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Abstract. In this paper nonlinear functionals of weakly correlated processes with correlation 
length e > 0 are investigated. Expansions of moments and distribution densities of nonlinear 
functionals with respect to e up to terms of order o(e) are considered. For the case of a single 
nonlinear functional a shorter proof than in [8] is given. The results are applied to cigenvalues 
of random matrices which are obtained by application of the Ritz method to random differential 
operators. Using the expansion formulas as to e approximations of the density functions of the 
matrix cigenvalues can be found. In addition to [7] not only first order approximations (exact 
up to terms of order 0(e)) but also second order approximations (exact up to terms of order 
o(e)) are investigated. These approximations are compared with estimations from Monte-Carlo 
simulation. 
Keywords: Random functions, weakly correlated processes, random matrix eigenvalue prob-

lems 
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1. Problem 

The paper has been inspired by eigenvalue problems for ordinary differential operators 
with random functions as coefficients. These coefficients are assumed to be weakly 
correlated processes f = f(x,w), x E V C R (cf. Section 2). Using the Ritz method 
an approximate solution of the given eigenvalue problem of a differential operator follows 
from an eigenvalue problem for a random matrix. The matrix elements are perturbated 
by random variables which are linear functionals 

fV 
F(x)f(x,w) dx 

of the coefficient processes fi , . with non-random functions F1 . Applying perturbation 
theory the eigenvalues of the random matrix are expanded with respect to the linear 
functionals written above. Then, from these expansions approximations of the distri-
bution densities of the eigenvalues can he given. 
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In the general case, a function d(y), y (yj,. .. , y,) is assumed to have the following 
properties: 

(P1) d can be represented by 

d=dO+ > daya+	da b  
a1	 a,b=1 

nn	\ 
+	dacyy,yc+	 .h(y1,...,y) 
a,b,c=1  

where c > 1 and the function h is bounded on B6(0) = {y E R n : IIU !^ ö}. 

(P2) All moments of d(w) = d(r i (),. .. , r,(c)) exist, i.e. EIdk J < Ck < 00 and 
rse (i = 1,. . , n) are linear functionals 

rj(w) = IV Fj (x) f, (x, w) dx 

of a weakly correlated process fe with continuous sample functions a.s. and 
E {If P} c, < c (p E N), where the functions F1 are supposed to be 
bounded, integrable and square integrable on an interval V C R. 

In the case of random matrices it is deduced by perturbation results that the random 
eigenvalues can be represented in form (1) (cf. Section 5) Especially, for functions 
d E C 4 (B 6 (0)) the representation (1) follows by means of the Taylor expansion. 

The aim of the present paper is the calculation of approximations for the distribution 
density of the random variable d() = d(rie(w),... ,r(w)). In a first step expansions 
of moments of d are given with respect to the correlation length e of a weakly correlated 
process f = f(x,w). Then, by means of the Cram-Charlier series the expansion of the 
distribution density of d as to e can be obtained using the expansion of the moments. 

In order to deal with the random variable d it is necessary to investigate expansions 
of moments of the linear functionals r 1 as to the correlation length e. These results 
are given in Section 2. The results of this paper can be generalized to the case of n 
functions d 1 ,.. . , dn and linear functionals r1 of the form 

I	 I 

=	rj() 
= V 

Fjj(x)fje(x,w)dx 
j=1	 j=1 

where	. . , f) is a weakly correlated vector process.
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2. Calculation of moments of linear functionals 
The concept of weakly correlated processes is based on the idea that these processes 
have no distant effect. The values of the process at two points do not correlate when 
the distance of these points exceeds a certain quantity e > 0. This quantity e is referred 
to as the correlation length of the random process and it is assumed to be sufficiently 
small. 

The definition of a weakly correlated process implies Ef = 0. The correlation 
function of f can be written as 

E{f(x)f(y)} 
= R(x,y) if x - I/I :5c 

1 0	otherwise. 
The theory of weakly correlated processes can be found in [8] and the notations used 
follow this literature. 

