) 

-b(id) = E f3,,T(p)	 =E flpT(1)...(.)	P C P. 
pEP	 PEP 

Since every I E I = C[Sr) a can be written as f = a =	g(p)a( j/)p o p' with

a g E CESrI, we obtain from (2.13) 

VgEC(Sr]: E ( E a(ir1op')xp)g(p)=0, 
pes, p'ES, 

which yields the homogeneous linear equation system 

a(p o p ' )-p , = 0 , p E Sr	 (2.14)

p,Esr 

for the numbers x, that describe the linear identities of I. 
The set {p a I p E Sr} generates the left ideal I = C[Sr] a and can be reduced to 

a basis of I. Because
' pa =	a(p')pop' =	a(p'op I 
)p

II
	 (2.15) 

p'ES,	 p"ES 

we see that the rank of the coefficient matrix A := [a(p' o P')]p,p'ES of (2.14) is equal 
to the dimension of I,

rankA = diml.	 (2.16) 

Further, if {q a I q E Q} is a basis of I, then on the strength of (2.15) the rows of (2.14) 
with p = q E Q are a system of rank A linearly independent rows. Thus, the knowledge 
of such a basis allows us to write down immediately a set of rank A linearly independent 
rows of (2.14) without carrying out the Gaussian algorithm. 

In general, the equation system (2.14) is very large since it has a x r! coefficient 
matrix. But, if we only search for solutions of (2.14) with x p = 0 for p P and proceed to 
a known set of rank A linearly independent rows the system (2.14) is reduced to a much 
smaller subsystem (system (3) in Figure 11)). However, we get afar greater reduction of 

1) In a forthcoming paper we will give an efficient algorithm for Gaussian elimination in 
system (3) of Figure 1 and for simplifying expressions (2.11) by means of the solutions of 
system (4), Figure 1.
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• N (4) 

After Gaussian elimination 

(3)	 (2) 

Columns with PEP

rank A linear independent rows

(1) 

The full system (2.14) 

Figure 1. The reduction of system for the r,. 

(2.14), if we decompose the ideal I in a direct sum I = &' I Ik of minimal left ideals 
1k and consider the linear equation systems of type (2.14) which belong to the 'k Then 
the rank of the coefficient matrices Ak of these systems fulfils rank Ak = dim 'k < dim I. 

To determine a decomposition I = I, for I = C[Sr] a in minimal left ideals 
we use the fact that such a decomposition of the full group ring C[Sr] can be obtained 
by means of Young symmetrizersl) which may be defined as follows. We assign to every 
partition2)

A i E N , A l ^!A 2	Ak>O ,	A=r 

of a natural number r E N a so-called Young frame, that means a diagram of k rows 
of boxes, where the i-th row contains A 5 boxes (Figure 2). Then a Young tableau Tj' of 

1) About Young symmetrizers see, e.g., [22, 14, 1, 2, 15, 17, 9, 8, 6, 10] and the concentrated 
description in [20: Volume 11]. 

2) We write A I- r, if A is a partition of r E N.
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!
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Un 

Figure 2. The Young frame and examples of a Young tableau and a standard tableau for 

A = (6 42 1) 

A is a Young frame, which is filled with the numbers 1,2, ..., r, and a standard tableau 
is a Young tableau, in which the numbers of every row and column form increasing 
sequences. The Young tableaux of A are numbered by I = 1,2, ..., r!. 

If a fixed Young tableau Tj' is given, we denote by ?-I the group of all permutations, 
which only permute the numbers within the rows of Tj' (horizontal permutations), and 
by V' the group of all permutations, which only permute the numbers within the colums 
of Ti' (vertical permutations). The group ring element 

:i: >i: x(q)poq	EC(Sr]	 (2.17) 
qEV1" pE74 

is called the Young symmetrizer corresponding to Ti'. 
Every Young symmetrizer is essentially idempotent and generates a minimal left 

ideal C [Sr] y of C[Sr). Therefore it differs from a primitive idempotent e only by a 
factor p e C, i.e. y = pe' [1: pp. 99 and 551. 