The statistical characteristics of weakly correlated processes can be described by 
so-called intensities where, for instance, the intensity a1,2 can be written as 

a1,2 (x) = lim	[E{ ft. (x)f(x+z)}dz. 
E J 

—c 
Similarly, af,3 and a j,4 are defined as integrals as to third and fourth moments, respec-
tively. It should be noted that the intensities are independent of the correlation length 
C.

The terms 2A 1 ({i,j }), 3A 2 ({i,j, 1)), 4 ({z,j, 1, rn}) denote one-dimensional integrals 
over the domain V using the intensities of the process fe: 

2A1({i,j}) = 

3A2({i,j,l}) = ID Fi(x) Fj(x) FI(x) af,3 

4 ({j,j, 1,	
= ID F(x) F(x) F,(x) Fm(X) af,4 (x) dx. 

Furthermore, we will use terms 2A 2 ({i,j}) which contain additionally boundary terms. 
The expansion for moments of random variables of the form 

re(w) = fF(x)f(x,w)dx	(x E DC R) 

with respect to the correlation length C is given by the following theorem-(cf. [81). For 
its formulation let J 1 , J2 , J3 , J4 denote all possible, non-equivalent decompositions of 
the set { i 1 .•• ,ik} in the following way: 

fork even:	J, = {{si,ti...,{s,t}} 

= {{si,ti,ri}, { s 2 ,t 2 ,r2 } 1 {s3,t3}.... , 

for kodd:	J4={{si,ti,ri},{s2,t2},, ... ,{s,t.}}.
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Two decompositions are said to be equivalent, if they only distinguish by a permutation 
of the sets and a permutation of the elements in the sets. 

Theorem 1. Let f denote a weakly correlated process with continuous sample 
functions as. and E {IfeI P }	c, < x (p E N). The functions F1 are supposed to be 
bounded, integrable and square integrable on V. Then the moments E{ fl	have

the expansion 

j 
IIze}	{ 

Go(il,...,ik)e +G2(il ...... ik)e 5 ' +o(e')	if k even 

E  

1k 

P= 1	GI(iI,...,ik)e 2 +O(e 2 )
	

if k odd 

where the terms C 0 . G I , G2 are given by 

Go(i i ,.. ., i k) =	2Ai({sq,tq})	 (3)

3, q=l 

G i (i j ,... ,zk) =	3A2({s1,ti,ri}) fJ Ai({s,,,t,})	 (4) 

	

J4	 q=2 
k	 Ic 

C2 (z 1 ,... ,ik)	L 2A({st}) 
Jj j1	 jglq1 

2	 2 

	

+	f+3A2({sq,tq,rq}) 
JJ 2A i ({.Sq,tq})	(5) 

32 q1	 q=3 

	

+	43({si,ti,r1,u1}) fJ 2Ai({sq,tq}). 
.13	 q=2 

This expansion of the moments of random linear functionals with respect to the 
correlation length e is used essentially in the next section. 

3. Calculation of the moments of nonlinear functionals 
The random variable d(w) = d(ri(w),... , r,,(w)) possesses the properties (P1) and 
(P2) given in Section 1. Now, the expansion of the moments E{(d(w) --do)'} with 
respect to the correlation length e is determined. 

The random variable roe is defined by 

ro(w) =	darae(w) = JFo(x)f(xw)dx 

with

Fo(x) >daFa(x).
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Using the representation (1) of d, the random variable d(r i (w),. , r,(i)) can be 
written as

d(w) = d0 + r0 (w) +	dab rae(w)rt(w) 
a,b=1	

(6) 

+	dobc rO(w)rb(w)rC(w) + (rie, . . . , 
a,b,c=1 

where h(r i ,. . . ,r,,) denotes the residual term given by (1). 

To simplify the following investigations the random variable d is considered resulting 
from d by the linear transformation 

J(w)= 3.(d(w)_do)	where	
c= /({oo})•	

(7) 

The k-th moments of d are "standardized" with respect to the lowest order in the 
expansions with respect to C. In particular, we have 

E{d(w)} = 0 + 0(/)	and	D 2 {d(w)} 1 + 0(C). 