All irreducible representations of the symmetric group Sr are obtained up to equiva-
lence, if one chooses exactly one Young tableau T/" to every partition A F- r of r E N and 
considers as representative of a class of equivalent representations the representation 

cs:Sr _* GL(C[Sr ].y,A) , ():f4p . f , pE Sr, IEC[SrJyj'. (2.18) 

Two representations cs, cs,' are equivalent if and only if A = A'. (See [20: Volume II].) 
For our purpose we need 

Theorem 2.1. Let ()I<j<jA be the sequence of all standard tableaux, which be-
long to a partition A F r of a natural number r E N. Then there is valid 

IA 

C[SrJ C[Sr]yj' , 1 A =dimC[Sr]y1A ,	 (2.19) 
AI-r 1=1 

where the sum runs only over Young symmetrizers y'\ of standard tableaux 7. 

Equation (2.19) gives a decomposition of C[Sr] into invariant irreducible subspaces 
of the regular representation 

cs:Sr—+GL(C(Sr]), cx:f-+p . f, pESr,IEC[Sr]
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of the Sr. A complete proof of Theorem 2.1 is given in [1: Chapter IV / §4 and §6]. A 
partial proof containing the most important proof ideas can be found in [9: Vol. I / pp. 
73, 74]. The dimensions [A can be calculated from the partitions A I- r by means of the 
hook length formula ([1: p. 101], [9: p. 81] or [6]). 

Littlewood [14: p. 76] and Boerner [1: p. 1031 have pointed out that in general the 
Young symmetrizers of standard tableaux are not orthogonal in pairs. For example, 
there holds true y = 0 but 11(,) Y 0 for the Young symmetrizers which 
belong to the standard tableaux

123	
T	

135 
45	,	:	24 

of A = (3 2) I- 5 (see [14: p. 761 and [1: p. 106]). The Young symmetrizers of standard 
tableaux define the minimal left ideals, which occur in the decomposition (2.19), but they 
do not give simultaneously a system of orthogonal primitive idempotents corresponding 
to (2.19). 

Theorem 2.1 yields the non-direct sum

'A 

I = (CIS,]]a = >C[Sr ] . ya	 (2.20) 
AF-r 1=1 

for the left ideal I. In the Sections 3 and 4 we will determine a decomposition of I in a 
direct sum of minimal left ideals from (2.20). It is remarkable that the methods of these 
sections work even in a group ring C[G] of an arbitrary finite group G. 

3. Construction of an idempotent for a minimal left ideal 

We consider the group ring C[G] of a finite group C over the field C of complex numbers 

Lemma 3.1. Let a EC[G], a 0, be an arbitrary group ring element and e E C[G] 
a primitive zdempotent of C[G]. If e a 0, then the left ideal W := C[G] a is 
equivalent' ) to the left ideal I := C[G) e and minimal like I. 

Proof. The kernel ker={xE lIxa=0}of the linear map q5:x-+x . a,x El, 
is a left subideal of I. Since e E I is mapped onto e a 54 0 and I is minimal, we obtain 
ker = {0}, such that the map : I - W has to be an isomorphism. 

	

If V C W is a proper left subideal of W, then	'(V) C I is a proper left subideal 
of the minimal left ideal I. Consequently, we obtain	'(V) = {0} and V = {0}, i.e. W

is minimal, too  

' Two left ideals I, W C C[G] are called equivalent, if there exists an isomorphism 0 : I -* W 
of the vector spaces I, W, which commutes with the left multiplication of C[G], that means 
çb(g . f) = g 0(f) for all g e C and all I E I [1: p. 521. If I, W are equivalent, then the 
representations I i-4 g I and w i* g w of G over I, W are equivalent. Here we assume 
g E C, I E I, w E W.
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Due to Lemma 3.1 the left ideals C[Sr]yf and C [Sr) yj' a, considered in Section 2, 
are equivalent minimal left ideals, if yj' a 0 0. Now we show a possibility to construct 
a generating idempotent for a left ideal W according to Lemma 3.1. 

Proposition 3.1. Let a E C[G], a 0 0, be a group ring element and e E C[G] be a 
primitive idernpotent with e . a 54 0. Then there exists a group element g E C, such that 

eage 54 0.	 (3.1) 

Moreover, the group ring element b := gea, formed with this g, is essentially idempotent 
and generates the left ideal W = C[G] e a. 