These properties simplify the following expansions. 
The central moment of order k of d can be easily determined by 

E{(d(w) - d0 ) k } = - E{(w)} . VEk 
Ck 

from the moments of d. Now the moments of d are investigated. 

From equalities (6) and (7) the representation of the random variable d in terms of 
the linear functionals r, is given by 

=	[c . ro(w) + c	dab rac(w)rt) 
a b= I 

+ c E datc rae(w)rtc(w)rce(w) + c .	r)]	(8) 
a, b , c= I 

=[u(w) + v(w) + w(w) + (w)J 

where the abbreviations
u(w) = croe(w) 

v() = c	dab rac(w)rte(w) 
a,b=I 

n	 (9) 
w(w) = c	datcrae(w)rte(w)rce(.) 

a,b,c1 

(w) = c(rie,...
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for the terms of homogenous order in the random variables ne have been introduced. 
The terms u, v, w have the order 1, 2, 3 with respect to the n 1 , respectively. The residual 
term ii contains terms of higher order than 3. 

Using equality (8) the terms {ã9(w)}k (k E N) are expanded with respect to terms 
of homogeneous order in the random linear functionals r1 (i E {O, 1,. . . , n}). From 

{a(w)}k = 

it follows

{J(w)}k = 1 [k+ (k).k-I V + (k) U k-i W + (k) U k-2 V 2 +	( 10) 

if homogeneous terms are written up to the order k + 2. Terms of an order higher than 
k + 2 need not to be considered, since their moments (standardized by 11V) are of 
order o(e) which follows immediately from Theorem 1. For the expectation of (10) we 
have

	

E{dk} =	r IE { u k } + (1)E{uv} 

j U k—I W I

L	 (11) 
+ (k	

fUk-2,211 + 0(E). 

By means of Theorem 1 the expectations E{uk},E{uk_lv},E{uk_Iw},E{uIc_2v2} can 
be expanded with respect to the correlation length e. For abbreviation the terms 

2A 1 (u,u) = c2 2A1({0,0}) 

2A2 (U, u) = c2 -2A2(10,01) 

4 4(u,u,u,u) = c4 

u, u)) = c3 3A2 ({0, 0, O}) 

are introduced. From the definition of c 

	

2A 1 (u,u) = 1
	

(12) 

follows. Furthermore, e (k E Z) is defined to be the number of all non-equivalent 
decompositions of k elements in pairs (the number of pairs in Ji): 

k! 

={2 	

ifkeven 

	

ek	

2 (i
k)!

	

(13) 

0	ifkoddork<0.
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Then the k-th moment E{u c } = E{(c.ro e ) k } has the expansion 

{ ek + [ (
k) 

e k-2 2A2( U , U ) + 
(k) 

e k— ,1 4,A ( U l U 7 U 7 U)

if k even 
E{u k } -	1 (

3
k) 1k - 3\	 2

2(\ 3 ) e k_6 (3A2(u,u,u)) 
j 

(k) 
3 ek_3 3A2(u u, u) . VIC +	 if k odd. 

In order to expand E{uk_lv} the terms 

2A, (v) =c	dab 2Ai({a,b}) 
a 6=1 

22A 11 (v,u,u) = c3. E dab 2Ai({O,a})2A1({O,b}) 
a,b=i 

3A2 (v,u) = C2 E dab 3A2({a,b,0}) 
a,b=1 

32A21 (v,u,u,u) = c4	dab [3A2({a,O,0})2A1({O,b}) +3A2({b,O,O})2A1({0,a})] 
a,61 

are introduced. With (9) it follows 

E{uk_lv} =E{ck.rOe k—i .	dab raerbe 
a, b= I 

Then this moment of order k + 1 possesses the expansion 

E{u k_l v} — 

[(k — 1)et_2 3A2(v,u) + (k — 1)(k - 3)ek_4 32A21(v,u,u,u)

 (k 3 
+	1)(k —4)(k - 5)ek 6 3A2(u,u,u)22Aii(v,u,u)

	
if k even 

+ 
(k - ) ek_4 3A2(u,u,u)2A1(v)] 6 + o(e) 

[ekI 2A 1 (v) + (k - 1)(k — 2)et3 22Aii(v,u,u)J . rE + O() if k odd. 

\
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In order to expand E{ukw} the additional terms 

	

22A ii (w,u) = c2.	dabc[2A1((a,O})2A1({b,c}) 

a,b,c=1 

+2A1({b,O})2A1({a,b}) + 2A1(1c0})2A1({ab})] 

222A 111 (w, u, u, u)	C4.	daôc 2A 1 ({a, 0}) 2A 1 ({b, 0}) 2A i ({c, O}) 
a 6 c 1 

are introduced and it is 

E{uk_lw} = E 
I

ck	 dabcraerbrce
 I a;b,C1 

using the abbreviations (9). This moment leads to a term of order k + 2: 

[(k — 1) ek_2 22A 11 (w, u) 

E{uk_lw} —
	+ 3! (k 1 ) ek_4 222Aiii(wuuu)] E + o(e) 

	

—	 ifkeven 
k	—'

if k odd. 

Finally, it is defined 

22A 11 (v,v) = C2. 	dab dcd[2A1({a,c})2A1({b,d}) 
a,bcd=1 

+ 2Ai({ad})2Ai({bc})] 

dab dcd[2A1({a,O})2A1({c,O})2A1({b,d}) 
a ,b,c,d I 

+ 2A1({a,0})2A1({d,0})2A1({b,e}) 

+ 2A1({b,0})2A1({c,0})2A1({a,d}) 

+ 2Al({b0})2AI({d0})2Al({ac})1 

in order to determine the moment E{uc_lv2} of order k + 2. The expansion of 

E{uk_2v2} = E 

I
	

a 

Ck .	

( 1

 dab Tcrof  abc) 2 }
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can be written as 
E{u k_2 v2} - 

- 

[(k - 2)(k - 3) ek_4 (2 . 2A1(v)22A11(v,u,u) 

+ 222A iii (v, v, u, u)) + e k_2((2A I(v))2 + 22A 11 (v, v))	if k even


+ 4! (k - 2) 
C k_6 (22A 11 (v, u, )) 2 1 E + o(c) 

	

O(v)	 if k odd..

Substituting these expansions into equality (11) the expansion of the k-th moment of 
{ d()} up to terms of order o(E) can be obtained by elementary transformations and 
by using definition (13). The following theorem summarizes the result. 

Theorem 2. The moments E{d k } ( k e No) have the expansion 

	

k!I	1	 1 

1	

1	"I 
ek +	 ( +	,R4,d + (\,R6,d j' c + o(e) if k even 

	

E{dIc}_	 L\ 2 1	k 2	 2 J	) 

	

-	l{(I)!R1d+ ()! R3d } VIE 	 if k odd 

where the coefficients R,a (i = 1,2,3,4,6) are given by 

R2,d = 2A 2 (U, u) + 2 'A2 (V, u) + ( 2A 1 (v)) 2 + 22A 1 (v, v) + 2 22.41 (w, u) 

R4,d =	A(u)u,u,u)+2 32A21 (v , u , u , u)+ 3A2(u,u,u)2Ai(v) 

+ 4 22A 11 (v,u,u) 2A i (v) + 2 222A i11 (v,v,u,u) + 4 222A111(w)u7u,u) 

R6,d = ( 3A 2 (u, u, u)) 2 +	3A 2 (u, u, u) 22A ii (v, u, u) + 4 ( 22A, (v, u, u))2


Rid = 2A,(v) 

fl3,d	3A2(u,u,u) + 2 22Aii(v,u,u). 