Proof. 1) The left ideal W = C[C] e a possesses a generating idempotent f [1: 
p. 54], which can be written as f = x e a with a certain x E C[G] and the generating 
element e a of W. Now, the relation 

eax	0	 (3.2) 

follows from I = 1 f x e a e a. But then an element g E C has to exist which 
satisfies (3.2) with x = g, since otherwise the left-hand side of (3.2) would vanish for 
every x E C[G]. 

As é is a primitive idempotent, we get 

e a g C = 

with a complex number p E C [1: p. 56] and p 0 on account of (3.1). Consequently. 
b:= g c a is essentially idempotent, because 

b.b=g(e.a.ge).a=pb, 

and b generates W, since C[G] g = C[C]I 

By Proposition 3.1 it is possible to construct a generating idempotent for every 
minimal left ideal C[Sr] yj a in (2.20) with yl' a 54 0. 

The determination of the group element g for the forming of the essentially idempo-
tent element b can be done by a computer program, which tests the validity of condition 
(3.1) for the finitely many group elements g E G one after another. The search stops if 
the first g E C is found which fulfils (3.1). We have realized such an algorithm for sym-
metric groups S, and the corresponding group rings C[Sr]. Though symmetric groups 
have a very large cardinality IS,i = r! in general, all examples, treated by this algorithm, 
claim a small number of search steps to reach a permutation p E Sr which satisfies (3.1). 

' Parts of the proof of Proposition 3.1 are similar to a proof of a proposition on regular 
group rings in [21] which is reproduced in [18: p. 68]. However, the proof in [18: p. 68] does 
not contain idempotent constructions on the basis of the minimality of certain left ideals, in 
contrast to the proof of Proposition 3.1.
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4. Construction of orthogonal idempotents for a decomposition 
of a left ideal 

Let I be a left ideal of a group ring CIG] of a finite group C, for which a decomposition 
I = 'k in minimal left ideals Ik is given. Further we assume that we know a 
generating idempotent ek for every 'k• The multiplication of I from the right by a 
group ring element a E C[G], a 0, yields a left ideal J = I . a which does not keep a 
direct sum of minimal left ideals no longer. In general we have only J = a. 

Now we will describe a method to construct a decomposition of J in a direct sum 
of minimal left ideals. This method even allows to determine a system of primitive 
orthogonal idempotents Ii from the ek which corresponds to the decomposition of J. 

Lemma 4.1. Let I = C(G] e be a left ideal of a group ring C(G] of a finite group 
G, generated by an idempotent e E C[G]. Then there holds true: 

1. The group ring element f := e - x e + e x e is an idempotent' ) with 

fe=f	,	e . f=e	 (4.1) 

for every x E C[G]. Especially, f generates the left ideal I, too. 
2. Let f be an zdempotent which fulfils (4.1). Then there exists an x E C[G], such 

that f=e—xe+e.x.e. 

Proof. Ad 1.: Since e is an idempotent we obtain fe = f . Further ef = e follows 
immediately from —e•x•e+e•exe = 0. Now the idempotent property of f is confirmed 
by

ff=(e—x.e+e.x.e).f=e—x.e+e.x.e=f 

Ad 2.: From 1 e = f there follows f E I and consequently I - e E I. Therefore we can 
write f - e = —y e with a certain y E C[G]. Then e f = e yields e y e = 0, such that 
f = e — y . e+e . ye is correct U 

Corollary 4.1. 2) Let e E C[G] be an idempotent. Then the following assertions 
hold true for all x E C[G]: 

1. n:=xe—ex•eisnilpotent, i.e. ri•n.=0. 
2. u := id - n is an invertible element or a unit of C[G] with the inverse u	= 

id + n, where id denotes the identity element of C. 
3. The idempotent f = e - x e + e x e in accordance with Lemma 4.1 fulfils 

f = u e u. 

The idea to produce a new idempotent I from a given idempotent e in this way was taken 
out of [18: p. 137]. However, in [18] the forming of new idempotents is carried out only by 
means of group elements x = g E C. 