The relation between the moments of d and d - d0 is given by 

E{(d(w) - d0 ) k } = I . E{ak (w )} . Ck  

wzthc= {O,O}) 
Remark 1. The R1 ,d are independent of e, but they are also independent of the 

order k of the moment considered. This simplifies practical calculations considerably. 
Remark 2. The expansion of E{d} does not contain the term 1/ (i)! Ri,d in 

case of Ic - i < 0. This follows from the calculations which lead to Theorem 2. Therefore, 
in the following considerations there is defined 1 = 0 for j < 0. 

Theorem 2 gives the expansions of the moments of any order using only the constants 
RId for i = 1,2,3,4,6. This enables us to simplify the representation for the density 
function, too.
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4. Calculation of the distribution density 

Let j5 denote the distribution density function of d and p that of d - d0 . The expansion 
of P with respect to the correlation length e is investigated. Then the representation of 
p can be found using the relation

7c \	c 
P( U) =( — u 1 . —	 (14) 

VIF 

The distribution density of P is assumed to have the form (Gram-Charlier series) 

00
Cm	- (i)=	 exp(_i2) . >(_1)m_Hm(U)	 (15) 
M! M=0 

where Hm defined by

dm 
Hm(Ü) = (_1)m	(2i2 

dim	2 
—exp( U) 

[oi]

	

	 (16) 
m! -m-2k =	

(1)k 2kk!(rn - 2k)! u 
k=O 

denotes the Chebyshev-Hermite polynomial of order m and the Cm are real coefficients 
which are to be determined. Using a property of Chebyshev-Hermite polynomials, 
namely

Texp (_i2) Hp (i)Hq (i)di =	P! 6,q, 

from equality (15) this can be done by 

	

Cm =	 I fi(ii) H .. (il) dii 

t]	 +00 

( 
)Tfl+k	in! 

2 k k!(m - 2k)! 
J (u) m2k di	 (17) 

k=O  

[1 in! 

	

=	(_1)m+Ic2kk!( - 2k)! E{dm_2/c} 
k=O 

where

Igii) iim-2k dii = E{m_2k}
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is applied. By means of Theorem 2 the expectations E{dm_2k} (k E {O, 1	r!Il' '"'12 ii, 
can be expanded with respect to the correlation length e up to terms of order o(e). 
Substituting these formulas into equality (17) the expansions of the coefficients Cm are 
obtained. The cases "m even" and "m odd" will be considered separately. 

1. The index rn is assumed to be even. Then 

Cm = m+ 

	

2	

k	 + 
in!	 (in — 2k)!	R21d 

	

k	
2kk!(rn — 2k)!	 2mi—	((m_2k)_ 2i)? E + O(C) 

T 2 
( _ik	m  —	-	2k!(m — 2k)! e.-2k +	(1)k	

L1 
 

2Tk!	((m-2k)-21\1 E + o() 
k=O	 k=o	 11 .	2 

and hence

in! 
Cm	Om +R2:,d(_1)k k! ((

	1)- k)! 
C + o(e) 

2T
1=1	k=O 

where (13) and the relation 

1	1
 1
	 0 ifo<zEN —1:(_,) k

(Z)
(1	= 

k!(z - k)!	z k 0	
= ;i — 

i)z
I I  if z = 0 

	

k=0	 =
— with z = ¶ has been used. In the same way, setting z — m — I for 1 = 1,2,3, the 

equality

(1)k	1	 1 
\2	k=0	k ) 

= 52!,,,	(18) 
k=0	(( -1)- k)! k! =	— I'!	

(i)k IT —'


can be derived considering Remark 2 of Theorem 2. Thus 
in! 

Cm = 80m +	[5m R2,d + '54m R4,d + 56m R6d] C + o(e).	 (19) 

2. The index m is assumed to be odd. In this case 
m-! 

2	 in!	I (m - 2k)!	R(21_1),d 
m-2k _ I 

	

Cm =	(_1)m+k2kk!(	2k)T	2	2	
( ( m-2k) 2
	)!	 } 
-(21_ 1) 

k= 0 

and hence 

	

Cm = ( 1) (1)k [k!(-i_-k)! R i d + k!(rn	- k)! R3 a] . /+ 0(,-). 