2) This remarkable property is mentioned in [18: P . 1381, too. According to [18], first Zalesskii 
becomes aware of it.
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Proof. Adl.:n.n=Ofollowsfrome.(x.e—e.x.e)O. 
Ad 2.: uu =idand u . u= id result from nn= 0. 
Ad3.:By consideration ofe . e=e and e.(x.e—e.x.e)=O the assertion can be 

easily checked: 
u . eu 1 = (id—x.e+e.x.e).e.(id+x.e—e.x.e) 

= (e—x.e+e.x.e).(zd+x.e—e.x.e) 
= f+(id—x+ex).e.(x.e—e•x.e) = f 

The next proposition is the heart of our procedure to produce orthogonal idempo-
tents from given non-orthogonal idempotents. 

Proposition 4.1. Let I = C E G] e and I = C[G] ë be two left ideals of the group 
ring C[G], generated by the idempotents e and E. We assume that I is minimal, which 
I nvolves that e is primitive. Further we require e - ë 54 e. Then there holds true: 

1. A group element g E G can be found, such that 
e.(id—ë).g.e 54 0 .	 (4.2) 

Moreover, a complex number A E C belonging to that g is available, such that 
f := e - x e + e e with x := A(id - e) g is a generating idempotent of I 
which satisfies ë f 0. 

2. For a given idempotent f according to Statement 1 a group element E G exists, 
such that

f. (Id —ë) .. f	0 .	 (4.3) 
Besides, a complex number .\ E C can be choosed, such that f := ê - : with 

:= A(id—ë)...f is a generating idempotent of I which fulfils 1 . 1 = If = 0. 

Proof. From e - ë 54 e we obtain e (id - e) 54 0. By Proposition 3.1 there is a g E G, 
such that e - (id - e) g - e 0. Thus (4.2) is proved. Since e is primitive, a relation 

e.(id-6).g.e = ie	 (4.4) 
is valid with a complex number it E C [1: p. 56], and p 0 0 on account of (4.2). Now, 
if f is an idempotent according to Statement 1 of Proposition 4.1 which generates I by 
Lemma 4.1, we get

ë.f = ëe—ë•x•e+ë•e•x•e 
= ë•e+Apëe 

considering è . x = 0 and (4.4). Then A = —i/p leads to ë I = 0. - 
As f generates I, too, there follows 1 è f, because else I I and consequently 

e - ë = e would apply. Now the existence of a E G, which satisfies (4.3), arises from 
the use of Statement 1 of Proposition 4.1 to the idempotents f, ë. We change to a new 
idempotent f := ë - ë + é	ë of I, where i := A(id - e) . . 1 . Then ë . = 0 yields 

ë = 0. Since f is primitive as generating idempotent of the minimal left ideal I, 
(4.3) results in 1 . ( id - e) . . f = [if with 0 54 ji E C. Thus we get for f = ë - . ë 

and the choice A = 11 gives f . f = 0. The relation f . f = 0 simply follows from 
ë.f=0U
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The determination of group . elements g, E G, which satisfy (4.2), (4.3), can be 
carried out by a computer program in the way that was described in the end of Section 
3. However, the program should check, whether ë - e = 0 or f ë = 0, before the search 
for g or starts. If one of these cases arises, we can simply put A = 0 or A = 0 without 
searching for g or .	 -	 - 

We remark that the group ring element = A(zd - e) . . I with A = 1 1ri, used in 
the prove above, is likewise an idempotent, because 

=	2(id—e)..(f.(id—ë)..f) =	2 (id—e) .. f = 

Theorem 4.1. Let I be a left ideal of C[G], for which a decomposition J =
Ik 

into minimal left ideals 1k is given. Further, let a E C[G], a 54 0, be a group ring element 
with I . a 54 {O}. We assume that a primitive generating idempotent ej is known for 
every 'k The system of the e i is allowed to be non-orthogonal. Then we can select a 
subset {ek, , e k 2 , ..., ek,,} from the set {ek I	a 54 01, such that the left ideal J := I . a 
is the direct sum J = Jk1 of the left ideals Jk, 'k a = C[G] . ek, a belonging 
to the ek,. Moreover, we can construct primitive generating idempotents hk, of the Jk, 
from the ek, and a, which are even orthogonal. 

Proof. Because I a	{0}, we have {ek I e k a 0 01 34 0. We choose for k 1 the

smallest k with ek a 7^0. According to Proposition 3.1 we can determine a primitive 
generating idempotent 1k 1 of Jk,	'k1 a = C[G1.ek, a from e, and a. In the following,

we use the symbols J1 := Jk, and Ii := f, for Jk, and fk,. 

Now, we search for the smallest k that fulfils the tree conditions 

k>k 1 ,	eka70 ,	eka•f1ek.a.	 (4.5) 

If such a k does not exist, then there follows ek a - fi = ek a and consequently 'k a c .J1 
for every k > k 1 with ek a 0 0. In this case we simply finish with J = Ji. 

If, however,a smallest k can be found, which satisfies (4.5), we call it k2 . Then we 
have e 2 a V Ji, but ej 2 a E Jk2 := 'k2 a, such that Ji fl Jkz = {O}, since Jk2 is 
minimal. Thus, the sum of J1 and A. is direct. We denote it by J2	Ji Jk2. 

According to Proposition 3.1 we form a primitive generating idempotent 1k2 of the 
minimal left ideal Jk2 from e, 2 and a. fk 2 has to fulfil 1k2 . Ii 54 1k2 as well as e 2 a, 
because otherwise there would be fk2 E Ji and .1k2 c J1 . Now, using Proposition 4. 1, we 
produce new generating idempotents Ii, 1k2 from the generating idempotents 11, 1k2 of 
the left ideals Ji, J,,, which are orthogonal, i.e. J' - fk2 = 1k2 •f' = 0. Then 12 := f +fk2 
is a generating idempotent of the left ideal J2. 

Next, we search for the smallest k, which satisfies 

k>k2 ,	eka0 ,	ekaf27eka.	 (4.6) 

If such a k can not be found, then there holds true 'k a ç i2 for every k > Ic2 with 
ek a 0 and even 'k a ç J1 for every k <k2 mit ek a 54 0. This yields J = J2. 

If, however, a smallest k is available, for which (4.6) is valid, we call it k3 and 
consider the left ideal Jk3	a. The minimality of Jk3 and the relation e 3 a 
lead to J2 fl J 3 = {0}, such that we get a direct sum .13 : .12 .1k3 . Proposition 3.1
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provides us a primitive generating idempotent 1k3 of 3k3, which is determinable from 
e k3 , a. A. fulfils 1k3 12 j4 fk3, such that we can change from the idempotents f2, A. 
of the left ideals i21 Jj 3 to the orthogonal idempotents /2, fk., by means of Proposition 
4.1. Besides we obtain a generating idempotent 13	12 + fk3 of the left ideal 33. 

We continue this procedure until it terminates after a certain k. The result is a 
finite increasing sequence of left ideals 

i19i29i3c...cj,. 

For I > 2, every of these left ideals is a direct sum J1 = 3k, of its predecessor 
and a minimal left ideal 3k, := 'k, a. Furthermore, we know a generating idempotent 
fj = fl-i + 1k 1 of every Ji, I > 2, which consists of orthogonal generating idempotents 
11-1,/k, of Jj_i,Jk,. 

Since there holds true 'k a ç j, for all k > k with ek a 54 0 and even a c j_1 
for all k < kn with e. a 54 0, we have J = J. Thus, we obtain a decomposition of 3 
into a direct sum of minimal left ideals Jk,, 

J = in = in-i e Jk,. = Jn2 Jk,._, Jk,. = ... =
	

Jk, 

We take from Statement 2- of Proposition 4.1 that the idempotents f, of the left ideals 
J, possess the form 1 = 1, - xi fj = (id - x) . ft with a certain group ring element 
Xj E C[G]. With it, the following calculation leads to a decomposition of the generating 
idempotent fn of 3 = in: 

/n	fn-1 + A. 
= (id - Xn_i) . !- + 
= (id - xn_i) (In_ + fk,._ 1 ) + A. 
= (id - xn_i) (id - x_2) . !n- + (id - Zn_i) .	+ 