Applying equality (18) with the same considerations as in case of m even it follows 

Cm = (- 1)	[Sim Rid + (53m R3d] .	+ o(e).	 (20) 

Using these terms of the coefficients Cm the expansion of the distribution density P is 
summarized in the following Theorem 3.
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Theorem 3. The expansion of the distribution density j3 can be explicitly given up 
to terms of order o(e) by 

(u) =	exp(_ü2) [i + (Ri,d Hi (il) + R3dH3(u))V' 

	

+ ( R2, H2 (ü) +	H4 (ü) + R6dH6(Ü))E + o(E)J 

where the R 1 ,d (i = 1,2,3,4,6) have been defined in Theorem 2.


Proof. The equalities (19) and (20) leads to the relations 

c0=1 )

Cm=O(E) (5<modd). 

C' = —1 RId 
C2R2dE+o(E) 

C4 =90R6 de+o(E)	
I and	C3=-3R3,d\/+O(E)

} Cm = o(e) (8 <in even) J 
I 

Substituting these expansions of the coefficients into the Gram-Charlier series (15) the 
proof is complete I 

Remark 1. It should be noted that although only the coefficients Cm for m = 
0,1,2,3,4,6 are used explicitly, the expansion of the density is exact up to terms of 
order o(e). 

Remark 2. Theorem 3 includes the asymptotic result for nonlinear functionals 
that for e - 0 the random variable 

1 
J(w) = 

y7A { 0, 0)) 
E (d(w) —do) = 7 (d(r i e,. .. ,r,,) - do) 

1 (  

converges in distribution to a Gaussian random variable with mean zero and variance 
one. Because of the linear dependence on d the random variable d converges to a 
Gaussian variable, too. 

Remark 3. In [8] a similiar proposition for vector-valued functionals d is given. 
The proof of Theorem 3 for the special case of a single-valued functional is much shorter 
than in [8]. 

Applying the expansion calculated approximations of the distribution density func-
tion can be given for small E. The approximations Po, i and P2 are exact up to terms 
o(1), o(/) and 0(E), respectively: 

=)=exp (_!2)
	

(21) 

Pi ( ii ) =o(u) [1 + (R,,dHI(Ü) + R3dH3( Ü))/]	 (22) 

2 (u)= 0 (u) [1+ (Ri,d H, (ii) + R3,d H3( ii ) Vre 

+ (R2 ,dH2 (Ü)+ R4dH4(Ü)+R6dHC(Ü))E] .	(23)
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From equality (14) the expansion of the distribution density of d - d0 can be obtained 
as

[i+ (Rl	
(7

,dHi=u) + 1 R3dH3(32u))\/ 
,/2—,rc	(-2.E )	E	2  

H2 (7 ) + R4,d H4 (7k) + R6,d H6	 + 0(E)]. 

According to equalities (21) - (23) approximations PO,Pi and P2 of the density p can 
be written. These approximations are exact up to terms of order o(1), o(./) and o(e), 
respectively. 

In applications to eigenvalue problems usually first order approximations po have 
been considered only. Hence, random variables d have been approximated by Gaussian 
variables with mean d0 where d0 is the value of the averaged problem (cf. Remark 2 of 
Theorem 2). 

Depending on the practical problem considered approximations of higher order 
should be used, especially, if the correlation length C is not close to zero. The ap- 
proximations of higher order give the deviation from the Gaussian distribution. The 
higher numerical effort to calculate the approximations 

p 

or p2 is worth-while because 
the results being obtained can be confirmed by simulation very well. In particular, for 
the mean of d derived by using the approximations p i or p2 large deviations from the 
value d0 have been observed. This problem is denoted as the averaging problem: the 
deviation of the mean of d from the value d0. 

In the next section an application is presented and the importance of considering 
approximations of higher order is shown. 

5. Application 

In this section we calculate the approximations Po and p2 of the first eigenvalue of a 
random symmetric matrix eigenvalue problem and compare the results with those of 
the Monte-Carlo simulation. 