=	(id - Zn_i) (id - x_2) . ... . (id - x,) . 1k 1 + An .	(4.7) 

Formula (4.7) presents a decomposition of f,,, the summands of which fulfil 

h k,	(id - x_ 1 ) . (id - x2) . .... (id - l) /i, E Jk, , hk,.	An E Jk,. . (4.8) 

Therefore, f, = h,, is the decomposition of fn corresponding to the direct sum 
3 = ED I 1k, and the hk, are orthogonal generating idempotents of the minimal left 
ideals Jk, [1: p. 55] I 

From a remark after the proof of Proposition 4.1 it follows that every x, appearing 
in (4.8), is an idempotent, which lies in Jk,. Then, every factor (id—x j ) is an idempotent 
of C[G], too.
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5. A fast basis construction 

We have pointed out after equation (2.16) that a set of rankA linearly independent 
rows of the linear equation system (2.14) can be stated, if a basis {q a I q E Q} of the 
left ideal I = C [Sr] a is known. Such a basis can be determined by means of Young 
tableaux. 

Let (T1 >') , >1 be the finite sequence of all standard tableaux of a given partition A F r 
of a natural number r E N, provided with a fixed numbering, and let T, be a selected 
member of these sequence. We introduce a permutation subset 

P, := It E Sr I t o T is a standard tableau of A} 

where to T, denotes the Young tableau, which arises from Tj by permuting the number 
entries of T according to the permutation t E Sr. 

Every tableau to T, , t E P, occurs exactly once in (T/), >1 . If t[lo] stands for the 
index I = tEl0 ) oft o T in	we can write to

Vt E P,: T 101 = t o T,. 

Proposition 5.1. Let A F r be a partition of r E N and T' a fixed Young tableau 
of A which is transformed by a permutation so E Sr into a standard tableau T( of A, 
i.e. Tj = 8o oT'. Now, if y\ is the Young symmetrizer of T", then o

{t.yAItEP,oso}	 (5.1) 

is a basis of the minimal left ideal I'	C[Sr] . y'. 
Proof. 1) Since IPj I = dimI' (Theorem 2.1), it is sufficient to proof the linear 

independence of the group ring elements contained in the set (5.1). 
If two Young tableaux Ta ) , 1 ) of A satisfy T ) = 5 0 T with s E Sr, then their 

Young symmetrizers are connected by y ) = S	S-1 or s Y ) = y(2) s. Using the

decomposition t = t' o so, t' e P,, for t E PIA o .S, we can write 

(t' o SO) . yA = (t' . to ) . o = y 1 0 j
 . (t' 0 50). 

Consequently, a relation

yjt.yA=0 , 
t E 

P1.10 
o 

can be converted into

7t'o0 y 111 . (t' o so) = 0 .	 (5.2) 
t' EF, 

' An other proof of the statement of Proposition 5.1 with s 0 = id is given in [1: p. 105].
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We use the usual order-relation for Young tableaux of the same partition A F r. A 
tableau T ) is regarded as greater than a tableau 2j ) , if the simultaneous run through 
the rows of both tableaux from left to right and from top to bottom reaches earlier in 

a number, which is greater than the number on the corresponding place in 7). 
Further, the following multiplication rule holds true (see [9: Vol.1 / p. 73] or [1: p. 101]). 
If T1 , TI, are two standard tableaux of A F r, then their Young symmetrizers fulfil 

A, - I	yj¼, 0 p E C if T =	 (5.3) 
- to 	

ifJ7\ 

Now, let T, be the greatest standard tableau of A in accordance with the above 
order-relation and let t '1 E Pj be the permutation with t'1 [10] = 11. Because of (5.3), the 
multiplication of (5.2) with	from the left yields 

71 030 1L A y	(4 oso) = 0, 

and consequently fi'o3	0. After that, the left multiplication of (5.2) with the Young

symmetrizer yof the second greatest standard tableau T( results in 1.

/ yi; . (4 o SO) = 0 1	 (5.4) 

where 4 E P, is the permutation with t 2 [10] = 1 2 . A possibly non-vanishing product 
can not appear in (5.4), since	does not occur no longer in (5.2) on account 

ofy' 030 = 0. Thus we get	030 = 0 from (5.4). If we continue this procedure for all 
standard tableaux Tj" of A in decreasing order, we obtain 1t'030 = 0 for all t' E P,, i.e. 
the set (5.1) is a basis of I' U 

Corollary 5.1. Let be given the situation of Proposition 5.1 and let a E C[Sr) be a 
group ring element with y" a 54 0. Then 

{t . y A. aItEPI oso}	 (5.5) 

is a basis of the minimal left ideal W' := C[Sr]	a. 

Proof. According to Lemma 3.1 the left ideals 1A = C[Sr] y" and WA = a are 
equivalent by means of the linear map 0 : x '-* x a , x E P. Thus, (5.5) is a basis of 
W" as the image of the basis (5.1) of Vt under 0 • 

6. Concluding remarks 

Now, we see the following way to reduce tensor expressions (2.11) for a tensor T E T, V, 
all Tb of which are contained in a left ideal J = C[ST] a;
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We start with the sum

C[Sr] =	C[Sr] . yAi 
),Fr 1=1 

where the y run through all Young symmetrizers of the standard tableaux of all par-
titions A I- r, and construct by means of Theorem 4.1 a subset 

Yc{yIAFr,1=l,...,1A}, 

such that

	

J = C[S,.]•a =	C[S]y.a.	 (6.1) 
yEY 

Theorem 4.1 yields us orthogonal primitive idempotents, denoted by h, y E Y, which 
generate the minimal left ideals C[Sr] y a in (6.1), i.e. 

if yy',y,j'EY, 

and
VyEY: C[SrjyaC[Sr]hy. 

The sum h :=EYE y h, is a generating idempotent of J. With it, we obtain for the 
group ring elements Tb E J 

Tb = Tb •h =	Tb•h = 1: (h*YT)b 

	

yEY	 yEY 

The h;T are tensors, which develop from T by a symmetrization rule given by h E 
C[Sr]. 

Now, equation (2.12) turns into 

Tb( id) = >13p T6(p) = E E 13(h;T)6().	 (6.2) 
PEP	 VEY PEP 

The sums PEP 3(h;T) b (p) are independent of each other and can be reduced sepa-
rately with the help of suitable identities (2.13) of the minimal left ideals C[Sr] y a. The 
linear equation system (2.14) for the complex numbers x, E C, which define identities 
(2.13) of C[Sr y a, has to be determined from a generating element of C[Sr] y a. Ac-
cording to Section 2, every generating element of C[Sr] y a is allowed for that purpose. 
If we choose y a for this, i.e. if we use the linear equation system 

	

(y a)(p' o q) Xq = 0 , P E Sr,	 (6.3) 
qES, 

to calculate the needed identities (2.13), then we can apply the quick way of finding
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out a maximal set of linearly independent rows of (6.3), described in Section 2, since 
Proposition 5.1 and Corollary 5.1 give us a basis {p . y a I p E Q} of C[S ] y a. 

The construction of the decomposition (6.1) can be improved, if we know for every 
given partition A I- r the number of Young symmetrizers y of A which are contained in 
Y. This is synonymous with the knowledge of the multiplicity of equivalent left ideals 
in the decomposition (6.1) which are characterized by the partition A F r. 

In simple cases these multiplicities can be calculated by scalar products of char-
acters of certain representations of the Sr. If the tensor T is the tensor product of 
other tensors, the determination of the multiplicities leads to the application of the 
Richardson- Li ttlewood rule and of plethysms. The use of these tools we will describe in 
a forthcoming paper. 

We have realized a Mathematica package, called PERMS, to carry out all calcula-
tions described above. The heart of the handling of plethysms in PERMS is a very useful 
formula from [19]. Furthermore, PERMS contains a whole string of algorithms for the 
investigation of permutation groups from [3]. Other programs concerning the represen-
tation theory of the symmetric group are Schur [23] and SYMMETRICA [11, 12]. At 
present, we are working on a improvement of PERMS by replacing the tools for the 
calculation with group ring elements by procedures written in C/C++. 
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