Consider the eigenvalue problem of a random ordinary differential operator 

(fu")" = —)u" 
U(0) = u(1) = u" (0) u" (l) = 0	

(24) 

where 0 < x 1 and f = f(x,c) is assumed to be a random process with f( . ,LO) ^! 
C(LO) > 0 almost sure. The buckling problem of a simply supported bar is described 
by (24) with f = El where El denotes the bending stiffness, E being the modulus of 
elasticity and I the moment of inertia of the cross-sectional area. Let the bar possess 
always a circular cross-sectional area with random radius 

r(x,w) = r0 +(x,w)	 (25)
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where F is a weakly correlated process. Hence, I(x,w) = .irr(x,w), and I = I - El 
and J = f - Ef are weakly correlated processes, too. The modulus of elasticity E is 
assumed to be non-random. Now (24) is replaced by the Ritz equations 

(A + B(w))nu = 'Au	 (26)


with

	

1	 1 

	

a ij = f	 lI( 'II(E{f(x)}'(x)(x)dx	and	b j (w) = 

	

0	 0 

for 1	i,j	ri The functions q'., are assumed to form a base of polynomials (cf.[6]): 

i (x) = x - 2x 3 + x4 

= 7x - 1Ox 3 + 

	

= x'(l - x)	(i > 3). 

The averaged problem associated with (26) possesses n simple eigenvalues, denoted by 
'j	(i = 1,... ,n) and the eigenvectors 'u 0 = ( ' uoi .... .

TZ.t0)T (i = 1,...,n) which 
can be calculated by deterministic methods. The random variables b,(w) are linear 
functionals of the weakly correlated process f. 

Using perturbation results the eigenvalues can be represented by the random vari-
ables b13 (z, j = 1,... , n), the eigenvalues and the eigenvectors of the averaged problem 
(cf. [71). The g-th eigenvalue of (26) can be written as 

= n,,, + I)gg -	+	 - 1)gg	+ ...	( 27) 
1=1	/	I,) =1	

/1 k g /1 )9	 /1,g 

where the bij defined by

=	Uok u 0j bk,(w)	(i,j = 1,. . . , n) 
k1=1 

are as the b, linear functionals of the weakly correlated process f, too, and fl/jjg = 

ny i - ' u 9 . It is obvious that the eigenvalues satisfy properties (P1) and (P2) when we 
define r i = bii (w),... , T fl 2 E = b(w). 

To compare our approximations with simulation results the process re is defined for 
xE[*,1] (i = 1,. . . , N — 1) by 

= (w) +p(x)(,+(w) - (w))	 (28) 

with
Pi(x) = 6(Nx - i) 5 - 15(Nx - 2) 4 + 10(Nx - i)3.
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The , denote Gaussian variables, where eo,. . . ,N are independent with E6 i = 0 and 
D 2 = a 2 = /3 2r (0 < < 0.2). With this choice of p, the trajectories of r are 
two times continuous differentiable in (0,1) and r is a weakly correlated process with 
correlation length e = •. The process r is non-stationary. The same is valid for the 
process f, too. With respect to J the intensities are to be determined. Because of the 
instationarity of f the calculations are complicated. But considering the intensities it 
becomes obvious that they are approximately constant for small e and so the "means" 
will be used for further calculations. The intensities only depend on the variance a 2 = 
/3 2r of the ,, i.e. on the parameter fi, but not on e. 
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Some results are presented which are obtained for the first (smallest) eigenvalue 
The smallest eigenvalue is the relevant one, since the probability that the bar fails can 
be computed by using it. For simplification the "normalized" eigenvalue ) = 
is considered. 

For n = 4 (the dimension of matrix problem), for several values of 3 (as a measure 
of the variance of the process r) and for several values of the correlation length E, 
the obtained density approximations po and P2 are plotted. These approximations are 
compared with the results getting from Monte-Carlo simulation. 

From the illustrations it is obvious that the simulation results confirm the approxi-
mations of second order which correspond very well with the simulated densities. 
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